Skip to main content

Toxicologic Pathology of the Eye: Histologic Preparation and Alterations of the Anterior Segment

  • Chapter
  • First Online:
Assessing Ocular Toxicology in Laboratory Animals

Abstract

The identification of microscopic toxicologic changes in eyes is influenced by many factors. Important factors include in vivo procedures, such as route of administration to the eye, and procedures involved in preparation of the microscopic ocular sections. A wide variety of toxins may affect all parts of the eye and ocular adnexa and must be differentiated from iatrogenic and spontaneous changes. Both toxic and spontaneous changes may occur in certain species of animals, certain strains of animals, or at certain ages; therefore, a good understanding of potential changes, as well as knowledge of the normal ocular anatomy, physiology, and function, is essential. This chapter focuses on the histologic preparation of ocular tissues and findings involving the anterior segment, uvea, and ocular adnexa and is followed by a chapter focusing on the lens and posterior segment of the eye.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith RS, Nishina PM, Ikeda S, Jewett P, Zabaleta A, John SWM. Interpretation of ocular pathology in genetically engineered and spontaneous mutant mice. In: Ward JM, Mahler JF, Maronpot RR, editors. Pathology of genetically engineered mice. Ames: Iowa State University Press; 2000. p. 217–31.

    Google Scholar 

  2. Prince JH. The rabbit in eye research. Springfield: Charles C Thomas Pub.; 1964.

    Google Scholar 

  3. Prince JH. Comparative anatomy of the eye. Springfield: Charles C Thomas Pub.; 1956.

    Google Scholar 

  4. Samuelson DA. Ophthalmic anatomy. In: Gelatt KN, editor. Veterinary ophthalmolgy. 4th ed. Ames: Blackwell; 2007. p. 37–148.

    Google Scholar 

  5. Kuiper B, Boeve MH, Jansen T, Roelofs-van Emden ME, Thuring JW, Wijnands MV. Ophthalmologic examination in systemic toxicity studies: an overview. Lab Anim. 1997;31(2):177–83.

    Article  PubMed  CAS  Google Scholar 

  6. Munger RJ. Veterinary ophthalmology in laboratory animal studies. Vet Ophthalmol. 2002;5(3):167–75.

    Article  PubMed  Google Scholar 

  7. Rubin LF. Comparative anatomy of the eye. In: Hockwin O, Green K, Rubin LF, editors. Manual of oculotoxicity testing of drugs. Stuttgart: Gustav Fischer Verlag; 1992. p. 12–44.

    Google Scholar 

  8. Schiavo DM. Special topics about the use of laboratory animals in toxicology – an ophthalmoscopic assessment. In: Hockwin O, Green K, Rubin LF, editors. Manual of oculotoxicity testing of drugs. Stuttgart: Gustav Fischer Verlag; 1992. p. 9–20.

    Google Scholar 

  9. Short BG. Safety evaluation of ocular drug delivery formulations: techniques and practical considerations. Toxicol Pathol. 2008;36(1):49–62.

    Article  PubMed  CAS  Google Scholar 

  10. Aguirre GD, Rubin LF, Bistner SI. Development of the canine eye. Am J Vet Res. 1972;33(12):2399–414.

    PubMed  CAS  Google Scholar 

  11. Cook C, Sulik K, Wright K. Embryology. In: Wright KW, editor. Pediatric ophthalmology and strabismus. St. Louis: Mosby-Year Book; 1995. p. 3–59.

    Google Scholar 

  12. Cook CS. Ocular embryology and congenital malformations. In: Gelatt KN, editor. Veterinary ophthalmology. 4th ed. Ames: Blackwell Publishing; 2007. p. 3–36.

    Google Scholar 

  13. O’Rahilly R. The timing and sequence of events in the development of the human eye and ear during the embryonic period proper. Anat Embryol (Berl). 1983;168(1):87–99.

    Article  Google Scholar 

  14. Stromland K, Miller M, Cook C. Ocular teratology. Surv Ophthalmol. 1991;35(6):429–46.

    Article  PubMed  CAS  Google Scholar 

  15. Smith RS, Koa WW-Y, John SWM. Ocular development. In: Smith RS, editor. Systematic evaluation of the mouse eye: anatomy, pathology, and biomethods. Boca Raton: CRC Press; 2002. p. 45–63.

    Google Scholar 

  16. Hoar RM. Embryology of the eye. Environ Health Perspect. 1982;44:31–4.

    Article  PubMed  CAS  Google Scholar 

  17. Whiteley HE, Peiffer RL. The eye. In: Haschek WM, Rousseaux CG, editors. Haschek and Rousseaux’s handbook of toxicologic pathology. Salt Lake City: Academic; 2002. p. 539–84.

    Chapter  Google Scholar 

  18. Ramos M, Reilly CM, Bolon B. Toxicological pathology of the retina and optic nerve. In: Bolon B, Butt MT, editors. Fundamental neuropathology for pathologists and toxicologists: principles and techniques. Hoboken: Wiley; 2011. p. 385–412.

    Google Scholar 

  19. Somps CJ, Greene N, Render JA, Aleo MD, Fortner JH, Dykens JA, et al. A current practice for predicting ocular toxicity of systemically delivered drugs. Cutan Ocul Toxicol. 2009;28(1):1–18.

    Article  PubMed  CAS  Google Scholar 

  20. Dubielzig R, Ketring KL, McLellan GJ, Albert DM. Veterinary ocular pathology: a comparative review. Edinburgh: Saunders Elsevier; 2010.

    Google Scholar 

  21. Saunders LZ, Rubin LF. Ophthalmic pathology of animals. New York: S. Karger; 1975.

    Google Scholar 

  22. Thompson SW, Luna LG. An atlas of artifacts encountered in the preparation of microscopic tissue sections. Springfield: Charles C Thomas Pub.; 1978.

    Google Scholar 

  23. Fix AS, Garman RH. Practical aspects of neuropathology: a technical guide for working with the nervous system. Toxicol Pathol. 2000;28(1):122–31.

    Article  PubMed  CAS  Google Scholar 

  24. Smith RS, Hawes NL, Miller J, Sundberg JP, John SWM. Photography and necropsy. In: Smith RS, editor. Systematic evaluation of the mouse eye: anatomy, pathology, and biomethods. Boca Raton: CRC Press; 2002. p. 251–64.

    Google Scholar 

  25. Luna LG. Manual of histology staining methods of the Armed Forces Institute of Pathology. 3rd ed. New York: McGraw-Hill Book Co.; 1968.

    Google Scholar 

  26. Preece A. A manual for histotechnologists. 3rd ed. Boston: Little, Brown and Co.; 1972.

    Google Scholar 

  27. Sheehan DC, Hrapchak BB. Theory and practice of histotechnology. 2nd ed. Columbus: Battelle; 1980.

    Google Scholar 

  28. Saby JA, Sigler RE, Klaus S. Comparison of fixatives for histologic evaluation of the canine eye. J Histotechnol. 1991;14:251–5.

    Google Scholar 

  29. Yanoff M, Fine BS. Glutaraldehyde fixation of routine surgical eye tissue. Am J Ophthalmol. 1967;63(1):137–40.

    PubMed  CAS  Google Scholar 

  30. Feeney-Burns L, Burns RP, Anderson RS. Ultrastructure and acid phosphatase activity in hereditary cataracts of deer mice. Invest Ophthalmol Vis Sci. 1980;19(7):777–88.

    PubMed  CAS  Google Scholar 

  31. Anderson R, Shearer TR. Glycol methacrylate sections of the crystalline lens. Stain Technol. 1986;61(6):381–2.

    PubMed  CAS  Google Scholar 

  32. Weisse I. Microscopic examination of the eye. In: Hockwin O, Green K, Rubin LF, editors. Manual of oculotoxicity testing of drugs. Stuttgart: Gustav Fischer Verlag; 1992. p. 137–63.

    Google Scholar 

  33. Latendresse JR, Warbrittion AR, Jonassen H, Creasy DM. Fixation of testes and eyes using a modified Davidson’s fluid: comparison with Bouin’s fluid and conventional Davidson’s fluid. Toxicol Pathol. 2002;30(4):524–33.

    PubMed  Google Scholar 

  34. Humason GL. Histochemistry and special procedures. Animal tissue techniques. San Francisco: Freeman; 1979.

    Google Scholar 

  35. Levy MC, Covatta TJ, Morris C, Aschner HH. Technique for preparing histologic sections of dogs’ and rabbits’ eyes in paraffin. Arch Ophthalmol. 1965;73:122–3.

    Article  PubMed  CAS  Google Scholar 

  36. Georger M. Concepts in the routine preparation of eye specimens. Histo-Logic. 2002;2:34–6.

    Google Scholar 

  37. Prophet EB. Technique for processing eye specimens. Histo-Logic. 1976;1:75–6.

    Google Scholar 

  38. Lee ES, Flannery JG. Transport of truncated rhodopsin and its effects on rod function and degeneration. Invest Ophthalmol Vis Sci. 2007;48(6):2868–76.

    Article  PubMed  Google Scholar 

  39. Smith RS, Zabeleta A, John SWM, Bechtold LS, Ikeda S, Relyea MJ, et al. General and special histopathology. In: Smith RS, editor. Systematic evaluation of the mouse eye: ­anatomy, pathology, and biomethods. Boca Raton: CRC Press; 2002. p. 265–97.

    Google Scholar 

  40. Duncan S. Microtomy and staining of cataract lens. Histo-Logic. 1981;11:160–1.

    Google Scholar 

  41. Lewis PA. Ocular Histology. 27th Annual Symposium/Convention, National Society for Histotechnology; Sept 22-27; Charlotte, NC2001.

    Google Scholar 

  42. Bermudez MA, Vicente AF, Romero MC, Arcos MD, Abalo JM, Gonzalez F. Time course of cold cataract development in anesthetized mice. Curr Eye Res. 2011;36(3):278–84.

    Article  PubMed  CAS  Google Scholar 

  43. Delaye M, Clark JI, Benedek GB. Identification of the scattering elements responsible for lens opacification in cold cataracts. Biophys J. 1982;37(3):647–56.

    PubMed  CAS  Google Scholar 

  44. Lo WK. Visualization of crystallin droplets associated with cold cataract formation in young intact rat lens. Proc Natl Acad Sci U S A. 1989;86(24):9926–30.

    Article  PubMed  CAS  Google Scholar 

  45. Eglitis I. The orbital fascia. In: Prince JH, editor. The rabbit in eye research. Springfield: Charles C. Thomas Pub.; 1964. p. 28–37.

    Google Scholar 

  46. Hubert MF, Gerin G, Durand-Cavagna G. Spontaneous ophthalmic lesions in young Swiss mice. Lab Anim Sci. 1999;49(3):232–40.

    PubMed  CAS  Google Scholar 

  47. Loget O. Spontaneous ocular findings and esthesiometry/tonometry measurement in the Göttingen minipig (Conventionally and microbiologically defined). In: Weisse I, Tripathi RC, Hockwin O, editors. Ocular toxicology. New York: Springer; 1995. p. 351–62.

    Chapter  Google Scholar 

  48. LeDoux MS, Zhou Q, Murphy RB, Greene ML, Ryan P. Parasympathetic innervation of the meibomian glands in rats. Invest Ophthalmol Vis Sci. 2001;42(11):2434–41.

    PubMed  CAS  Google Scholar 

  49. Ackerman LJ, Yoshitomo K, Fix AS, Render JA. Proliferative lesions of the eye in rats. OSS. Guides for Toxicologic Pathology. Washington, D.C.: STP/ARP/AFIP; 1998.

    Google Scholar 

  50. Grant WM. Toxicology of the eye. 3rd ed. Springfield: Charles C. Thomas Pub.; 1986.

    Google Scholar 

  51. Fischbein A, Rizzo JN, Solomon SJ, Wolff MS. Oculodermatological findings in workers with occupational exposure to polychlorinated biphenyls (PCBs). Br J Ind Med. 1985;42(6):426–30.

    PubMed  CAS  Google Scholar 

  52. Ohnishi Y, Kohno T. Polychlorinated biphenyls poisoning in monkey eye. Invest Ophthalmol Vis Sci. 1979;18(9):981–4.

    PubMed  CAS  Google Scholar 

  53. Brewster DW, Elwell MR, Birnbaum LS. Toxicity and disposition of 2,3,4,7,8-pentachlorodi­benzofuran (4PeCDF) in the rhesus monkey (Macaca mulatta). Toxicol Appl Pharmacol. 1988;93(2):231–46.

    Article  PubMed  CAS  Google Scholar 

  54. Arnold DL, Bryce F, Stapley R, McGuire PF, Burns D, Tanner JR, et al. Toxicological consequences of Aroclor 1254 ingestion by female rhesus (Macaca mulatta) monkeys. Part 1A. Prebreeding phase: clinical health findings. Food Chem Toxicol. 1993;31(11):799–810.

    Article  PubMed  CAS  Google Scholar 

  55. Tryphonas L, Truelove J, Zawidzka Z, Wong J, Mes J, Charbonneau S, et al. Polychlorinated biphenyl (PCB) toxicity in adult cynomolgus monkeys (M. fascicularis): a pilot study. Toxicol Pathol. 1984;12(1):10–25.

    Article  PubMed  CAS  Google Scholar 

  56. Tryphonas L, Arnold DL, Zawidzka Z, Mes J, Charbonneau S, Wong J. A pilot study in adult rhesus monkeys (M. mulatta) treated with Aroclor 1254 for two years. Toxicol Pathol. 1986;14(1):1–10.

    Article  PubMed  CAS  Google Scholar 

  57. Jester JV, Nicolaides N, Kiss-Palvolgyi I, Smith RE. Meibomian gland dysfunction. II. The role of keratinization in a rabbit model of MGD. Invest Ophthalmol Vis Sci. 1989;30(5):936–45.

    PubMed  CAS  Google Scholar 

  58. Kremer I, Gaton DD, David M, Gaton E, Shapiro A. Toxic effects of systemic retinoids on meibomian glands. Ophthalmic Res. 1994;26(2):124–8.

    Article  PubMed  CAS  Google Scholar 

  59. Lambert RW, Smith RE. Pathogenesis of blepharoconjunctivitis complicating 13-cis-retinoic acid (isotretinoin) therapy in a laboratory model. Invest Ophthalmol Vis Sci. 1988;29(10):1559–64.

    PubMed  CAS  Google Scholar 

  60. Bryce F, Iverson F, Andrews P, Barker M, Cherry W, Mueller R, et al. Effects elicited by toxaphene in the cynomolgus monkey (Macaca fascicularis): a pilot study. Food Chem Toxicol. 2001;39(12):1243–51.

    Article  PubMed  CAS  Google Scholar 

  61. Hejkal TW, Camras CB. Prostaglandin analogs in the treatment of glaucoma. Semin Ophthalmol. 1999;14(3):114–23.

    Article  PubMed  CAS  Google Scholar 

  62. Johnstone MA, Albert DM. Prostaglandin-induced hair growth. Surv Ophthalmol. 2002;47 Suppl 1:S185–202.

    Article  PubMed  Google Scholar 

  63. Al-Jazzaf AM, DeSantis L, Netland PA. Travoprost: a potent ocular hypotensive agent. Drugs Today (Barc). 2003;39(1):61–74.

    Article  CAS  Google Scholar 

  64. Law SK. Bimatoprost in the treatment of eyelash hypotrichosis. Clin Ophthalmol. 2010;4:349–58.

    Article  PubMed  CAS  Google Scholar 

  65. Prince JH, Eglitis I. Extraocular muscles. The rabbit in eye research. Springfield: Charles C Thomas Pub.; 1964. p. 57–71.

    Google Scholar 

  66. O’Steen WK, Kraeer SL, Shear CR. Extraocular muscle and Harderian gland degeneration and regeneration after exposure of rats to continuous fluorescent illumination. Invest Ophthalmol Vis Sci. 1978;17(9):847–56.

    PubMed  Google Scholar 

  67. Katsuta O, Yamaguchi-Onozawa M, Okazaki K, Itoh T, Okazaki Y, Tsuchitani M. Gross and microscopic anatomy of the extraorbital lacrimal gland of the common marmoset (Callithrix jacchus). Comp Med. 2000;50(6):609–12.

    PubMed  CAS  Google Scholar 

  68. Greaves P. Histopathology of preclinical toxicity studies. 3rd ed. New York: Academic; 2007.

    Google Scholar 

  69. Sakai T. The mammalian harderian gland: morphology, biochemistry, function and phylogeny. Arch Histol Jpn. 1981;44(4):299–333.

    Article  PubMed  CAS  Google Scholar 

  70. Nagai M, Nagai T, Yamamoto M, Goto K, Bishop TR, Hayashi N, et al. Novel regulation of delta-aminolevulinate synthase in the rat harderian gland. Biochem Pharmacol. 1997;53(5):643–50.

    Article  PubMed  CAS  Google Scholar 

  71. Eglitis I. The glands. In: Prince JH, editor. The rabbit in eye research. Springfield: Charles C. Thomas Pub.; 1964. p. 38–56.

    Google Scholar 

  72. Sullivan DA, Jensen RV, Suzuki T, Richards SM. Do sex steroids exert sex-specific and/or opposite effects on gene expression in lacrimal and meibomian glands? Mol Vis. 2009;15:1553–72.

    PubMed  CAS  Google Scholar 

  73. Krinke AL, Schaetti PH, Krinke GJ. Changes in the major ocular glands. In: Mohr U, Dungworth DL, Capen CC, editors. Pathobiology of the aging rat. Washington, DC: ILSI Press; 1994.

    Google Scholar 

  74. Spike RC, Johnston HS, McGadey J, Moore MR, Thompson GG, Payne AP. Quantitative studies on the effects of hormones on structure and porphyrin biosynthesis in the harderian gland of the female golden hamster: I. The effects of ovariectomy and nitrogen administration. J Anat. 1985;142:59–72.

    PubMed  CAS  Google Scholar 

  75. Mohr U. Fascicle No. 7: Central Nervous System, Heart, Eye, Mesothelium. In: Mohr U, editor. International Classification of Rodent Tumours: Part 1: The Rat, IARC Publications, No 122. Lyon: World Health Organization, International Agency for Research on Cancer; 1994. p. 34-51.

    Google Scholar 

  76. Yoshitomo K, Boorman GA. Eye and associated glands. Pathology of the Fischer rat: ­reference and atlas. San Diego: Academic Press; 1990. p. 239–59.

    Google Scholar 

  77. Sashima M, Hatakeyama S, Satoh M, Suzuki A. Harderianization is another sexual dimorphism of rat exorbital lacrimal gland. Acta Anat (Basel). 1989;135(4):303–6.

    Article  CAS  Google Scholar 

  78. Breider MA, Bleavins MR, Reindel JF, Gough AW, de la Iglesia FA. Cellular hyperplasia in rats following continuous intravenous infusion of recombinant human epidermal growth ­factor. Vet Pathol. 1996;33(2):184–94.

    Article  PubMed  CAS  Google Scholar 

  79. Haseman JK, Hailey JR, Morris RW. Spontaneous neoplasm incidences in Fischer 344 rats and B6C3F1 mice in two-year carcinogenicity studies: a national toxicology program update. Toxicol Pathol. 1998;26(3):428–41.

    Article  PubMed  CAS  Google Scholar 

  80. Goodman DG, Ward JM, Squire RA, Chu KC, Linhart MS. Neoplastic and nonneoplastic lesions in aging F344 rats. Toxicol Appl Pharmacol. 1979;48(2):237–48.

    Article  PubMed  CAS  Google Scholar 

  81. Krinke GJ, Fix AS, Jacobs M, Render JA, Weisse I. Eye and harderian gland. In: Mohr U, editor. International classification of rodent tumors the mouse. Heidelberg: Springer; 2001. p. 347–59.

    Google Scholar 

  82. Parsons JT. Radiation toxicity to the visual system. J Neuroophthalmol. 2004;24(3):193–4.

    Article  PubMed  Google Scholar 

  83. Stephens LC, Schultheiss TE, Peters LJ, Ang KK, Gray KN. Acute radiation injury of ocular adnexa. Arch Ophthalmol. 1988;106(3):389–91.

    Article  PubMed  CAS  Google Scholar 

  84. Gazda MJ, Schultheiss TE, Stephens LC, Ang KK, Peters LJ. The relationship between apoptosis and atrophy in the irradiated lacrimal gland. Int J Radiat Oncol Biol Phys. 1992;24(4):693–7.

    Article  PubMed  CAS  Google Scholar 

  85. Kaswan RL, Martin CL, Chapman Jr WL. Keratoconjunctivitis sicca: histopathologic study of nictitating membrane and lacrimal glands from 28 dogs. Am J Vet Res. 1984;45(1):112–8.

    PubMed  CAS  Google Scholar 

  86. Tanaka N, Ohkawa T, Hiyama T, Nakajima A. Evaluation of ocular toxicity of two beta blocking drugs, carteolol and practolol, in beagle dogs. J Pharmacol Exp Ther. 1983;224(2):424–30.

    PubMed  CAS  Google Scholar 

  87. Trepanier LA. Idiosyncratic toxicity associated with potentiated sulfonamides in the dog. J Vet Pharmacol Ther. 2004;27(3):129–38.

    Article  PubMed  CAS  Google Scholar 

  88. Barnett KC, Joseph EC. Keratoconjunctivitis sicca in the dog following 5-aminosalicylic acid administration. Hum Toxicol. 1987;6(5):377–83.

    Article  PubMed  CAS  Google Scholar 

  89. Zoukhri D, Macari E, Kublin CL. A single injection of interleukin-1 induces reversible ­aqueous-tear deficiency, lacrimal gland inflammation, and acinar and ductal cell proliferation. Exp Eye Res. 2007;84(5):894–904.

    Article  PubMed  CAS  Google Scholar 

  90. Kimura-Shimmyo A, Kashiwamura S, Ueda H, Ikeda T, Kanno S, Akira S, et al. Cytokine-induced injury of the lacrimal and salivary glands. J Immunother. 2002;25 Suppl 1:S42–51.

    Article  PubMed  CAS  Google Scholar 

  91. Api AM, Smith RL, Pipino S, Marczylo T, De Matteis F. Evaluation of the oral subchronic toxicity of AHTN (7-Acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene) in the rat. Food Chem Toxicol. 2004;42(5):791–801.

    Article  PubMed  CAS  Google Scholar 

  92. Tsuchitani M, Narama I, Kohda S. Accumulation of pigment granules in lacrymal gland epithelium in practolol-treated beagle dogs. J Comp Pathol. 1989;100(3):237–43.

    Article  PubMed  CAS  Google Scholar 

  93. Slatter DH, Davis WC. Toxicity of phenazopyridine. Electron microscopical studies of canine lacrimal and nictitans glands. Arch Ophthalmol. 1974;91(6):484–6.

    Article  PubMed  CAS  Google Scholar 

  94. Keegan DJ, Geerling G, Lee JP, Blake G, Collin JR, Plant GT. Botulinum toxin treatment for hyperlacrimation secondary to aberrant regenerated seventh nerve palsy or salivary gland transplantation. Br J Ophthalmol. 2002;86(1):43–6.

    Article  PubMed  Google Scholar 

  95. Suwan-apichon O, Rizen M, Rangsin R, Herretes S, Reyes JM, Lekhanont K, et al. Botulinum toxin B-induced mouse model of keratoconjunctivitis sicca. Invest Ophthalmol Vis Sci. 2006;47(1):133–9.

    Article  PubMed  Google Scholar 

  96. Dethloff LA, Wilga P, Seefeld M, Ulloa H, Hawkins K, Petrere J. Effects of sustained ­low-level muscarinic agonism in rats. Food Chem Toxicol. 1994;32(8):753–62.

    Article  PubMed  CAS  Google Scholar 

  97. Majeed SK, Gopinath C, Heywood R. A report on drug-induced kerato-conjunctivitis sicca in dogs. J Comp Pathol. 1987;97(4):385–91.

    Article  PubMed  CAS  Google Scholar 

  98. Mason G, Wilson D, Hampton C, Wurbel H. Non-invasively assessing disturbance and stress in laboratory rats scoring chromodacryorrhea. Alt Lab Anim. 2004;32(Supple 1):153–9.

    CAS  Google Scholar 

  99. Harkness JE, Ridgway MD. Chromodacryorrhea in laboratory rats (Rattus norvegicus): ­etiologic considerations. Lab Anim Sci. 1980;30(5):841–4.

    PubMed  CAS  Google Scholar 

  100. Heywood R. Some clinical observations on the eyes of Sprague-Dawley rats. Lab Anim. 1973;7(1):19–27.

    Article  PubMed  CAS  Google Scholar 

  101. McGee MA, Maronpot RR. Harderian gland dacryoadenitis in rats resulting from orbital bleeding. Lab Anim Sci. 1979;29(5):639–41.

    PubMed  CAS  Google Scholar 

  102. Kurisu K, Sawamoto O, Watanabe H, Ito A. Sequential changes in the harderian gland of rats exposed to high intensity light. Lab Anim Sci. 1996;46(1):71–6.

    PubMed  CAS  Google Scholar 

  103. Strum JM, Shear CR. Constant light exposure induces damage and squamous metaplasia in harderian glands of albino mice. Tissue Cell. 1982;14(1):149–61.

    Article  PubMed  CAS  Google Scholar 

  104. Travlos GS, Mahler J, Ragan HA, Chou BJ, Bucher JR. Thirteen-week inhalation toxicity of 2- and 4-chloronitrobenzene in F344/N rats and B6C3F1 mice. Fundam Appl Toxicol. 1996;30(1):75–92.

    Article  PubMed  CAS  Google Scholar 

  105. Libretto SE. A review of the toxicology of salbutamol (albuterol). Arch Toxicol. 1994;68(4):213–6.

    Article  PubMed  CAS  Google Scholar 

  106. Herrold KM. Aflatoxin induced lesions in Syrian hamsters. Br J Cancer. 1969;23(3):655–60.

    Article  PubMed  CAS  Google Scholar 

  107. Iwai H, Tagawa Y, Hayasaka I, Yanai T, Masegi T. Effects of atropine sulfate on rat harderian glands: correlation between morphological changes and porphyrin levels. J Toxicol Sci. 2000;25(3):151–9.

    Article  PubMed  CAS  Google Scholar 

  108. Kajimura T, Satoh H, Nomura M. Effect of hyperprolactinemia induced by neuroleptic agent, timiperone, on porphyrin content of mouse harderian gland. J Toxicol Sci. 1997;22(3):219–29.

    Article  PubMed  CAS  Google Scholar 

  109. Eida K, Kubota N, Nishigaki T, Kikutani M. Harderian gland. V. Effect of dietary pantothenic acid deficiency on porphyrin biosynthesis in harderian gland of rats. Chem Pharm Bull(Tokyo). 1975;23(1):1–4.

    Article  CAS  Google Scholar 

  110. da Costa JR, Iucif S, Lopes RA. Effect of hypervitaminosis A on the harderian gland in rats. A morphologic and morphometric study. Int J Vitam Nutr Res. 1978;48(2):113–22.

    PubMed  Google Scholar 

  111. Gray Jr LE, Kavlock RJ, Chernoff N, Ferrell J, McLamb J, Ostby J. Prenatal exposure to the herbicide 2,4-dichlorophenyl-p-nitrophenyl ether destroys the rodent harderian gland. Science. 1982;215(4530):293–4.

    Article  PubMed  CAS  Google Scholar 

  112. Eglitis I. The eyelids. In: Prince JH, editor. The rabbit in eye research. Springfield: Charles C Thomas Pub.; 1964. p. 72–85.

    Google Scholar 

  113. Richardson VCG. Diseases of domestic guinea pigs. 2nd ed. London: Blackwell Science; 2000.

    Book  Google Scholar 

  114. Percy D, Barthold S. Pathology of laboratory rodents and rabbits. Ames: Iowa State University Press; 2001.

    Google Scholar 

  115. Brazzell RK, Stern ME, Aquavella JV, Beuerman RW, Baird L. Human recombinant epidermal growth factor in experimental corneal wound healing. Invest Ophthalmol Vis Sci. 1991;32(2):336–40.

    PubMed  CAS  Google Scholar 

  116. Rich LF, Hatfield JM, Louiselle I. The influence of epidermal growth factor on cat corneal endothelial wound healing. Curr Eye Res. 1991;10(9):823–30.

    Article  PubMed  CAS  Google Scholar 

  117. Greenman DL, Cronin GM, Dahlgren R, Allen R, Allaben W. Chronic feeding study of ­pyrilamine in Fischer 344 rats. Fundam Appl Toxicol. 1995;25(1):1–8.

    Article  PubMed  CAS  Google Scholar 

  118. Wilhelm KE, Grabolle B, Urbach H, Tolba R, Schild H, Paulsen F. Evaluation of polyurethane nasolacrimal duct stents: in vivo studies in New Zealand rabbits. Cardiovasc Intervent Radiol. 2006;29(5):846–53.

    Article  PubMed  CAS  Google Scholar 

  119. Kintzel PE, Michaud LB, Lange MK. Docetaxel-associated epiphora. Pharmacotherapy. 2006;26(6):853–67.

    Article  PubMed  CAS  Google Scholar 

  120. Vettese T, Hurwitz JJ. Toxicity of the chemiluminescent material Cyalume in anatomic assessment of the nasolacrimal system. Can J Ophthalmol. 1983;18(3):131–5.

    PubMed  CAS  Google Scholar 

  121. Carlton WW, Render JA. Adenoma and adenocarcinoma, harderian gland, mouse, rat and hamster. In: Jones TC, Mohr U, Hunt RD, editors. Monographs on pathology of laboratory animals: eye and ear. Berlin: Springer; 1991. p. 133–7.

    Google Scholar 

  122. Tucker MJ. Special sense organs and associated tissues. In: Tucker MJ, editor. Diseases of the Wistar Rat. London: Taylor and Francis; 1997. p. 237–45.

    Google Scholar 

  123. Sheldon WG, Curtis M, Kodell RL, Weed L. Primary harderian gland neoplasms in mice. J Natl Cancer Inst. 1983;71(1):61–8.

    PubMed  CAS  Google Scholar 

  124. Prince JH. Cornea, trabecular region, and sclera. In: Prince JH, editor. The rabbit in eye research. Springfield: Charles C Thomas Pub.; 1964. p. 86–139.

    Google Scholar 

  125. Taradach C, Regnier B, Perraud J. Eye lesions in Sprague-Dawley rats: type and incidence in relation to age. Lab Anim. 1981;15(3):285–7.

    Article  PubMed  CAS  Google Scholar 

  126. Taradach C, Greaves P. Spontaneous eye lesions in laboratory animals: incidence in relation to age. Crit Rev Toxicol. 1984;12(2):121–47.

    Article  PubMed  CAS  Google Scholar 

  127. Shibuya K, Satou K, Sugimoto K, Saitoh T, Ihara M, Itabashi M, et al. Background data on spontaneous ophthalmic lesions in Crj:CD(SD)IGS rats. In: Matsuzawa T, Inoue H, editors. Biological reference data on CD(SD) IGS rats – 1999. Yokohama: Best Printing Co. Ltd.; 1999. p. 60–2.

    Google Scholar 

  128. Bellhorn RW, Korte GE, Abrutyn D. Spontaneous corneal degeneration in the rat. Lab Anim Sci. 1988;38(1):46–50.

    PubMed  CAS  Google Scholar 

  129. Kuno H, Usui T, Eydelloth RS, Wolf ED. Spontaneous ophthalmic lesions in young Sprague-Dawley rats. J Vet Med Sci. 1991;53(4):607–14.

    Article  PubMed  CAS  Google Scholar 

  130. Van Winkle TJ, Balk MW. Spontaneous corneal opacities in laboratory mice. Lab Anim Sci. 1986;36(3):248–55.

    PubMed  Google Scholar 

  131. Carlton WW, Render JA. Calcification of the cornea. In: Jones TC, Mohr U, Hunt RD, ­editors. Monographs on pathology of laboratory animals: eye and ear. Berlin: Springer; 1991. p. 16–20.

    Google Scholar 

  132. Mittl R, Galin MA, Opperman W, Camerini-Davalos RA, Spiro D. Corneal calcification in spontaneously diabetic mice. Invest Ophthalmol. 1970;9(2):137–45.

    PubMed  CAS  Google Scholar 

  133. Hoffman RW, Yang HK, Waggie KS, Durham JB, Burge JR, Walker SE. Band keratopathy in MRL/l and MRL/n mice. Arthritis Rheum. 1983;26(5):645–52.

    Article  PubMed  CAS  Google Scholar 

  134. Huang LH, Sery TW. Corneal degeneration in a congenitally diabetic inbred strain of mouse. Br J Ophthalmol. 1971;55(4):266–71.

    Article  PubMed  CAS  Google Scholar 

  135. Jester JV, Maurer JK, Petroll WM, Wilkie DA, Parker RD, Cavanagh HD. Application of in vivo confocal microscopy to the understanding of surfactant-induced ocular irritation. Toxicol Pathol. 1996;24(4):412–28.

    Article  PubMed  CAS  Google Scholar 

  136. Schmidt RE. Ophthalmic lesions in non-human primates. Vet Pathol. 1971;8(1):28–36.

    PubMed  CAS  Google Scholar 

  137. Riley MV, Green K. Comparative physiology and biochemistry of the eye. In: Hockwin O, Green K, Rubin LF, editors. Manual of oculotoxicity testing of drugs. Stuttgart: Gustav Fischer Verlag; 1992. p. 45–80.

    Google Scholar 

  138. Weber U, Sons HU, Lenz W, Bernsmeier H. Experimental tyrosine keratopathy in rabbits. Klin Monbl Augenheilkd. 1986;188(6):587–9.

    Article  PubMed  CAS  Google Scholar 

  139. Beard ME, Burns RP, Rich LF, Squires E. Histopathology of keratopathy in the tyrosine-fed rat. Invest Ophthalmol. 1974;13(12):1037–41.

    PubMed  CAS  Google Scholar 

  140. Lock EA, Gaskin P, Ellis M, Provan WM, Smith LL. Tyrosinemia produced by 2-(2-nitro-4-trifluoromethylbenzoyl)-cyclohexane-1,3-dione (NTBC) in experimental animals and its relationship to corneal injury. Toxicol Appl Pharmacol. 2006;215(1):9–16.

    Article  PubMed  CAS  Google Scholar 

  141. Kast A. Keratoconjunctivitis sicca and sequelae, mouse and rat. In: Jones TC, Mohr U, Hunt RD, editors. Monographs on pathology of laboratory animals: eye and ear. Berlin: Springer; 1991. p. 29–37.

    Google Scholar 

  142. Draize JH, Woodward G, Calvery HO. Method for the study of irritation and toxicity of ­substances applied topically to the skin and mucous membranes. J Pharmacol Exp Ther. 1944;82:377–90.

    CAS  Google Scholar 

  143. Gershbein LL, McDonald JE. Evaluation of the corneal irritancy of test shampoos and detergents in various animal species. Food Cosmet Toxicol. 1977;15(2):131–4.

    Article  PubMed  CAS  Google Scholar 

  144. Wilhelmus KR. The Draize eye test. Surv Ophthalmol. 2001;45(6):493–515.

    Article  PubMed  CAS  Google Scholar 

  145. Roggeband R, York M, Pericoi M, Braun W. Eye irritation responses in rabbit and man after single applications of equal volumes of undiluted model liquid detergent products. Food Chem Toxicol. 2000;38(8):727–34.

    Article  PubMed  CAS  Google Scholar 

  146. DeRosa AJ. Toxic keratopathy. Int Ophthalmol Clin. 1998;38(4):15–22.

    Article  PubMed  CAS  Google Scholar 

  147. Curren DR, Evans MG, Raabe H, Ruppalt RR, Harbell J. Correlation of histopathology, opacity, and permeability of bovine corneas exposed in vitro to known ocular irritants. Vet Pathol. 2000;37:557.

    Google Scholar 

  148. Sina JF, Galer DM, Sussman RG, Gautheron PD, Sargent EV, Leong B, et al. A collaborative evaluation of seven alternatives to the Draize eye irritation test using pharmaceutical intermediates. Fundam Appl Toxicol. 1995;26(1):20–31.

    Article  PubMed  CAS  Google Scholar 

  149. Maurer JK, Parker RD. Light microscopic comparison of surfactant-induced eye irritation in rabbits and rats at three hours and recovery/day 35. Toxicol Pathol. 1996;24(4):403–11.

    Article  PubMed  CAS  Google Scholar 

  150. Maurer JK, Parker RD, Carr GJ. Ocular irritation: microscopic changes occurring over time in the rat with surfactants of known irritancy. Toxicol Pathol. 1998;26(2):217–25.

    Article  PubMed  CAS  Google Scholar 

  151. Maurer JK, Parker RD. Microscopic changes with acetic acid and sodium hydroxide in the rabbit low-volume eye test. Toxicol Pathol. 2000;28(5):679–87.

    Article  PubMed  CAS  Google Scholar 

  152. Jester JV, Molai A, Petroll WM, Parker RD, Carr GJ, Cavanagh HD, et al. Quantitative ­characterization of acid- and alkali-induced corneal injury in the low-volume eye test. Toxicol Pathol. 2000;28(5):668–78.

    Article  PubMed  CAS  Google Scholar 

  153. Maurer JK, Molai A, Parker RD, Li L, Carr GJ, Petroll WM, et al. Pathology of ocular irritation with bleaching agents in the rabbit low-volume eye test. Toxicol Pathol. 2001;29(3):308–19.

    Article  PubMed  CAS  Google Scholar 

  154. Maurer JK, Molai A, Parker RD, Li LI, Carr GJ, Petroll WM, et al. Pathology of ocular irritation with acetone, cyclohexanol, parafluoroaniline, and formaldehyde in the rabbit low-­volume eye test. Toxicol Pathol. 2001;29(2):187–99.

    Article  PubMed  CAS  Google Scholar 

  155. White E, Crosse MM. The aetiology and prevention of peri-operative corneal abrasions. Anaesthesia. 1998;53(2):157–61.

    Article  PubMed  CAS  Google Scholar 

  156. Guillet R, Wyatt J, Baggs RB, Kellogg CK. Anesthetic-induced corneal lesions in developmentally sensitive rats. Invest Ophthalmol Vis Sci. 1988;29(6):949–54.

    PubMed  CAS  Google Scholar 

  157. Williams DL. Ocular disease in rats: a review. Vet Ophthalmol. 2002;5(3):183–91.

    Article  PubMed  Google Scholar 

  158. Fabian RJ, Bond JM, Drobeck HP. Induced corneal opacities in the rat. Br J Ophthalmol. 1967;51(2):124–9.

    Article  PubMed  CAS  Google Scholar 

  159. Roerig DL, Hasegawa AT, Harris GJ, Lynch KL, Wang RI. Occurrence of corneal opacities in rats after acute administration of l-alpha-acetylmethadol. Toxicol Appl Pharmacol. 1980;56(2):155–63.

    Article  PubMed  CAS  Google Scholar 

  160. Grant RL, Acosta D. Comparative toxicity of tetracaine, proparacaine and cocaine evaluated with primary cultures of rabbit corneal epithelial cells. Exp Eye Res. 1994;58(4):469–78.

    Article  PubMed  CAS  Google Scholar 

  161. Fraunfelder FT, Fraunfelder FW, Chambers WA. Clinical ocular toxicology. Philadelphia: Saunders Elsevier; 2008.

    Google Scholar 

  162. Zarfoss M, Bentley E, Milovancev M, Schmiedt C, Dubielzig R, McAnulty J. Histopathologic evidence of capecitabine corneal toxicity in dogs. Vet Pathol. 2007;44(5):700–2.

    Article  PubMed  CAS  Google Scholar 

  163. Pyrah IT, Kalinowski A, Jackson D, Davies W, Davis S, Aldridge A, et al. Toxicologic lesions associated with two related inhibitors of oxidosqualene cyclase in the dog and mouse. Toxicol Pathol. 2001;29(2):174–9.

    Article  PubMed  CAS  Google Scholar 

  164. Kirby TJ. Cataracts produced by triparanol. (MER-29). Trans Am Ophthalmol Soc. 1967;65:494–543.

    PubMed  CAS  Google Scholar 

  165. Kirby Jr TJ, Achor RW, Perry HO, Winkelmann RK. Cataract formation after triparanol therapy. Arch Ophthalmol. 1962;68:486–9.

    Article  PubMed  Google Scholar 

  166. Funk J, Landes C. Histopathologic findings after treatment with different oxidosqualene cyclase (OSC) inhibitors in hamsters and dogs. Exp Toxicol Pathol. 2005;57(1):29–38.

    Article  PubMed  CAS  Google Scholar 

  167. Geiss V, Yoshitomo K. Eyes. In: Maronpot RR, Boorman GA, Gaul BW, editors. Pathology of the mouse. St. Louis: Cache River Press; 1999. p. 471–90.

    Google Scholar 

  168. Reindel JF, Gough AW, Pilcher GD, Bobrowski WF, Sobocinski GP, de la Iglesia FA. Systemic proliferative changes and clinical signs in cynomolgus monkeys administered a recombinant derivative of human epidermal growth factor. Toxicol Pathol. 2001;29(2):159–73.

    Article  PubMed  CAS  Google Scholar 

  169. Patz A, Wulff LB, Rogers SW. Experimental production of ocular tumors. Am J Ophthalmol. 1959;48(1, Part 2):98–117.

    PubMed  CAS  Google Scholar 

  170. Gupta BN. Scleral dermoid in a guinea pig. Lab Anim Sci. 1972;22(6):919–21.

    PubMed  CAS  Google Scholar 

  171. Nichols CW, Yanoff M. Dermoid of a rat cornea. Pathol Vet. 1969;6(3):214–6.

    Article  PubMed  CAS  Google Scholar 

  172. Horikiri K, Ozaki K, Maeda H, Narama I. Corneal dermoid in two laboratory beagle dogs. Jikken Dobutsu. 1994;43(3):417–20.

    PubMed  CAS  Google Scholar 

  173. Otto G, Lipman NS, Murphy JC. Corneal dermoid in a hairless guinea pig. Lab Anim Sci. 1991;41(2):171–2.

    PubMed  CAS  Google Scholar 

  174. Styer CM, Ferrier WT, Labelle P, Griffey SM, Kendall LV. Limbic dermoid in a New Zealand white rabbit (Oryctolagus cuniculus). Contemp Top Lab Anim Sci. 2005;44(6):46–8.

    PubMed  CAS  Google Scholar 

  175. Dunnick JK, Forbes PD, Eustis SL, Hardisty JF, Goodman DG. Tumors of the skin in the HRA/Skh mouse after treatment with 8-methoxypsoralen and UVA radiation. Fundam Appl Toxicol. 1991;16(1):92–102.

    Article  PubMed  CAS  Google Scholar 

  176. Porter R, Crombie AL. Corneal calcification as a presenting and diagnostic sign in hyperparathyroidism. Br J Ophthalmol. 1973;57(9):665–8.

    Article  PubMed  CAS  Google Scholar 

  177. O’Connor GR. Calcific band keratopathy. Trans Am Ophthalmol Soc. 1972;70:58–81.

    PubMed  CAS  Google Scholar 

  178. Losco PE, Troup CM. Corneal dystrophy in Fischer 344 rats. Lab Anim Sci. 1988;38(6):702–10.

    PubMed  CAS  Google Scholar 

  179. Shibuya K, Sugimoto K, Satou K. Spontaneous ocular lesions in aged Crj:CD(SD)IGS rats. Anim Eye Res (Jpn). 2001;20(15–19):95–9.

    Google Scholar 

  180. Ocumpaugh DE, Obenberger J. Experimental corneal calcification: a radioautographic and histochemical study. Clin Orthop Relat Res. 1970;69:162–71.

    Article  PubMed  CAS  Google Scholar 

  181. Moore CP, Dubielzig R, Glaza SM. Anterior corneal dystrophy of American Dutch belted rabbits: biomicroscopic and histopathologic findings. Vet Pathol. 1987;24(1):28–33.

    PubMed  CAS  Google Scholar 

  182. Port CD, Dodd DC. Two cases of corneal epithelial dystrophy in rabbits. Lab Anim Sci. 1983;33(6):587–8.

    PubMed  CAS  Google Scholar 

  183. Fine BS, Berkow JW, Fine S. Corneal calcification. Science. 1968;162(3849):129–30.

    Article  PubMed  CAS  Google Scholar 

  184. Muirhead JR, Tomazzoli-Gerosa L. Animal models of band keratopathy. In: Tabbara K, Cello R, editors. Animals models of band keratopathy. Springfield: Charles C. Thomas Pub.; 1984. p. 221–32.

    Google Scholar 

  185. Obenberger J, Ocumpaugh DE, Cubberly MG. Experimental corneal calcification in animals treated with dihydrotachysterol. Invest Ophthalmol. 1969;8(5):467–74.

    PubMed  CAS  Google Scholar 

  186. Economon JW, Silverstein AM, Zimmerman LE. Band keratopathy in a rabbit colony. Invest Ophthalmol. 1963;2:361–8.

    PubMed  CAS  Google Scholar 

  187. Bruner RH, Keller WF, Stitzel KA, Sauers LJ, Reer PJ, Long PH, et al. Spontaneous corneal dystrophy and generalized basement membrane changes in Fischer-344 rats. Toxicol Pathol. 1992;20(3 Pt 1):357–66.

    PubMed  CAS  Google Scholar 

  188. Friend J, Ishii Y, Thoft RA. Corneal epithelial changes in diabetic rats. Ophthalmic Res. 1982;14(4):269–78.

    Article  PubMed  CAS  Google Scholar 

  189. Obenberger J. Calcification in corneas with alloxan-induced vascularization. Am J Ophthalmol. 1969;68(1):113–9.

    PubMed  CAS  Google Scholar 

  190. Meador VP, Tyler RD, Plunkett ML. Epicardial and corneal mineralization in clinically ­normal severe combined immunodeficiency (SCID) mice. Vet Pathol. 1992;29(3):247–9.

    Article  PubMed  CAS  Google Scholar 

  191. Davidson SI, Rennie IG. Ocular toxicity from systemic drug therapy. An overview of clinically important adverse reactions. Med Toxicol. 1986;1(3):217–24.

    PubMed  CAS  Google Scholar 

  192. Johnston AM, Memon AA. Mystery of the blue pigmentation. N Engl J Med. 1999;340(20):1597–8.

    Article  PubMed  CAS  Google Scholar 

  193. Morrow GL, Abbott RL. Minocycline-induced scleral, dental, and dermal pigmentation. Am J Ophthalmol. 1998;125(3):396–7.

    Article  PubMed  CAS  Google Scholar 

  194. Sanchez AR, Rogers 3rd RS, Sheridan PJ. Tetracycline and other tetracycline-derivative staining of the teeth and oral cavity. Int J Dermatol. 2004;43(10):709–15.

    Article  PubMed  CAS  Google Scholar 

  195. Newkirk KM, Chandler HL, Parent AE, Young DC, Colitz CM, Wilkie DA, et al. Ultraviolet radiation-induced corneal degeneration in 129 mice. Toxicol Pathol. 2007; 35(6):819–26.

    Article  PubMed  Google Scholar 

  196. Budiarso IT, Carlton WW, Tuite JF. Phototoxic syndrome induced in mice by rice cultures of Penicillium viridicatum and exposure to sunlight. Pathol Vet. 1970;7(6):531–46.

    Article  PubMed  CAS  Google Scholar 

  197. Klintworth GK, Burger PC. Neovascularization of the cornea: current concepts of its pathogenesis. Int Ophthalmol Clin. 1983;23(1):27–39.

    Article  PubMed  CAS  Google Scholar 

  198. Huang AJ, Li DQ, Li CH, Shang TY, Hernandez E. Modulation of corneal vascularization. Ocul Surf. 2005;3(4 Suppl):S190–3.

    PubMed  Google Scholar 

  199. Niederkorn JY, Ubelaker JE, Martin JM. Vascularization of corneas of hairless mutant mice. Invest Ophthalmol Vis Sci. 1990;31(5):948–53.

    PubMed  CAS  Google Scholar 

  200. Carter-Dawson L, Tanaka M, Kuwabara T, Bieri JG. Early corneal changes in vitamin A deficient rats. Exp Eye Res. 1980;30(3):261–9.

    Article  PubMed  CAS  Google Scholar 

  201. Leure-dupree AE. Vascularization of the rat cornea after prolonged zinc deficiency. Anat Rec. 1986;216(1):27–32.

    Article  PubMed  CAS  Google Scholar 

  202. Aguirre SA, Huang W, Prasanna G, Jessen B. Corneal neovascularization and ocular irritancy responses in dogs following topical ocular administration of an EP4-prostaglandin E2 ­agonist. Toxicol Pathol. 2009;37(7):911–20.

    Article  PubMed  CAS  Google Scholar 

  203. Kim TI, Chung JL, Hong JP, Min K, Seo KY, Kim EK. Bevacizumab application delays epithelial healing in rabbit cornea. Invest Ophthalmol Vis Sci. 2009;50(10):4653–9.

    Article  PubMed  Google Scholar 

  204. Garibaldi BA, Goad ME. Lipid keratopathy in the Watanabe (WHHL) rabbit. Vet Pathol. 1988;25(2):173–4.

    Article  PubMed  CAS  Google Scholar 

  205. Sebesteny A, Sheraidah GA, Trevan DJ, Alexander RA, Ahmed AI. Lipid keratopathy and atheromatosis in an SPF laboratory rabbit colony attributable to diet. Lab Anim. 1985;19(3):180–8.

    Article  PubMed  CAS  Google Scholar 

  206. Stock EL, Mendelsohn AD, Lo GG, Ghosh S, O’Grady RB. Lipid keratopathy in rabbits. An animal model system. Arch Ophthalmol. 1985;103(5):726–30.

    Article  PubMed  CAS  Google Scholar 

  207. Janes RG. Changes in the rabbit’s eye caused by cholesterol feeding. Am J Ophthalmol. 1964;58:819–28.

    PubMed  CAS  Google Scholar 

  208. Williams D, Sullivan A. Ocular disease in the guinea pig (Cavia porcellus): a survey of 1000 animals. Vet Ophthalmol. 2010;13(Suppl):54–62.

    Article  PubMed  Google Scholar 

  209. Spangler WL, Waring GO, Morrin LA. Oval lipid corneal opacities in beagles. Vet Pathol. 1982;19(2):150–9.

    Article  PubMed  CAS  Google Scholar 

  210. Roth AM, Ekins MB, Waring 3rd GO, Gupta LM, Rosenblatt LS. Oval corneal opacities in beagles. III. Histochemical demonstration of stromal lipids without hyperlipidemia. Invest Ophthalmol Vis Sci. 1981;21(1 Pt 1):95–106.

    PubMed  CAS  Google Scholar 

  211. D’Amico DJ, Kenyon KR, Ruskin JN. Amiodarone keratopathy: drug-induced lipid storage disease. Arch Ophthalmol. 1981;99(2):257–61.

    Article  PubMed  Google Scholar 

  212. Turdumambetova G, Bredehorn T, Duncker GI. Ocular side-effects associated with ­amiodarone therapy. Klin Monbl Augenheilkd. 2005;222(6):485–92.

    Article  PubMed  CAS  Google Scholar 

  213. Mantyjarvi M, Tuppurainen K, Ikaheimo K. Ocular side effects of amiodarone. Surv Ophthalmol. 1998;42(4):360–6.

    Article  PubMed  CAS  Google Scholar 

  214. Lullmann H, Lullmann-Rauch R. Tamoxifen-induced generalized lipidosis in rats subchronically treated with high doses. Toxicol Appl Pharmacol. 1981;61(1):138–46.

    Article  PubMed  CAS  Google Scholar 

  215. Drenckhahn D, Jacobi B, Lullmann-Rauch R. Corneal lipidosis in rats treated with amphiphilic cationic drugs. Arzneimittelforschung. 1983;33(6):827–31.

    PubMed  CAS  Google Scholar 

  216. Bicer S, Fuller GA, Wilkie DA, Yamaguchi M, Hamlin RL. Amiodarone-induced kerato­pathy in healthy dogs. Vet Ophthalmol. 2002;5(1):35–8.

    Article  PubMed  CAS  Google Scholar 

  217. Lullmann-Rauch R. Mucopolysaccharidosis (MPS) in ocular tissues as induced by amphiphilic di-cationic drugs. Lens Eye Toxic Res. 1990;7(3–4):263–79.

    PubMed  CAS  Google Scholar 

  218. Hein L, Lullmann-Rauch R. Mucopolysaccharidosis and lipidosis in rats treated with tilorone analogues. Toxicology. 1989;58(2):145–54.

    Article  PubMed  CAS  Google Scholar 

  219. Kafarnik C, Murphy CJ, Dubielzig RR. Canine duplication of Descemet’s membrane. Vet Pathol. 2009;46(3):464–73.

    Article  PubMed  CAS  Google Scholar 

  220. Gwin RM, Warren JK, Samuelson DA, Gum GG. Effects of phacoemulsification and extracapsular lens removal on corneal thickness and endothelial cell density in the dog. Invest Ophthalmol Vis Sci. 1983;24(2):227–36.

    PubMed  CAS  Google Scholar 

  221. Yee RW, Geroski DH, Matsuda M, Champeau EJ, Meyer LA, Edelhauser HF. Correlation of corneal endothelial pump site density, barrier function, and morphology in wound repair. Invest Ophthalmol Vis Sci. 1985;26(9):1191–201.

    PubMed  CAS  Google Scholar 

  222. Van Horn DL, Sendele DD, Seideman S, Buco PJ. Regenerative capacity of the corneal endothelium in rabbit and cat. Invest Ophthalmol Vis Sci. 1977;16(7):597–613.

    PubMed  Google Scholar 

  223. Joyce NC. Proliferative capacity of the corneal endothelium. Prog Retin Eye Res. 2003;22(3):359–89.

    Article  PubMed  CAS  Google Scholar 

  224. Sherrard ES, Rycroft PV. Retrocorneal membranes. I. Their origin and structure. Br J Ophthalmol. 1967;51(6):379–86.

    Article  PubMed  CAS  Google Scholar 

  225. Silbert AM, Baum JL. Origin of the retrocorneal membrane in the rabbit. Arch Ophthalmol. 1979;97(6):1141–3.

    Article  PubMed  CAS  Google Scholar 

  226. Hull DS, Green K, Laughter L. Cornea endothelial rose bengal photosensitization. Effect on permeability, sodium flux, and ultrastructure. Invest Ophthalmol Vis Sci. 1984;25(4):455–60.

    PubMed  CAS  Google Scholar 

  227. Bartlett JD. Ophthalmic toxicity by systemic drugs. In: Chiou GCY, editor. Ophthalmic ­toxicology. New York: Raven Press, Ltd.; 1992. p. 175–81.

    Google Scholar 

  228. Hull DS, Csukas S, Green K. Chlorpromazine-induced corneal endothelial phototoxicity. Invest Ophthalmol Vis Sci. 1982;22(4):502–8.

    PubMed  CAS  Google Scholar 

  229. Vonvoigtlander PF, Kolaja GJ, Block EM. Corneal lesions induced by antidepressants: a selective effect upon young Fischer 344 rats. J Pharmacol Exp Ther. 1982;222(1):282–6.

    PubMed  CAS  Google Scholar 

  230. Olsen TW, Feng X, Wabner K, Conston SR, Sierra DH, Folden DV, et al. Cannulation of the suprachoroidal space: a novel drug delivery methodology to the posterior segment. Am J Ophthalmol. 2006;142(5):777–87.

    Article  PubMed  CAS  Google Scholar 

  231. French DD, Margo CE. Postmarketing surveillance rates of uveitis and scleritis with bisphosphonates among a national veteran cohort. Retina. 2008;28(6):889–93.

    Article  PubMed  Google Scholar 

  232. Chodosh J, Nordquist RE, Kennedy RC. Comparative anatomy of mammalian conjunctival lymphoid tissue: a putative mucosal immune site. Dev Comp Immunol. 1998;22(5–6):621–30.

    Article  PubMed  CAS  Google Scholar 

  233. Ruskell GL. Organization and cytology of lymphoid tissue in the cynomolgus monkey ­conjunctiva. Anat Rec. 1995;243(2):153–64.

    Article  PubMed  CAS  Google Scholar 

  234. Knop E, Knop N. The role of eye-associated lymphoid tissue in corneal immune protection. J Anat. 2005;206(3):271–85.

    Article  PubMed  Google Scholar 

  235. Knop N, Knop E. Conjunctiva-associated lymphoid tissue in the human eye. Invest Ophthalmol Vis Sci. 2000;41(6):1270–9.

    PubMed  CAS  Google Scholar 

  236. Cain C, Phillips TE. Developmental changes in conjunctiva-associated lymphoid tissue of the rabbit. Invest Ophthalmol Vis Sci. 2008;49(2):644–9.

    Article  PubMed  Google Scholar 

  237. Fujihira S, Matsumoto M, Yoshizawa K, Oishi Y, Iwanami K, Fujii T. Naturally occurring ophthalmic lesions in cynomolgus monkeys used in toxicity and pharmacological studies. Anim Eye Res Jpn. 1994;13(3–4):147–54.

    Google Scholar 

  238. Shimoi A, Kakinuma C, Kuwayama C, Watanabe M. Comparison of spontaneous minor lesions in wild-caught and laboratory-bred monkeys. J Toxicol Pathol. 1998;11:85–94.

    Article  Google Scholar 

  239. Flatt RE. Bacterial diseases. In: Weisbroth S, Flatt RE, Kraus AL, editors. The biology of the laboratory rabbit. New York: Academic Press; 1974. p. 194–236.

    Google Scholar 

  240. Strocchi P, Dozza B, Pecorella I, Fresina M, Campos E, Stirpe F. Lesions caused by ricin applied to rabbit eyes. Invest Ophthalmol Vis Sci. 2005;46(4):1113–6.

    Article  PubMed  Google Scholar 

  241. Prince JH, Eglitis I. The uvea. In: Prince JH, editor. The rabbit in eye research. Springfield: Charles C Thomas Pub.; 1964. p. 140–71.

    Google Scholar 

  242. Biros DJ. Ocular immunity. In: Gelatt KN, editor. Veterinary ophthalmology. 4th ed. Ames: Blackwell Publishing; 2007. p. 223–35.

    Google Scholar 

  243. Park SA, Jeong SM, Yi NY, Kim MS, Jeong MB, Suh JG, et al. Study on the ophthalmic diseases in ICR mice and BALB/c mice. Exp Anim. 2006;55(2):83–90.

    Article  PubMed  CAS  Google Scholar 

  244. Jeong MB, Kim NR, Yi NY, Park SA, Kim MS, Park JH, et al. Spontaneous ophthalmic ­diseases in 586 New Zealand white rabbits. Exp Anim. 2005;54(5):395–403.

    Article  PubMed  CAS  Google Scholar 

  245. Rubin LF, Weisse I. Species differences relevant for ocular toxicity studies. In: Hockwin O, Green K, Rubin LF, editors. Manual of oculotoxicity testing of drugs. Stuttgart: Gustav Fischer Verlag; 1992.

    Google Scholar 

  246. Brown SM. Increased iris pigment in a child due to latanoprost. Arch Ophthalmol. 1998;116(12):1683–4.

    PubMed  CAS  Google Scholar 

  247. Eisenberg DL, Camras CB. A preliminary risk-benefit assessment of latanoprost and unoprostone in open-angle glaucoma and ocular hypertension. Drug Saf. 1999;20(6):505–14.

    Article  PubMed  CAS  Google Scholar 

  248. Stjernschantz JW, Albert DM, Hu DN, Drago F, Wistrand PJ. Mechanism and clinical significance of prostaglandin-induced iris pigmentation. Surv Ophthalmol. 2002;47 Suppl 1:S162–75.

    Article  PubMed  Google Scholar 

  249. Lindquist NG, Larsson BS, Stjernschantz J. Increased pigmentation of iridial melanocytes in primates induced by a prostaglandin analogue. Exp Eye Res. 1999;69(4):431–6.

    Article  PubMed  CAS  Google Scholar 

  250. Gesundheit B, Greenberg M. Medical mystery: brown eye and blue eye–the answer. N Engl J Med. 2005;353(22):2409–10.

    Article  PubMed  CAS  Google Scholar 

  251. Roe FJ, Millican D, Mallett JM. Induction of melanotic lesions of the iris in rats by urethane given during the neonatal period. Nature. 1963;199:1201–2.

    Article  PubMed  CAS  Google Scholar 

  252. Koizumi H, Watanabe M, Numata H, Sakai T, Morishita H. Species differences in vacuolation of the choroid plexus induced by the piperidine-ring drug disobutamide in the rat, dog, and monkey. Toxicol Appl Pharmacol. 1986;84(1):125–48.

    Article  PubMed  CAS  Google Scholar 

  253. Render JA, Carlton WW. Toxic effects of 6-aminonicotinamide, uvea, rabbit. In: Jones TC, Mohr U, Hunt RD, editors. Monographs on pathology of laboratory animals: eye and ear. Berlin: Springer; 1991. p. 50–4.

    Google Scholar 

  254. Gopinath C, Prentice DE, Lewis DJ. The eye and ear. In: Gopinath C, Prentice DE, Lewis DJ, editors. Atlas of experimental toxicological pathology. Lancaster: MTP Press; 1987. p. 145–55.

    Chapter  Google Scholar 

  255. Potts AM, Gonasun LM. Toxic responses of the ocular and visual system. In: Duoll J, Klaassen CD, Amdur MO, editors. Toxicology: the basic science of poisons. New York: MacMillan; 1980. p. 275–310.

    Google Scholar 

  256. Fraunfelder FW, Rosenbaum JT. Drug-induced uveitis. Incidence, prevention and treatment. Drug Saf. 1997;17(3):197–207.

    Article  PubMed  CAS  Google Scholar 

  257. Heywood R. Clinical and laboratory assessment of visual dysfunction. In: Hayes AC, editor. Toxicology of the eye, ear and other special sense organs. New York: Raven Press, Ltd; 1985. p. 61–77.

    Google Scholar 

  258. Levine S. Cyclitis induced by cyclophosphamide, rat. In: Jones TC, Mohr U, Hunt RD, ­editors. Monographs on pathology of laboratory animals: eye and ear. Berlin: Springer; 1991. p. 38–9.

    Google Scholar 

  259. McMaster PR, Wong VG, Owens JD. The propensity of different strains of guinea pigs to develop experimental autoimmune uveitis. Mod Probl Ophthalmol. 1976;16:62–71.

    PubMed  CAS  Google Scholar 

  260. Sinha DP, Cartwright ME, Johnson RC. Incidental mononuclear cell infiltrate in the uvea of cynomolgus monkeys. Toxicol Pathol. 2006;34(2):148–51.

    Article  PubMed  Google Scholar 

  261. Rubin LF. Atlas of veterinary ophthalmoscopy. Philadelphia: Lea and Febiger; 1974.

    Google Scholar 

  262. Pleština R, Piuković-Pleština M, Roberts DV. Effect of anticholinesterase pesticides on the eye and on vision. Crit Rev Toxicol. 1978;6(1):1–23.

    Article  Google Scholar 

  263. Rungby J. Experimental argyrosis: ultrastructural localization of silver in rat eye. Exp Mol Pathol. 1986;45(1):22–30.

    Article  PubMed  CAS  Google Scholar 

  264. Faccini JM. Mouse histopathology. Philadelphia: Elsevier Science; 1990.

    Google Scholar 

  265. Griffith JW, Sassani JW, Bowman TA, Lang CM. Osseous choristoma of the ciliary body in guinea pigs. Vet Pathol. 1988;25(1):100–2.

    Article  PubMed  CAS  Google Scholar 

  266. Brooks DE, McCracken MD, Collins BR. Heterotopic bone formation in the ciliary body of an aged guinea pig. Lab Anim Sci. 1990;40(1):88–90.

    PubMed  CAS  Google Scholar 

  267. Donnelly KB, Berridge B, Long GG, Schafer KA, Reynolds VL, Sullivan JM, et al. Peroxisome proliferator activated receptor gamma (PPARg) agonist-mediated ocular choroid adiposity: Strain sensitivity differences between Fischer 344 and Sprague-Dawley rats. Toxicol Pathol. 2007;35(1):189.

    Google Scholar 

  268. Hadjikoutis S, Morgan JE, Wild JM, Smith PE. Ocular complications of neurological therapy. Eur J Neurol. 2005;12(7):499–507.

    Article  PubMed  CAS  Google Scholar 

  269. Peckman JC. The rabbit: pathology. In: Gad SC, editor. Animal models in toxicology. Boca Raton: CRC/Taylor and Francis; 2007. p. 449–74.

    Google Scholar 

  270. Gelatt KN, Gum GG, Gwin RM, Bromberg NM, Merideth RE, Samuelson DA. Primary open angle glaucoma: inherited primary open angle glaucoma in the beagle. Am J Pathol. 1981;102(2):292–5.

    PubMed  CAS  Google Scholar 

  271. Lindsey JR, Fox RR. Inherited diseases and variations. In: Manning PJ, Ringler DH, Newcomer CE, editors. The biology of the laboratory rabbit. New York: Academic Press; 1994. p. 239–319.

    Google Scholar 

  272. Suckow MA, Douglas FA. The laboratory rabbit. Boca Raton: CRC Press; 1997.

    Google Scholar 

  273. McMenamin PG. Dendritic cells and macrophages in the uveal tract of the normal mouse eye. Br J Ophthalmol. 1999;83(5):598–604.

    Article  PubMed  CAS  Google Scholar 

  274. McMenamin PG. The distribution of immune cells in the uveal tract of the normal eye. Eye (Lond). 1997;11(Pt 2):183–93.

    Article  Google Scholar 

  275. Butler TL, McMenamin PG. Resident and infiltrating immune cells in the uveal tract in the early and late stages of experimental autoimmune uveoretinitis. Invest Ophthalmol Vis Sci. 1996;37(11):2195–210.

    PubMed  CAS  Google Scholar 

  276. Pras E, Neumann R, Zandman-Goddard G, Levy Y, Assia EI, Shoenfeld Y, et al. Intraocular inflammation in autoimmune diseases. Semin Arthritis Rheum. 2004;34(3):602–9.

    Article  PubMed  CAS  Google Scholar 

  277. John SW, Smith RS, Savinova OV, Hawes NL, Chang B, Turnbull D, et al. Essential iris atrophy, pigment dispersion, and glaucoma in DBA/2 J mice. Invest Ophthalmol Vis Sci. 1998;39(6):951–62.

    PubMed  CAS  Google Scholar 

  278. Lutjen-Drecoll E, Tamm E. Morphological study of the anterior segment of cynomolgus monkey eyes following treatment with prostaglandin F2 alpha. Exp Eye Res. 1988;47(5):761–9.

    Article  PubMed  CAS  Google Scholar 

  279. Heywood R. Drug-induced retinopathies in the Beagle dog. Br Vet J. 1974;130(6):564–9.

    PubMed  CAS  Google Scholar 

  280. Heywood R. An anomaly of the ocular fundus of the Beagle dog. J Small Anim Pract. 1972;13(4):213–5.

    Article  PubMed  CAS  Google Scholar 

  281. Bellhorn RW, Bellhorn MB, Swarm RL, Impellizzeri CW. Hereditary tapetal abnormality in the beagle. Ophthalmic Res. 1975;7:250–60.

    Article  Google Scholar 

  282. Schiavo DM. Retinopathy from administration of an imidazoquinazoline to beagles. Toxicol Appl Pharmacol. 1972;23(4):782–3.

    Article  PubMed  CAS  Google Scholar 

  283. Haggerty GC, Peckman JC, Thomassen RW, Gad SC. The dog. In: Gad SC, editor. Animal models in toxicology. 3rd ed. Boca Raton: CRC Press; 2007. p. 563–662.

    Google Scholar 

  284. Heywood R, Hepworth PL, Van Abbe NJ. Age changes in the eyes of the Beagle dog. J Small Anim Pract. 1976;17(3):171–7.

    Article  PubMed  CAS  Google Scholar 

  285. Delahunt CS, Stebbins RB, Anderson J, Bailey J. The cause of blindness in dogs given hydroxypyridinethione. Toxicol Appl Pharmacol. 1962;4:286–91.

    Article  PubMed  CAS  Google Scholar 

  286. Moe RA, Kirpan J, Linegar CR. Toxicology of hydroxypyridinethione. Toxicol Appl Pharmacol. 1960;2:156–70.

    Article  PubMed  CAS  Google Scholar 

  287. Budinger JM. Diphenylthiocarbazone blindness in dogs. Arch Ophthalmol. 1961;71:304–10.

    CAS  Google Scholar 

  288. Snyder FH, Buehler EV, Winek CL. Safety evaluation of zinc 2-pyridinethiol 1-oxide in a shampoo formulation. Toxicol Appl Pharmacol. 1965;7:425–37.

    Article  PubMed  CAS  Google Scholar 

  289. Schiavo DM, Green JD, Traina VM, Spaet R, Zaidi I. Tapetal changes in beagle dogs following oral administration of CGS 14796 C, a potential aromatase inhibitor. Fundam Appl Toxicol. 1988;10(2):329–34.

    Article  PubMed  CAS  Google Scholar 

  290. Dillberger JE, Peiffer RL, Dykstra MJ, O’Mara M, Patel DK. The experimental antipsychotic agent 1192U90 targets tapetum lucidum in canine eyes. Toxicol Pathol. 199624(5):595–601.

    Article  PubMed  CAS  Google Scholar 

  291. Cloyd GG, Wyman M, Shadduck JA, Winrow MJ, Johnson GR. Ocular toxicity studies with zinc pyridinethione. Toxicol Appl Pharmacol. 1978;45(3):771–82.

    Article  PubMed  CAS  Google Scholar 

  292. Saint-Macary G, Berthoux C. Ophthalmologic observations in the young Yucatan micropig. Lab Anim Sci. 1994;44(4):334–7.

    PubMed  CAS  Google Scholar 

  293. Hubert MF, Gillet JP, Durand-Cavagna G. Spontaneous retinal changes in Sprague Dawley rats. Lab Anim Sci. 1994;44(6):561–7.

    PubMed  CAS  Google Scholar 

  294. Bellhorn RW. Survey of ocular findings in 16- to 24-week-old beagles. J Am Vet Med Assoc. 1973;162(2):139–41.

    PubMed  CAS  Google Scholar 

  295. Everitt JI, Shadduck JA. Melanoma of the uvea, rat. In: Jones TC, editor. Monographs on pathology of laboratory animals: eye and ear. Berlin: Springer; 1991. p. 40–3.

    Google Scholar 

  296. Owen RA, Duprat P. Leiomyoma of the iris, Sprague-Dawley rat. In: Jones TC, Mohr U, Hunt RD, editors. Monographs on pathology of laboratory animals: eye and ear. Berlin: Springer; 1991. p. 47–9.

    Google Scholar 

  297. Yoshitomi K, Boorman GA. Intraocular and orbital malignant Schwannomas in F344 rats. Vet Pathol. 1991;28(6):457–66.

    Article  PubMed  CAS  Google Scholar 

  298. Congdon CC, Lorenz E. Leukemia in guinea-pigs. Am J Pathol. 1954;30(2):337–59.

    PubMed  CAS  Google Scholar 

  299. Steinberg H. Disseminated T-cell lymphoma in a guinea pig with bilateral ocular involvement. J Vet Diagn Invest. 2000;12(5):459–62.

    Article  PubMed  CAS  Google Scholar 

  300. Peiffer RL, Pohm-Thorsen L, Corcoran K. Models in ophthalmology and vision research. In: Manning PJ, Ringler DH, Newcomer CE, editors. The biology of the laboratory rabbit. 2nd ed. New York: Academic Press; 1994. p. 410–33.

    Google Scholar 

  301. Squire RA, Goodman DG, Valerio MG, Fredrickson TN, Strandberg JD, Levitt MH, et al. Tumors. In: Benirschke K, Gamer FM, Jones TC, editors. Pathology of laboratory animals. New York: Springer; 1978. p. 1051–252.

    Google Scholar 

  302. Ernst H, Rittinghausen S, Mohr U. Melanoma of the eye, mouse. In: Jones TC, Mohr U, Hunt RD, editors. Monographs on pathology of laboratory animals: eye and ear. Berlin: Springer; 1991. p. 44–7.

    Google Scholar 

  303. Albert DM, Gonder JR, Papale J, Craft JL, Dohlman HG, Reid MC, et al. Induction of ocular neoplasms in Fischer rats by intraocular injection of nickel subsulfide. Invest Ophthalmol Vis Sci. 1982;22(6):768–82.

    PubMed  CAS  Google Scholar 

  304. Albert DM, Puliafito CA, Haluska FG, Kimball GP, Robinson NL. Induction of ocular ­neoplasms in Wistar rat by N-methyl-N-nitrosourea. Exp Eye Res. 1986;42(1):83–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth A. Schafer D.V.M., DACVP, FIATP .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Schafer, K.A., Render, J.A. (2012). Toxicologic Pathology of the Eye: Histologic Preparation and Alterations of the Anterior Segment. In: Weir, A., Collins, M. (eds) Assessing Ocular Toxicology in Laboratory Animals. Molecular and Integrative Toxicology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-164-6_5

Download citation

Publish with us

Policies and ethics