Skip to main content

Introduction to Solder Alloys and Their Properties

  • Chapter
A Guide to Lead-free Solders
  • 1399 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abtew, M., Selvaduray, G. (2000), “Lead Free Solders in Microelectronics”, Material Science and Engineering, 27, pp 95–141.

    Article  Google Scholar 

  2. Allenby, B., Artaki, I., Carroll, T. A., Dahringer, D. W., Degani, Y., Fisher, J. R., Freund, R. S., Gherman, C., Graedel, T. E., Lyons, A. M., Melton, C., Munie, G. C., Schoenthaler, D., Plewes, J. T., Socolowski, N. and Solomon, H., (1992), “An Assessment of the Use of Lead in Electronic Assembly”, National Surface Mount Council, IPC, Chicago, IL.

    Google Scholar 

  3. Bioca, P., (1998) “Global Update on Lead Free Solders”, Proc. Surface Mount International 1998, IPC, pp 705–709.

    Google Scholar 

  4. Becker, G., Telefonaktiebolaget LM Ericsson, Stockholm, (February 1983), “Creep and Fatigue Testing of Micro Solder Joints”, Proc. of 7th Annual Soldering Technology Symposium, Naval Weapons Center, China Lake, CA.

    Google Scholar 

  5. Brydges, J., Trumble, B., (1997) “World’s First Lead Free Circuit Telephone”, Proc. IPC Works 97, Arlington, VA, 1997, pp SO3-3-1–SO3-3-3.

    Google Scholar 

  6. Coffin, L. F., Jr., (1973), “Fatigue at High Temperature”, ASTM STP 520, Philadelphia, PA

    Google Scholar 

  7. Dasgupta, A., Oyan, C., Barker, D., Pecht., M., (June 1992), “Solder Creep-Fatigue Analysis by an Energy-Partitioning Approach”, Transactions of the ASME, Vol. 114, pp. 152–160.

    Article  Google Scholar 

  8. Development of Highly Reliable Soldered Joints for Printed Circuit Boards, (1968), NASA Technical Report N69-25697, Westinghouse Defense and Space Center, Baltimore, MD.

    Google Scholar 

  9. Electronic Materials Handbook, Volume 1, Packaging, (November 1989), ASM International, Metals Park, OH.

    Google Scholar 

  10. Engelmaier, W. and Attarwala, A. I., (1989), “Surface-Mount Attachment Reliability of Clip-Leaded Ceramic Chip Carriers on FR-4 Circuit Boards”, IEEE Transactions on Components, Hybrids and Manufacturing Technology, Vol. 12, No. 2, pp. 284–296.

    Article  Google Scholar 

  11. Engelmaier, W., (1983) “Fatigue Life of Leadless Chip Carrier Solder Joints During Power Cycling”, IEEE Transactions on Components, Hybrids and Manufacturing Technology, Vol. CHMT-6, No. 3.

    Google Scholar 

  12. Engelmaier, W., (1984), “Functional Cycles and Surface Mounting Attachment Reliability”, Surface Mount Technology, ISHM Technology Monograph 6984-002, pp. 87–114.

    Google Scholar 

  13. Engelmaier, W., (September 1990), “Environmental Stress Screening and Use Environments-Their Impact on Surface Mount Solder Joint Reliability”. Proc. of IEPS Conference.

    Google Scholar 

  14. Engelmaier, W., (1998), Unpublished communication.

    Google Scholar 

  15. Evans, J. W. and Engelmaier, W., (November 1990), “SMT Reliability for Space Flight”, Surface Mount Technology, Vol. 4., No. 11., Lake Publishing, Chicago, IL., pp 24–31.

    Google Scholar 

  16. Evans, J. W., (1991) Goddard Space Flight Center Construction Analysis Report, Serial No. 93114.

    Google Scholar 

  17. Evans, J. W., (April 1990), “Grain Growth in Eutectic Solder: Implications for Accelerated Testing”, IPC Presentation, IPC Spring Meeting, Boston, MA.

    Google Scholar 

  18. Evans, J. W., (February 1989), “An Overview of Thermally Induced Low Cycle Fatigue in Surface Mounted Solder Joints”, Surface Mount Technology, Lake Publishing, Chicago, IL, p. 36.

    Google Scholar 

  19. Evans, J. W., (October 1987), “Statistical Variations in SM Component Solderability Testing”, Surface Mount Technology, Vol. 1, No. 5, Lake Publishing, Chicago, IL.

    Google Scholar 

  20. Evans, J. W., Evans, J. Y., Hull, S. M., (1993), “The Effects of Cerium and Silver Alloying on Microstructure and Fatigue in Near-Eutectic Solders”, International Journal of Microcircuits and Electronic Packaging, Vol. 16, No. 4, pp. 363–372.

    Google Scholar 

  21. Frear, D. R., Jones W. B., and Kinsman, K. R., (1991), Solder Mechanics: A State of the Art Assessment, The Minerals, Metals and Materials Society, EMPMD Monograph, pp 155–189.

    Google Scholar 

  22. Fuchs, H. O. and Stephens, R. I., (1980), Metal Fatigue in Engineering, John Wiley and Sons, New York, pp. 78–81, pp 182–184.

    Google Scholar 

  23. Gamalski, J., (May 2002) A European Perspective from a Global OEM, (May 2002) IPC/Jedec Conference on Lead Free Electronic Components and Assemeblies, San Jose, CA.

    Google Scholar 

  24. Goudarzi, V., (May 2002) First US Product Manufactured with Lead-Free Solder Paste: How We Did It, IPC/Jedec Conference on Lead Free Electronic Components and Assemeblies, San Jose, CA. Habu (1999)

    Google Scholar 

  25. Habu, K., Takeda, N., Watanabe, H., Ooki, K. Abe, J., Saito, T., Taniguchi, Y., Takayama, K.; Res. Center, Sony Corp., Yokohama; Electronics and the Environment, 1999. ISEE-1999. Proceedings of the 1999 IEEE International Symposium, pp: 21–24, Meeting Date: 05/11/1999-05/13/1999, Location: Danvers, MA, USA

    Google Scholar 

  26. Hagge, J. K., (November 1982), “Predicting Fatigue Life of Leadless Chip Carriers Using Manson-Coffin Equations”, Proc. of the IEPS Conference, pp. 199–208.

    Google Scholar 

  27. Hampshire, W. (1989), “Solders” in Electronic Materials Handbook, Volume 1, Packaging, ASM International, Metals Park, OH, pp 633–642.

    Google Scholar 

  28. Hwang, J. S., (1994) “An Overview of Lead-Free Solders for Electronic and Microelectronics”, Proc. of Surface Mount International, IPC, pp 405–421.

    Google Scholar 

  29. Kariya, Y. and Otsuka, M. (1998), Effect of Bismuth on the Isothermal Fatigue Properties of Sn-3.5 mass%Ag Alloy, Journal of Electronic Materials, Vol. 27, No. 7.

    Google Scholar 

  30. Kashyap, B. P., and Murty, G. S., (1981), “Experimental Constitutive Relations for High Temperature Deformation of a Pb-Sn Eutectic Alloy”, Materials Science and Engineering, Vol. 50, pp. 205–213.

    Article  Google Scholar 

  31. Kennedy, A. J., (1974), Process of Creep and Fatigue in Metals, John Wiley and Sons, New York, pp. 147–273.

    Google Scholar 

  32. Kotolowitz, R., (December 1989), “Comparative Compliance of Representative Lead Designs for Surface-Mounted Components”, IEEE Transactions on Components, Hybrids and Manufacturing Technology, Vol. 12, No. 4., pp 431–448.

    Article  Google Scholar 

  33. Lau, J. H., Rice, D. W. and Avery, P. A., (1987), “Elastoplastic Analysis of Surface Mount Solder Joints”, IEEE Transactions on Components, Hybrids and Manufacturing Technology, Vol. CHMT-10 pp. 346–357.

    Article  Google Scholar 

  34. Lau, J. H., and Pao, Y. H., (1997), Solder Joint Relaibility of BGA, CSP Flip Chip and Fine Pitch Assemblies, McGraw-Hill, N.Y.

    Google Scholar 

  35. Manko, H. H., (1979), Solders and Soldering, 2nd Edn., McGraw-Hill, New York.

    Google Scholar 

  36. Martin, J. W., and Doherty, R. D., (1980), Stability of Microstructure in Metallic Systems, Cambridge University Press, New York, pp.3–7, pp. 173–223.

    Google Scholar 

  37. Mather, J. C., (March 1985), “Component Attachment Reliability”, Proc. of the Fifth Capacitor and Resistor Technology Symposium, San Diego, CA.

    Google Scholar 

  38. Mavoori, H., Chin, J., Vayman, S., Moran, B., Keer, L., Fine, M., (1997), Creep, stress relaxation, and plastic deformation in Sn-Ag and Sn-Zn eutectic solders. Journal of Elec Mat 26:783–790.

    Google Scholar 

  39. McClintock, F., Argon, A. (eds) (1966), Mechanical Behavior of Materials, Addison-Wesley, Reading, Massachusetts.

    Google Scholar 

  40. McCormack, M., Jin, S., (1994) Improved mechanical properties in new, Pb-free solder alloys. Journal of Electronic Materials, 23:715–720.

    Google Scholar 

  41. Miller, I. and Freund, J., (1977) Probability and Statistics for Engineers, Prentice-Hall, Engelwood Cliffs, NJ.

    MATH  Google Scholar 

  42. NASA Technical Report N69-25697, “Development of Highly Reliable Soldered Joints for Printed Circuit Boards”, August 1968.

    Google Scholar 

  43. Nimmo, K., (2002) Review of European Legislation and Lead Free Technology Roadmap, IPC/Jedec Conference on Lead Free Electronic Components and Assemblies, San Jose, CA.

    Google Scholar 

  44. Pecht, M., (1991), Handbook of Electronic Packaging Design, Marcel-Dekker, New York, pp. 754–765.

    Google Scholar 

  45. Reed-Hill, R. E., (1973), Physical Metallurgy Principles, Litton Educational Publishing, Inc., Brooks-Cole, Monteray, CA, pp. 304–307.

    Google Scholar 

  46. Shine, M. C. and Fox, L. R., (1988), “Fatigue of Solder Joints in Surface Mount Devices”, Low Cycle Fatigue, ASTM STP 942, Philadelphia, PA, pp. 588–610.

    Google Scholar 

  47. Smith, E., Swanger, K., (1999) “Lead Free Solders — A push in the Wrong Direction?”, Proc. IPC Printed Circuits Expo, Long Beach, CA, March, 1999.

    Google Scholar 

  48. Solomon, H. (December 1989), “Low Cycle Fatigue Behavior of Surface Mounted Chip-Carrier/Printed Wiring Board Joints”, IEEE Transactions on Components Hybrids and Manufacturing Technology, Vol. 12. No. 4, pp. 473–479.

    Article  Google Scholar 

  49. Solomon, H. D., (1986) “Fatigue of 60/40 Solder”, IEEE Transactions on Components, Hybrids and Manufacturing Technology, Vol. CHMT-9, No. 4, pp 423–432.

    Article  Google Scholar 

  50. Stuart, J., Turbini, L., Ammons, J., (1997) “Towards Quantifying the Effect of Lead Legislation on Electronic Product and Process Design”, Proc. IPC Works 97, Arlington, VA, 1997, pp SO3-7-1–SO3-7-4.

    Google Scholar 

  51. Tribula D., and Morris, J. W., Jr., (December 1989), “Creep in Shear of Experimental Solder Joints”, The American Society of Mechanical Engineers Winter Annual Meeting, 89-WA/EEP-30, San Francisco, CA.

    Google Scholar 

  52. Trumble, B. (1998), “Get The Lead Out”, IEEE Spectrum, May, 1998, pp 55–60.

    Google Scholar 

  53. Tsukada, Y. (1999) New Era of Electronics Packaging and Its Technical Difficultiles, EEP Vol. 26-1, Advanced in Van Der Molen, T. (November 1990), private communication.

    Google Scholar 

  54. Van der Molen, (1990), “Unpublished Work”.

    Google Scholar 

  55. Vaynman, S., (1990), “Effects of Temperature on Isothermal Fatigue of Solders”, IEEE Transactions on Components Hybrids and Manufacturing Technology, Vol. 13, No. 4.

    Google Scholar 

  56. Vayman, S., Ghosh, G., Fine, M. E., (1998), Effects of palladium and solder aging on mechanical and fatigue properties of tin-lead eutectic solder. Journal of Elec Mat 27:1223–1228.

    Google Scholar 

  57. Wen, L. C., Mon, G. R., Jetter, E. S. and Ross, R. G., Jr., (April 1992) “Metallurgical Variations in Near Eutectic Tin-Lead Solder Undergoing Thermal-Mechanical Processes”, JPL Technical Report, JPL D-9632.

    Google Scholar 

  58. Wild, R. N., (1974), “Some Fatigue Properties of Solders and Solder Joints”, Proc. of NEPCON.

    Google Scholar 

  59. Wild, R. N., (1975) “Some Fatigue Properties of Solders and Solder Joints”, IBM Report No. 7AZ000481, IBM Federal Systems Division.

    Google Scholar 

  60. Wojciechowski D., Chan M., Martone F., “Microelectronics Reliability”, Volume 41, Number 11, November 2001, pp. 1829–1839 (11).

    Article  Google Scholar 

  61. Wong, B., Helling, D. E. and R. W. Clark, (1988), “A Creep-Rupture Model for Two-Phase Eutectic Solders”, IEEE Transactions on Components, Hybrids and Manufacturing Technology, Vol. 11, No. 3, pp 284–290.

    Google Scholar 

  62. Zhang, Q., Haswell, P., Dasgupta, A., (2002), Cyclic Mechanical Durability of Sn3.9Ag0.6Cu and Sn3.5Ag Lead Free Solder Alloys, Proc. ASME IMECE 2002, New Orleans, LA, November, 2002.

    Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag London Limited

About this chapter

Cite this chapter

(2007). Introduction to Solder Alloys and Their Properties. In: Engelmaier, W. (eds) A Guide to Lead-free Solders. Springer, London. https://doi.org/10.1007/978-1-84628-310-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-310-9_1

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84628-309-3

  • Online ISBN: 978-1-84628-310-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics