Skip to main content

Emerging Imaging Technologies for Assessing Ocular Toxicity in Laboratory Animals

  • Chapter
  • First Online:
Assessing Ocular Toxicology in Laboratory Animals

Abstract

Recent decades have seen a dramatic increase in ocular imaging technologies—both for the anterior and posterior segments. This has been largely the result of increased computer processing power as applied to hardware control and data analysis. For example, the theoretical basis for ocular coherence tomography (OCT) was developed by Michelson in the nineteenth century, but only recently, thanks to computers, lasers, and electronic control circuitry, has it become a practical tool in the clinical and for toxicological studies.

In the aggregate, the use of advanced imaging may be expected to improve the drug development process by providing high-quality and clinically relevant data, which enable earlier and more informed decision making at the preclinical stage of drug development. This accompanied with gains in efficient use of resources can reduce the overall time and cost required to bring a new drug to market.

In this chapter, we review the capabilities and limitations of advanced ocular imaging and diagnostic tools that are commercially available and appropriate for inclusion in the design and execution of preclinical programs in ocular drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. National Eye Institute. Advances in optical imaging and biomedical science symposium, Bethesda, MD, 1–2 June 2009. Available: http://www.nei.nih.gov/anniversary/symposia/optical_imaging.asp. Accessed 3 Sept 2012.

  2. Erie JC, McLaren JW, Patel SV. Confocal microscopy in ophthalmology. Am J Ophthalmol. 2009;148:639–46.

    PubMed  Google Scholar 

  3. Guthoff RF, Zhivov A, Stachs O. In vivo confocal microscopy, an inner vision of the cornea – a major review. Clin Experiment Ophthalmol. 2009;37:100–17.

    PubMed  Google Scholar 

  4. Patel DV, McGhee CN. In vivo confocal microscopy of human corneal nerves in health, in ocular and systemic disease, and following corneal surgery: a review. Br J Ophthalmol. 2009;9:853–60.

    Google Scholar 

  5. Jalbert I, Stapleton F, Papas E, Sweeney DF, Coroneo M. In vivo confocal microscopy of the human cornea. Br J Ophthalmol. 2003;87:225–36.

    PubMed  CAS  Google Scholar 

  6. Romano AC, Espana EM, Yoo SH, Budak MT, Wolosin JM, Tseng SC. Different cell sizes in human limbal and central corneal basal epithelia measured by confocal microscopy and flow cytometry. Invest Ophthalmol Vis Sci. 2003;44:5125–9.

    PubMed  Google Scholar 

  7. Kaufman SC, Musch DC, Belin MW, Cohen EJ, Meisler DM, Reinhart WJ, Udell IJ, Van Meter WS. Confocal microscopy: a report by the American Academy of Ophthalmology. Ophthalmology. 2004;111:396–406.

    PubMed  Google Scholar 

  8. Stachs O, Zhivov A, Kraak R, Stave J, Guthoff R. In vivo three-dimensional confocal laser scanning microscopy of the epithelial nerve structure in the human cornea. Graefes Arch Clin Exp Ophthalmol. 2007;245:569–75.

    PubMed  Google Scholar 

  9. Zhivov A, Stachs O, Stave J, Guthoff RF. In vivo three-dimensional confocal laser scanning microscopy of corneal surface and epithelium. Br J Ophthalmol. 2009;93:667–72.

    PubMed  CAS  Google Scholar 

  10. Patel S, McLaren J, Hodge D, Bourne W. Normal human keratocyte density and corneal thickness measurement by using confocal microscopy in vivo. Invest Ophthalmol Vis Sci. 2001;42:333–9.

    PubMed  CAS  Google Scholar 

  11. McLaren JW, Nau CB, Erie JC, Bourne WM. Corneal thickness measurement by confocal microscopy, ultrasound, and scanning slit methods. Am J Ophthalmol. 2004;137:1011–20.

    PubMed  Google Scholar 

  12. Morishige N, Takahashi N, Chikamoto N, Nishida T. Quantitative evaluation of corneal epithelial oedema by confocal microscopy. Clin Experiment Ophthalmol. 2009;37:249–53.

    PubMed  Google Scholar 

  13. Pan ZY, Liang J, Zhang QA, Lin JR, Zheng ZZ. In vivo reflectance confocal microscopy of extramammary Paget disease: diagnostic evaluation and surgical management. J Am Acad Dermatol. 2012;66(2):e47–53.

    Google Scholar 

  14. Mocan MC, Kadayifcilar S, Irkec M. Keratic precipitate morphology in uveitic syndromes including Behçet’s disease as evaluated with in vivo confocal microscopy. Eye (Lond). 2009;23:1221–7.

    CAS  Google Scholar 

  15. Mahendradas P, Shetty R, Narayana KM, Shetty BK. In vivo confocal microscopy of keratic precipitates in infectious versus noninfectious uveitis. Ophthalmology. 2010;117:373–80.

    PubMed  Google Scholar 

  16. Roszkowska AM, Aragona P. Corneal microstructural analysis in Weill-Marchesani syndrome by in vivo confocal microscopy. Open Ophthalmol J. 2011;5:48–50.

    PubMed  Google Scholar 

  17. Zhang X, Chen Q, Chen W, Cui L, Ma H, Lu F. Tear dynamics and corneal confocal microscopy of subjects with mild self-reported office dry eye. Ophthalmology. 2011;118:902–7.

    PubMed  Google Scholar 

  18. Chikama T, Takahashi N, Wakuta M, Morishige N, Nishida T. In vivo biopsy by laser confocal microscopy for evaluation of traumatic recurrent corneal erosion. Mol Vis. 2008;14:2333–9.

    PubMed  Google Scholar 

  19. Niederer RL, Perumal D, Sherwin T, McGhee CN. Age-related differences in the normal human cornea: a laser scanning in vivo confocal microscopy study. Br J Ophthalmol. 2007;91:1165–9.

    PubMed  CAS  Google Scholar 

  20. Le QH, Sun XH, Xu JJ. In vivo confocal microscopy of iridocorneal endothelial syndrome. Int Ophthalmol. 2009;29:11–8.

    PubMed  Google Scholar 

  21. Zhang W, Wang J, Wang J, Jing Y. Corneal topography and in vivo confocal microscopy in different types of posterior polymorphous dystrophy. Life Sci J. 2011;8:227–38.

    CAS  Google Scholar 

  22. Efron N, Hollingsworth JG. New perspectives on keratoconus as revealed by corneal confocal microscopy. Clin Exp Optom. 2008;91:34–55.

    PubMed  Google Scholar 

  23. Traversi C, Martone G, Malandrini A, Tosi GM, Caporossi A. In vivo confocal microscopy in recurrent granular dystrophy in corneal graft after penetrating keratoplasty. Clin Experiment Ophthalmol. 2006;34:808–10.

    PubMed  Google Scholar 

  24. Jonuscheit S, Doughty MJ, Ramaesh K. In vivo confocal microscopy of the corneal endothelium: comparison of three morphometry methods after corneal transplantation. Eye (Lond). 2011;25:1130–7.

    CAS  Google Scholar 

  25. Malik RA, Kallinikos P, Abbott CA, van Schie CH, Morgan P, Efron N, Boulton AJ. Corneal confocal microscopy: a non-invasive surrogate of nerve fibre damage and repair in diabetic patients. Diabetologia. 2003;46:683–8.

    PubMed  CAS  Google Scholar 

  26. Cruzat A, Pavan-Langston D, Hamrah P. In vivo confocal microscopy of corneal nerves: analysis and clinical correlation. Semin Ophthalmol. 2010;25:171–7.

    PubMed  Google Scholar 

  27. Labbé A, Dupas B, Offret H, Baudouin C, Labetoulle M. Evaluation of keratic precipitates and corneal endothelium in Fuchs’ heterochromic cyclitis by in vivo confocal microscopy. Br J Ophthalmol. 2009;93:673–7.

    PubMed  Google Scholar 

  28. Villani E, Galimberti D, Viola F, Mapelli C, Del Papa N, Ratiglia R. Corneal involvement in rheumatoid arthritis: an in vivo confocal study. Invest Ophthalmol Vis Sci. 2008;49:560–4.

    PubMed  Google Scholar 

  29. Labbé A, Niaudet P, Loirat C, Charbit M, Guest G, Baudouin C. In vivo confocal microscopy and anterior segment optical coherence tomography analysis of the cornea in nephropathic cystinosis. Ophthalmology. 2009;116:870–6.

    PubMed  Google Scholar 

  30. Al-Aqaba MA, Alomar T, Miri A, Fares U, Otri AM, Dua HS. Ex vivo confocal microscopy of human corneal nerves. Br J Ophthalmol. 2010;94:1251–7.

    PubMed  Google Scholar 

  31. Mimura T, Yamagami S, Usui T, Honda N, Araki F, Amano S. In vivo confocal microscopy of human cornea covered with human amniotic membrane. Jpn J Ophthalmol. 2008;52:493–6.

    PubMed  Google Scholar 

  32. Kafarnik C, Fritsche J, Reese S. In vivo confocal microscopy in the normal corneas of cats, dogs and birds. Vet Ophthalmol. 2007;10:222–30.

    PubMed  Google Scholar 

  33. Ledbetter EC, Scarlett JM. In vivo confocal microscopy of the normal equine cornea and limbus. Vet Ophthalmol. 2009;12:57–64.

    PubMed  Google Scholar 

  34. Ledbetter EC, Kice NC, Matusow RB, Dubovi EJ, Kim SG. The effect of topical ocular corticosteroid administration in dogs with experimentally induced latent canine herpesvirus-1 infection. Exp Eye Res. 2010;90:711–7.

    PubMed  CAS  Google Scholar 

  35. Ledbetter EC, Irby NL, Kim SG. In vivo confocal microscopy of equine fungal keratitis. Vet Ophthalmol. 2011;14:1–9.

    PubMed  Google Scholar 

  36. Trinh L, Brignole-Baudouin F, Labbé A, Raphaël M, Bourges JL, Baudouin C. The corneal endothelium in an endotoxin-induced uveitis model: correlation between in vivo confocal microscopy and immunohistochemistry. Mol Vis. 2008;14:1149–56.

    PubMed  CAS  Google Scholar 

  37. Li HF, Petroll WM, Moller-Pedersen T, Maurer JK, Cavanagh HD, Jester JV. Epithelial and corneal thickness measurements by in vivo confocal microscopy through focusing (CMTF). Curr Eye Res. 1997;16:214–21.

    PubMed  CAS  Google Scholar 

  38. Chang JH, Ren HW, Petroll MW, Cavanagh DH, Jester JV. The application of in vivo confocal microscopy and tear LDH measurement in assessing corneal response to contact lens and contact lens solutions. Curr Eye Res. 1999;19:171–81.

    PubMed  CAS  Google Scholar 

  39. Ichijima H, Petroll WM, Jester JV, Cavanagh HD. Confocal microscopic studies of living rabbit cornea treated with benzalkonium chloride. Cornea. 1992;11:221–5.

    PubMed  CAS  Google Scholar 

  40. Maurer JK, Li HF, Petroll WM, Parker RD, Cavanagh HD, Jester JV. Confocal microscopic characterization of initial corneal changes of surfactant-induced eye irritation in the rabbit. Toxicol Appl Pharmacol. 1997;143:291–300.

    PubMed  CAS  Google Scholar 

  41. Liang H, Baudouin C, Pauly A, Brignole-Baudouin F. Conjunctival and corneal reactions in rabbits following short- and repeated exposure to preservative-free tafluprost, commercially available latanoprost and 0.02% benzalkonium chloride. Br J Ophthalmol. 2008;92:1275–82.

    PubMed  CAS  Google Scholar 

  42. Liang H, Brignole-Baudouin F, Rabinovich-Guilatt L, Mao Z, Riancho L, Faure MO, Warnet JM, Lambert G, Baudouin C. Reduction of quaternary ammonium-induced ocular surface toxicity by emulsions: an in vivo study in rabbits. Mol Vis. 2008;14:204–16.

    PubMed  CAS  Google Scholar 

  43. Liang H, Baudouin C, Faure MO, Lambert G, Brignole-Baudouin F. Comparison of the ocular tolerability of a latanoprost cationic emulsion versus conventional formulations of prostaglandins: an in vivo toxicity assay. Mol Vis. 2009;15:1690–9.

    PubMed  CAS  Google Scholar 

  44. Chen W, Li Z, Hu J, Zhang Z, Chen L, Chen Y, Liu Z. Corneal alternations induced by topical application of benzalkonium chloride in rabbit. PLoS One. 2011;6:e26103.

    PubMed  CAS  Google Scholar 

  45. Liang H, Brignole-Baudouin F, Pauly A, Riancho L, Baudouin C. Polyquad-preserved travoprost/timolol, benzalkonium chloride (BAK)-preserved travoprost/timolol, and latanoprost/timolol in fixed combinations: a rabbit ocular surface study. Adv Ther. 2011;28:311–25.

    PubMed  CAS  Google Scholar 

  46. Pauloin T, Dutot M, Liang H, Chavinier E, Warnet JM, Rat P. Corneal protection with high-molecular-weight hyaluronan against in vitro and in vivo sodium lauryl sulfate-induced toxic effects. Cornea. 2009;28:1032–41.

    PubMed  Google Scholar 

  47. Ivarsen A, Laurberg T, Moller-Pedersen T. Role of keratocyte loss on corneal wound repair after LASIK. Invest Ophthalmol Vis Sci. 2004;45:3499–506.

    PubMed  Google Scholar 

  48. Ivarsen A, Moller-Pedersen T. LASIK induces minimal regrowth and no haze development in rabbit corneas. Curr Eye Res. 2005;30:363–73.

    PubMed  Google Scholar 

  49. Ichijima H, Petroll WM, Jester JV, Ohashi J, Cavanagh HD. Effects of increasing Dk with rigid contact lens extended wear on rabbit corneal epithelium using confocal microscopy. Cornea. 1992;11:282–7.

    PubMed  CAS  Google Scholar 

  50. Sirerol B, Walewska-Szafran A, Alio JL, Klonowski P, Rodriguez AE. Tolerance and biocompatibility of micronized black pigment for keratopigmentation simulated pupil reconstruction. Cornea. 2011;30:344–50.

    PubMed  Google Scholar 

  51. Gramates PH, McDonald MB, Salib G, Clark L. Safety and efficacy of levofloxacin 1.5% eyedrops in nonhuman primates having penetrating keratoplasty: clinical and laboratory findings. J Cataract Refract Surg. 2005;31:1995–8.

    PubMed  Google Scholar 

  52. Winchester K, Mathers WD, Sutphin JE, Daley TE. Diagnosis of Acanthamoeba keratitis in vivo with confocal microscopy. Cornea. 1995;14:10–7.

    PubMed  CAS  Google Scholar 

  53. Mathers WD, Nelson SE, Lane JL, Wilson ME, Allen RC, Folberg R. Confirmation of confocal microscopy diagnosis of Acanthamoeba keratitis using polymerase chain reaction analysis. Arch Ophthalmol. 2000;118:178–83.

    PubMed  CAS  Google Scholar 

  54. Kobayashi A, Ishibashi Y, Oikawa Y, Yokogawa H, Sugiyama K. In vivo and ex vivo laser confocal microscopy findings in patients with early-stage Acanthamoeba keratitis. Cornea. 2008;27:439–45.

    PubMed  Google Scholar 

  55. Winchester K, Mathers WD, Sutphin JE. Diagnosis of Aspergillus keratitis in vivo with confocal microscopy. Cornea. 1997;16:27–31.

    PubMed  CAS  Google Scholar 

  56. Brasnu E, Bourcier T, Dupas B, et al. In vivo confocal microscopy in fungal keratitis. Br J Ophthalmol. 2007;91:588–91.

    PubMed  Google Scholar 

  57. Kanavi MR, Javadi M, Yazdani S, Mirdehghanm S. Sensitivity and specificity of confocal scan in the diagnosis of infectious keratitis. Cornea. 2007;26:782–6.

    PubMed  Google Scholar 

  58. Benítez-Del-Castillo JM, Acosta MC, Wassfi MA, Díaz-Valle D, Gegúndez JA, Fernandez C, García-Sánchez J. Relation between corneal innervation with confocal microscopy and corneal sensitivity with noncontact esthesiometry in patients with dry eye. Invest Ophthalmol Vis Sci. 2007;48:173–81.

    PubMed  Google Scholar 

  59. Chikama T, Takahashi N, Wakuta M, Nishida T. Noninvasive direct detection of ocular mucositis by in vivo confocal microscopy in patients treated with S-1. Mol Vis. 2009;15:2896–904.

    PubMed  CAS  Google Scholar 

  60. Hillenaar T, Weenen C, Wubbels RJ, Remeijer L. Endothelial involvement in herpes simplex virus keratitis: an in vivo confocal microscopy study. Ophthalmology. 2009;116:2077–86.

    PubMed  Google Scholar 

  61. Ciancaglini M, Carpineto P, Agnifili L, Nubile M, Fasanella V, Mastropasqua L. Conjunctival modifications in ocular hypertension and primary open angle glaucoma: an in vivo confocal microscopy study. Invest Ophthalmol Vis Sci. 2008;49:3042–8.

    PubMed  Google Scholar 

  62. Niederer RL, Perumal D, Sherwin T, McGhee CN. Corneal innervation and cellular changes after corneal transplantation: an in vivo confocal microscopy study. Invest Ophthalmol Vis Sci. 2007;48:621–6.

    PubMed  Google Scholar 

  63. Salvetat ML, Zeppieri M, Miani F, Parisi L, Felletti M, Brusini P. Comparison between laser scanning in vivo confocal microscopy and noncontact specular microscopy in assessing corneal endothelial cell density and central corneal thickness. Cornea. 2011;30:754–9.

    PubMed  Google Scholar 

  64. McCarey BE, Edelhauser HF, Lynn MJ. Review of corneal endothelial specular microscopy for FDA clinical trials of refractive procedures, surgical devices, and new intraocular drugs and solutions. Cornea. 2008;27:1–16.

    PubMed  Google Scholar 

  65. Suzuki S, Oshika T, Oki K, Sakabe I, Iwase A, Amano S, Araie M. Corneal thickness measurements: scanning-slit corneal topography and noncontact specular microscopy versus ultrasonic pachymetry. J Cataract Refract Surg. 2003;29:1313–8.

    PubMed  Google Scholar 

  66. Ogbuehi KC, Almubrad TM. Repeatability of central corneal thickness measurements measured with the Topcon SP2000P specular microscope. Graefes Arch Clin Exp Ophthalmol. 2005;243:798–802.

    PubMed  Google Scholar 

  67. Doughty MJ, Aakre BM. Further analysis of assessments of the coefficient of variation of corneal endothelial cell areas from specular microscopic images. Clin Exp Optom. 2008;91:438–46.

    PubMed  Google Scholar 

  68. Bucht C, Söderberg P, Manneberg G. Simulation of specular microscopy images of corneal endothelium, a tool for control of measurement errors. Acta Ophthalmol. 2011;89:242–50.

    Google Scholar 

  69. Fujioka M, Nakamura M, Tatsumi Y, Kusuhara A, Maeda H, Negi A. Comparison of Pentacam Scheimpflug camera with ultrasound pachymetry and noncontact specular microscopy in measuring central corneal thickness. Curr Eye Res. 2007;32:89–94.

    PubMed  Google Scholar 

  70. Uçakhan OO, Ozkan M, Kanpolat A. Corneal thickness measurements in normal and keratoconic eyes: Pentacam comprehensive eye scanner versus noncontact specular microscopy and ultrasound pachymetry. J Cataract Refract Surg. 2006;32:970–7.

    PubMed  Google Scholar 

  71. Módis Jr L, Langenbucher A, Seitz B. Corneal endothelial cell density and pachymetry measured by contact and noncontact specular microscopy. J Cataract Refract Surg. 2002;28:1763–9.

    PubMed  Google Scholar 

  72. Raecker ME, McLaren JW, Kittleson KM, Patel SV. Endothelial image quality after Descemet stripping with endothelial keratoplasty: a comparison of three microscopy techniques. Eye Contact Lens. 2011;37:6–10.

    PubMed  Google Scholar 

  73. Kawana K, Tokunaga T, Miyata K, Okamoto F, Kiuchi T, Oshika T. Comparison of corneal thickness measurements using Orbscan II, non-contact specular microscopy, and ultrasonic pachymetry in eyes after laser in situ keratomileusis. Br J Ophthalmol. 2004;88:466–8.

    PubMed  CAS  Google Scholar 

  74. Sanchis-Gimeno JA, Lleo-Perez A, Casanova J, Alonso L, Rahhal SM. Inter-observer variability of central corneal thickness measurements using non-contact specular microscopy after laser in situ keratomileusis. Clin Exp Optom. 2004;87:15–8.

    PubMed  Google Scholar 

  75. Zhao MH, Zou J, Wang WQ, Li J. Comparison of central corneal thickness as measured by non-contact specular microscopy and ultrasound pachymetry before and post LASIK. Clin Experiment Ophthalmol. 2007;35:818–23.

    PubMed  Google Scholar 

  76. Lass JH, Gal RL, Ruedy KJ, Benetz BA, Beck RW, Baratz KH, Holland EJ, Kalajian A, Kollman C, Manning FJ, et al. An evaluation of image quality and accuracy of eye bank measurement of donor cornea endothelial cell density in the Specular Microscopy Ancillary Study. Ophthalmology. 2005;112:431–40.

    PubMed  Google Scholar 

  77. Benetz BA, Gal RL, Ruedy KJ, Rice C, Beck RW, Kalajian AD, Lass JH, Cornea Donor Study Group. Specular microscopy ancillary study methods for donor endothelial cell density determination of Cornea Donor Study images. Curr Eye Res. 2006;31:319–27.

    PubMed  Google Scholar 

  78. Kanavi MR, Javadi M-A, Chamani T. Specular microscopic features of corneal endothelial vacuolation. J Ophthalmic Vis Res. 2011;6:5–7.

    PubMed  Google Scholar 

  79. Ollivier FJ, Brooks DE, Komaromy AM, Kallberg ME, Andrew SE, Sapp HL, Sherwood MB, Dawson WW. Corneal thickness and endothelial cell density measured by non-contact specular microscopy and pachymetry in Rhesus macaques (Macaca mulatta) with laser-induced ocular hypertension. Exp Eye Res. 2003;76:671–7.

    PubMed  CAS  Google Scholar 

  80. Pigatto JAT, Cesar F, Gener Tadeu Pereira GT, et al. Density of corneal endothelial cells in eyes of dogs using specular microscopy. Braz J Vet Res Anim Sci. 2006;43:476–80.

    Google Scholar 

  81. Pigatto JAT, Cerva C, Freire CD, et al. Morphological analysis of the corneal endothelium in eyes of dogs using specular microscopy. Pesq Vet Bras. 2008;28:427–30.

    Google Scholar 

  82. Miller JM, Holley GP, Miller PE, Edelhauser HF, Murphy CJ, McCulloh RJ, Christian BJ, Smith PB, Lam TT. Corneal endothelial cell density measurements using noncontact specular microscopy in rabbits, dogs and monkeys. Presented at Association for Research in Vision and Ophthalmology, April 2008, Fort Lauderdale, FL.

    Google Scholar 

  83. Al-Ageel S, Al-Muammar AM. Comparison of central corneal thickness measurements by Pentacam, noncontact specular microscope, and ultrasound pachymetry in normal and post-LASIK eyes. Saudi J Ophthalmol. 2009;23:181–7.

    Google Scholar 

  84. Szalai E, Nemeth G, Berta A, Modis Jr L. Evaluation of the corneal endothelium using noncontact and contact specular microscopy. Cornea. 2011;3:567–70.

    Google Scholar 

  85. Rosales P, Marcos S. Pentacam Scheimpflug quantitative imaging of the crystalline lens and intraocular lens. J Refract Surg. May 2009;25(5):421–428.

    PubMed  Google Scholar 

  86. Wegener A, Laser-Junga H. Photography of the anterior eye segment according to Scheimpflug’s principle: options and limitations - a review. Clin Experiment Ophthalmol. Jan 2009;37(1):144–154.

    PubMed  Google Scholar 

  87. Chen D, Lam AK. Intrasession and intersession repeatability of the Pentacam system on posterior corneal assessment in the normal human eye. J Cataract Refract Surg. 2007;33:448–54.

    PubMed  Google Scholar 

  88. Kirkwood BJ, Hendicott PL, Read SA, Pesudovs K. Repeatability and validity of lens densitometry measured with Scheimpflug imaging. J Cataract Refract Surg. 2009;35:1210–5.

    PubMed  Google Scholar 

  89. de Castro A, Rosales P, Marcos S. Tilt and decentration of intraocular lenses in vivo from Purkinje and Scheimpflug imaging. Validation study. J Cataract Refract Surg. 2007;33:418–29.

    PubMed  Google Scholar 

  90. Grewal D, Jain R, Brar GS, Grewal SP. Pentacam tomograms: a novel method for quantification of posterior capsule opacification. Invest Ophthalmol Vis Sci. 2008;49:2004–8.

    PubMed  Google Scholar 

  91. Turner SJ, Lee EJ, Hu V, Hollick EJ. Scheimpflug imaging to determine intraocular lens power in vivo. J Cataract Refract Surg. 2007;33:1041–4.

    PubMed  Google Scholar 

  92. de Sanctis U, Loiacono C, Richiardi L, Turco D, Mutani B, Grignolo FM. Sensitivity and specificity of posterior corneal elevation measured by Pentacam in discriminating keratoconus/subclinical keratoconus. Ophthalmology. 2008;115:1534–9.

    PubMed  Google Scholar 

  93. Xu Y, Hersh PS, Chu DS. Wavefront analysis and Scheimpflug imagery in diagnosis of anterior lenticonus. J Cataract Refract Surg. 2010;36:850–3.

    PubMed  Google Scholar 

  94. Arora R, Mehta S, Goyal JL, Pahuja S, Gupta D, Gupta R. Pattern of Scheimpflug imaging in anterior segment foreign bodies. Eye (Lond). 2010;24:1304–6.

    CAS  Google Scholar 

  95. Hockwin O, Wegener A. Syn- and cocataractogenesis. A system for testing subliminal lens toxicity. In: Hockwin O, editor. Drug-induced ocular side effects and ocular toxicology, concepts toxicol. Basel: Karger; 1987. p. 241–9.

    Google Scholar 

  96. Wegener A, Hockwin O. Animal models as a tool to detect the subliminal cocataractogenic potential of drugs. In: Hockwin O, editor. Drug-induced ocular side effects and ocular toxicology, concepts toxicol. Basel: Karger; 1987. p. 250–62.

    Google Scholar 

  97. Wegener A, Kaegler M, Stinn W. Age-related light scattering in rat lenses observed in a 2-year inhalation toxicity study. Ophthalmic Res. 2002;34:273–80.

    PubMed  CAS  Google Scholar 

  98. Böker T, Wegener A, Koch F, Hockwin O. Comparison of Scheimpflug-photography, specular microscopy and scanning electron microscopy to detect corneal changes in toxicity studies in rats. Lens Eye Toxic Res. 1990;7:517–29.

    PubMed  Google Scholar 

  99. Croft M, Glasser A, Heatley G, McDonald J, Ebbert T, Kaufman PL. Accommodative ciliary body and lens function in rhesus monkeys. I. Normal lens, zonule and ciliary process configuration in the iridectomized eye. Invest Ophthalmol Vis Sci. 2006;47:1076–86.

    PubMed  Google Scholar 

  100. Koretz JF, Neider MW, Kaufman PL, Bertasso AM, DeRousseau CJ, Bito LZ. Slit-lamp studies of the rhesus monkey eye. I. Survey of the anterior segment. Exp Eye Res. 1987;44:307–18.

    PubMed  CAS  Google Scholar 

  101. Koretz JF, Bertasso AM, Neider MW, True-Gabelt BA, Kaufman PL. Slit-lamp studies of the rhesus monkey eye: II. Changes in crystalline lens shape, thickness and position during accommodation and aging. Exp Eye Res. 1987;45:317–26.

    PubMed  CAS  Google Scholar 

  102. Subramanian R, Cook C, Croft M, DePaul KL, Neider M, Ferrier NJ, Kaufman PL, Koretz JF. Unilateral real-time Scheimpflug videography to study accommodation dynamics in human eyes. Inves Ophthalmol Vis Sci. 2003;44:240.

    Google Scholar 

  103. Uçakhan ÖÖ, Cetinkor V, Özkan M, Kanpolat A. Evaluation of Scheimpflug imaging parameters in subclinical keratoconus, keratoconus, and normal eyes. J Cataract Refract Surg. 2011;37:1116–24.

    PubMed  Google Scholar 

  104. Piñero DP, Alió JL, Alesón A, Escaf M, Miranda M. Pentacam posterior and anterior corneal aberrations in normal and keratoconic eyes. Clin Exp Optom. 2009;92:297–303.

    PubMed  Google Scholar 

  105. Grewal DS, Brar GS, Jain R, Sood V, Singla M, Grewal SP. Corneal collagen crosslinking using riboflavin and ultraviolet-A light for keratoconus: one-year analysis using Scheimpflug imaging. J Cataract Refract Surg. 2009;35:425–32.

    PubMed  Google Scholar 

  106. Wiemer NG, Dubbelman M, Ringens PJ, Polak BC. Measuring the refractive properties of the diabetic eye during blurred vision and hyperglycaemia using aberrometry and Scheimpflug imaging. Acta Ophthalmol. 2009;87:176–82.

    PubMed  Google Scholar 

  107. Shankar H, Taranath D, Santhirathelagan CT, Pesudovs K. Anterior segment biometry with the Pentacam: comprehensive assessment of repeatability of automated measurements. J Cataract Refract Surg. 2008;34:103–13.

    PubMed  Google Scholar 

  108. Miranda MA, Radhakrishnan H, O’Donnell C. Repeatability of corneal thickness measured using an Oculus Pentacam. Optom Vis Sci. 2009;86:266–72.

    PubMed  Google Scholar 

  109. Barkana Y, Gerber Y, Elbaz U, Schwartz S, Ken-Dror G, Avni I, Zadok D. Central corneal thickness measurement with the Pentacam Scheimpflug system, optical low-coherence reflectometry pachymeter, and ultrasound pachymetry. J Cataract Refract Surg. 2005;31:1729–35.

    PubMed  Google Scholar 

  110. Faramarzi A, Karimian F, Jafarinasab MR, Jabbarpoor Bonyadi MH, Yaseri M. Central corneal thickness measurements after myopic photorefractive keratectomy using Scheimpflug imaging, scanning-slit topography, and ultrasonic pachymetry. J Cataract Refract Surg. 2010;36:1543–9.

    PubMed  Google Scholar 

  111. Grewal DS, Brar GS, Grewal SP. Assessment of central corneal thickness in normal, keratoconus, and post-laser in situ keratomileusis eyes using Scheimpflug imaging, spectral domain optical coherence tomography, and ultrasound pachymetry. J Cataract Refract Surg. 2010;36:954–64.

    PubMed  Google Scholar 

  112. Konstantopoulos A, Hossain P, Anderson DF. Recent advances in ophthalmic anterior segment imaging: a new era for ophthalmic diagnosis? Br J Ophthalmol. 2007;91:551–7.

    PubMed  Google Scholar 

  113. Pavlin CJ, Vásquez LM, Lee R, Simpson ER, Ahmed II. Anterior segment optical coherence tomography and ultrasound biomicroscopy in the imaging of anterior segment tumors. Am J Ophthalmol. 2009;147:214–9.

    PubMed  Google Scholar 

  114. Dada T, Sihota R, Gadia R, Aggarwal A, Mandal S, Gupta V. Comparison of anterior segment optical coherence tomography and ultrasound biomicroscopy for assessment of the anterior segment. J Cataract Refract Surg. 2007;33:837–40.

    PubMed  Google Scholar 

  115. Sangermani C, Mora P, Mancini C, Vecchi M, Gandolfi SA. Ultrasound biomicroscopy in two cases of ocular siderosis with secondary glaucoma. Acta Ophthalmol. 2010;88:1–2.

    Google Scholar 

  116. Kumar RS, Baskaran M, Chew PT, Friedman DS, Handa S, Lavanya R, Sakata LM, Wong HT, Aung T. Prevalence of plateau iris in primary angle closure suspects an ultrasound biomicroscopy study. Ophthalmology. 2008;115:430–4.

    PubMed  Google Scholar 

  117. Sun CB, Liu Z, Yao K. Ultrasound biomicroscopy in pupillary block glaucoma secondary to ophthalmic viscosurgical device remnants in the posterior chamber after anterior chamber phakic intraocular lens implantation. J Cataract Refract Surg. 2010;36:2204–6.

    PubMed  Google Scholar 

  118. Dougherty PJ, Rivera RP, Schneider D, Lane SS, Brown D, Vukich J. Improving accuracy of phakic intraocular lens sizing using high-frequency ultrasound biomicroscopy. J Cataract Refract Surg. 2011;37:13–8.

    PubMed  Google Scholar 

  119. Kim KH, Shin HH, Kim HM, Song JS. Correlation between ciliary sulcus diameter measured by 35 MHz ultrasound biomicroscopy and other ocular measurements. J Cataract Refract Surg. 2008;34:632–7.

    PubMed  Google Scholar 

  120. Giuliari GP, McGowan HD, Pavlin CJ, Heathcote JG, Simpson ER. Ultrasound biomicroscopic imaging of iris melanoma: a clinicopathologic study. Am J Ophthalmol. 2011;151:579–85.

    PubMed  Google Scholar 

  121. Vasquez LM, Giuliari GP, Halliday W, Pavlin CJ, Gallie BL, Héon E. Ultrasound biomicroscopy in the management of retinoblastoma. Eye (Lond). 2011;25:141–7.

    CAS  Google Scholar 

  122. Solarte CE, Smith DR, Buncic JR, Tehrani NN, Kraft SP. Evaluation of vertical rectus muscles using ultrasound biomicroscopy. J AAPOS. 2008;12:128–231.

    PubMed  Google Scholar 

  123. Peizeng Y, Qianli M, Xiangkun H, Hongyan Z, Li W, Kijlstra A. Longitudinal study of anterior segment inflammation by ultrasound biomicroscopy in patients with acute anterior uveitis. Acta Ophthalmol. 2009;87:211–5.

    PubMed  Google Scholar 

  124. Sbeity Z, Palmiero PM, Saint-Louis LA, Dorairaj S, Liebmann J, Ritch R. Asymmetric progressive glaucomatous optic neuropathy in a patient with a rare developmental variant of the ophthalmic artery. J Glaucoma. 2008;17:699–701.

    PubMed  Google Scholar 

  125. Yeh PT, Yang CM, Yang CH, Huang JS. Cryotherapy of the anterior retina and sclerotomy sites in diabetic vitrectomy to prevent recurrent vitreous hemorrhage: an ultrasound biomicroscopy study. Ophthalmology. 2005;112:2095–102.

    PubMed  Google Scholar 

  126. Dulaurent T, Goulle F, Dulaurent A, Mentek M, Peiffer RL, Isard PF. Effect of mydriasis induced by topical instillations of 0.5% tropicamide on the anterior segment in normotensive dogs using ultrasound biomicroscopy. Vet Ophthalmol. 2012 Mar;15, Suppl 1:8–13. Epub 2011 Apr 19.

    Google Scholar 

  127. Nissirios N, Chanis R, Johnson E, Morrison J, Cepurna WO, Jia L, Mittag T, Danias J. Comparison of anterior segment structures in two rat glaucoma models: an ultrasound biomicroscopic study. Invest Ophthalmol Vis Sci. 2008;49:2478–82.

    PubMed  Google Scholar 

  128. Rose MD, Mattoon JS, Gemensky-Metzler AJ, Wilkie DA, Rajala-Schultz PJ. Ultrasound biomicroscopy of the iridocorneal angle of the eye before and after phacoemulsification and intraocular lens implantation in dogs. Am J Vet Res. 2008;69:279–88.

    PubMed  Google Scholar 

  129. Lütjen-Drecoll E, Kaufman PL, Wasielewski R, Ting-Li L, Croft MA. Morphology and accommodative function of the vitreous zonule in human and monkey eyes. Invest Ophthalmol Vis Sci. 2010;51:1554–64.

    PubMed  Google Scholar 

  130. Croft M, McDonald JP, Nadkarni NV, Lin TL, Kaufman PL. Age-related changes in centripetal ciliary body movement relative to centripetal lens movement in monkeys. Exp Eye Res. 2009;89:824–32.

    PubMed  CAS  Google Scholar 

  131. Wasilewski R, McDonald JP, Heatley G, Lütjen-Drecoll E, Kaufman PL, Croft MA. Surgical intervention and accommodative responses, II: Forward ciliary body accommodative movement is facilitated by zonular attachments to the lens capsule. Invest Ophthalmol Vis Sci. 2008;49:5495–502.

    PubMed  Google Scholar 

  132. Kamal AM, Hanafy M, Ehsan A, Tomerak RH. Ultrasound biomicroscopy comparison of ab interno and ab externo scleral fixation of posterior chamber intraocular lenses. J Cataract Refract Surg. 2009;35:881–4.

    PubMed  Google Scholar 

  133. Marchini G, Pedrotti E, Modesti M, Visentin S, Tosi R. Anterior segment changes during accommodation in eyes with a monofocal intraocular lens: high-frequency ultrasound study. J Cataract Refract Surg. 2008;34:949–56.

    PubMed  Google Scholar 

  134. Mora P, Sangermani C, Ghirardini S, Carta A, Ungaro N, Gandolfi S. Ultrasound biomicroscopy and iris pigment dispersion: a case–control study. Br J Ophthalmol. 2010;94:428–32.

    PubMed  CAS  Google Scholar 

  135. Ladas JG, Wheeler NC, Morhun PJ, Rimmer SO, Holland GN. Laser flare-cell photometry: methodology and clinical applications. Surv Ophthalmol. 2005;50:27–47.

    PubMed  Google Scholar 

  136. Herbort CP, Tugal-Tutkun I. Editorial: laser flare (cell) photometry: 20 years already. Int Ophthalmol. 2010;30:445–7.

    PubMed  Google Scholar 

  137. Ni M, Bloom JN, Lele S, Sotelo-Avila C. A laboratory evaluation of the Kowa laser flare-cell meter for the study of uveitis. Graefes Arch Clin Exp Ophthalmol. 1992;230:547–51.

    PubMed  CAS  Google Scholar 

  138. Sawa M. Clinical application of laser flare-cell meter. Jpn J Ophthalmol. 1990;34:346–63.

    PubMed  CAS  Google Scholar 

  139. Abe T, Hayasaka Y, Zhang XY, Hayasaka S. Effects of intravenous administration of FR122047 (a selective cyclooxygenase 1 inhibitor) and FR188582 (a selective cyclooxygenase 2 inhibitor) on prostaglandin-E2-induced aqueous flare elevation in pigmented rabbits. Ophthalmic Res. 2004;36:321–6.

    PubMed  CAS  Google Scholar 

  140. Shoji N, Oshika T, Amano S, Masuda K. Effects of endothelin receptor antagonists on anterior chamber inflammation induced by intravitreal injection of endothelin-1. Exp Eye Res. 1999;69:437–44.

    PubMed  CAS  Google Scholar 

  141. Hayasaka Y, Hayasaka S, Zhang XY, Nagaki Y. Effects of topical anti-inflammatory and antiallergic eyedrops on prostaglandin E2-induced aqueous flare elevation in pigmented rabbits. Arch Ophthalmol. 2002;120:950–3.

    PubMed  CAS  Google Scholar 

  142. Arvind H, Klistorner A, Graham S, Grigg J, Goldberg I, Klistorner A, Billson FA. Dichoptic stimulation improves detection of glaucoma with multifocal visual evoked potentials. Invest Ophthalmol Vis Sci. 2007;48:4590–6.

    PubMed  Google Scholar 

  143. Hayasaka Y, Hayasaka S, Zhang XY, Nagaki Y. Effects of topical mydriatics and vasoconstrictors on prostaglandin-E2-induced aqueous flare elevation in pigmented rabbits. Ophthalmic Res. 2003;35:256–60.

    PubMed  CAS  Google Scholar 

  144. Nagaki Y, Hayasaka S, Abe T, Zhang XY, Hayasaka Y, Terasawa K. Effects of oral administration of Gardeniae fructus extract and intravenous injection of crocetin on lipopolysaccharide- and prostaglandin E2-induced elevation of aqueous flare in pigmented rabbits. Am J Chin Med. 2003;31:729–38.

    PubMed  CAS  Google Scholar 

  145. Krohne SG, Blair MJ, Bingaman D, Gionfriddo JR. Carprofen inhibition of flare in the dog measured by laser flare photometry. Vet Ophthalmol. 1998;1:81–4.

    PubMed  CAS  Google Scholar 

  146. Xu W, Wang H, Wang F, Jiang Y, Zhang X, Wang W, Qian J, Xu X, Sun X. Testing toxicity of multiple intravitreal injections of bevacizumab in rabbit eyes. Can J Ophthalmol. 2010;45:386–92.

    PubMed  Google Scholar 

  147. Zhang XY, Hayasaka S, Hayasaka Y, Yanagisawa S, Nagaki Y. Effects of isopropyl unoprostone, latanoprost, and prostaglandin E(2) on acute rise of aqueous flare in pigmented rabbits. Ophthalmic Res. 2002;34:90–3.

    PubMed  Google Scholar 

  148. Kojima M, Hata I, Wake K, Watanabe S, Yamanaka Y, Kamimura Y, Taki M, Sasaki K. Influence of anesthesia on ocular effects and temperature in rabbit eyes exposed to microwaves. Bioelectromagnetics. 2004;25:228–33.

    PubMed  CAS  Google Scholar 

  149. Abela-Formanek C, Amon M, Schild G, Schauersberger J, Heinze G, Kruger A. Uveal and capsular biocompatibility of hydrophilic acrylic, hydrophobic acrylic, and silicone intraocular lenses. J Cataract Refract Surg. 2002;28:50–61.

    PubMed  Google Scholar 

  150. Abela-Formanek C, Amon M, Kahraman G, Schauersberger J, Dunavoelgyi R. Biocompatibility of hydrophilic acrylic, hydrophobic acrylic, and silicone intraocular lenses in eyes with uveitis having cataract surgery: long-term follow-up. J Cataract Refract Surg. 2011;37:104–12.

    PubMed  Google Scholar 

  151. Gatinel D, Lebrun T, Le Toumelin P, Chaine G. Aqueous flare induced by heparin-surface-modified poly(methyl methacrylate) and acrylic lenses implanted through the same-size incision in patients with diabetes. J Cataract Refract Surg. 2001;27:855–60.

    PubMed  CAS  Google Scholar 

  152. Krepler K, Ries E, Derbolav A, Nepp J, Wedrich A. Inflammation after phacoemulsification in diabetic retinopathy. Foldable acrylic versus heparin-surface-modified poly(methyl methacrylate) intraocular lenses. J Cataract Refract Surg. 2001;27:233–8.

    PubMed  CAS  Google Scholar 

  153. Meacock WR, Spalton DJ, Bender L, Antcliff R, Heatley C, Stanford MR, Graham EM. Steroid prophylaxis in eyes with uveitis undergoing phacoemulsification. Br J Ophthalmol. 2004;88:1122–4.

    PubMed  CAS  Google Scholar 

  154. Kruger AJ, Amon M, Abela-Formanek C, Schild G, Kolodjaschna J, Schauersberger J. Postoperative inflammation after lens epithelial cell removal: 2 year results. J Cataract Refract Surg. 2001;27:1380–5.

    PubMed  CAS  Google Scholar 

  155. Kruger A, Amon M, Abela-Formanek C, Schild G, Kolodjaschna J, Schauersberger J. Effect of heparin in the irrigation solution on postoperative inflammation and cellular reaction on the intraocular lens surface. J Cataract Refract Surg. 2002;28:87–92.

    PubMed  Google Scholar 

  156. Papa V, Milazzo G, Santocono M, Servolle V, Sourdille P, Santiago PY, Darondeau J, Cassoux N, LeHoang P. Naproxen ophthalmic solution to manage inflammation after phacoemulsi­fication. J Cataract Refract Surg. 2002;28:321–7.

    PubMed  Google Scholar 

  157. Wadood AC, Armbrecht AM, Aspinall PA, Dhillon B. Safety and efficacy of a dexamethasone anterior segment drug delivery system in patients after phacoemulsification. J Cataract Refract Surg. 2004;30:761–8.

    PubMed  Google Scholar 

  158. Orengo-Nania S, El-Harazi SM, Oram O, Feldman RM, Chuang AZ, Gross RL. Effects of atropine on anterior chamber depth and anterior chamber inflammation after primary trabeculectomy. J Glaucoma. 2000;9:303–10.

    PubMed  CAS  Google Scholar 

  159. Tugal-Tutkun I, Herbort CP. Laser flare photometry: a noninvasive, objective, and quantitative method to measure intraocular inflammation. Int Ophthalmol. 2010;30:453–64.

    PubMed  Google Scholar 

  160. Wakefield D, Herbort CP, Tugal-Tutkun I, Zierhut M. Controversies in ocular inflammation and immunology laser flare photometry. Ocul Immunol Inflamm. 2010;18:334–40.

    PubMed  Google Scholar 

  161. Fahim MM, Haji S, Koonapareddy CV, Fan VC, Asbell PA. Fluorophotometry as a diagnostic tool for the evaluation of dry eye disease. BMC Ophthalmol. 2006;6:20.

    PubMed  Google Scholar 

  162. Ghate D, Brooks W, McCarey BE, Edelhauser HF. Pharmacokinetics of intraocular drug delivery by periocular injections using ocular fluorophotometry. Invest Ophthalmol Vis Sci. 2007;48:2230–7.

    PubMed  Google Scholar 

  163. Lee SJ, Kim ES, Geroski DH, McCarey BE, Edelhauser HF. Pharmacokinetics of intraocular drug delivery of Oregon green 488-labeled triamcinolone by subtenon injection using ocular fluorophotometry in rabbit eyes. Invest Ophthalmol Vis Sci. 2008;49:4506–14.

    PubMed  Google Scholar 

  164. Steinfeld A, Lux A, Maier S, Suverkrup R, Diestelhorst M. Bioavailability of fluorescein from a new drug delivery system in human eyes. British J Ophthalmol. 2004;88:48–53.

    CAS  Google Scholar 

  165. Lux A, Maier S, Dinslage S, Suverkrup R, Diestelhorst M. Comparative bioavailability study of three conventional eye drops versus a single lyophilisate. British J Ophthalmol. 2003;87:436–40.

    CAS  Google Scholar 

  166. Virtanen T, Huotari K, Harkonen M, Tervo T. Lacrimal plugs as a therapy for contact lens intolerance. Eye (Lond). 1996;10(Pt 6):727–31.

    Google Scholar 

  167. Glasson MJ, Stapleton F, Keay L, Willcox MD. The effect of short term contact lens wear on the tear film and ocular surface characteristics of tolerant and intolerant wearers. Cont Lens Anterior Eye. 2006;29:41–7; quiz 49.

    PubMed  CAS  Google Scholar 

  168. Toris CB, Zhan GL, Yablonski ME, Camras CB. Effects on aqueous flow of dorzolamide combined with either timolol or acetazolamide. J Glaucoma. 2004;13:210–5.

    PubMed  Google Scholar 

  169. Tsukamoto H, Larsson LI. Aqueous humor flow in normal human eyes treated with brimonidine and dorzolamide, alone and in combination. Arch Ophthalmol. 2004;122:190–3.

    PubMed  CAS  Google Scholar 

  170. Avila MY, Mitchell CH, Stone RA, Civan MM. Noninvasive assessment of aqueous humor turnover in the mouse eye. Invest Ophthalmol Vis Sci. 2003;44:722–7.

    PubMed  Google Scholar 

  171. Lazaro C, Benitez-del-Castillo JM, Castillo A, Garcia-Feijoo J, Macias JM, Garcia-Sanchez J. Lens fluorophotometry after trabeculectomy in primary open-angle glaucoma. Ophthalmology. 2002;109:76–9.

    PubMed  Google Scholar 

  172. Fernández-Barrientos Y, García-Feijoó J, Martínez-de-la-Casa JM, Pablo LE, Fernández-Pérez C, García SJ. Fluorophotometric study of the effect of the glaukos trabecular microbypass stent on aqueous humor dynamics. Invest Ophthalmol Vis Sci. 2010;51:3327–32.

    PubMed  Google Scholar 

  173. Mochizuki H, Yamada M, Hato S, Nishida T. Fluorophotometric measurement of the precorneal residence time of topically applied hyaluronic acid. Br J Ophthalmol. 2008;92:108–11.

    PubMed  CAS  Google Scholar 

  174. Webb RH, Hughes GW, Delori FC. Confocal scanning laser ophthalmoscope. Appl Opt. 1987;26:1492–9.

    PubMed  CAS  Google Scholar 

  175. Huber G, Heynen S, Imsand C, von Hagen F, Muehlfriedel R, Tanimoto N, Feng Y, Hammes HP, Grimm C, Peichl L, et al. Novel rodent models for macular research. PLoS One. 2010;5:e13403.

    PubMed  Google Scholar 

  176. Furrer P, Plazonnet B, Mayer JM, Gurny R. Application of in vivo confocal microscopy to the objective evaluation of ocular irritation induced by surfactants. Int J Pharm. 2000;207:89–98.

    PubMed  CAS  Google Scholar 

  177. Xie F, Sun D, Schering A, Nakao S, Zandi S, Liu P, Hafezi-Moghadam A. Novel molecular imaging approach for subclinical detection of iritis and evaluation of therapeutic success. Am J Pathol. 2010;177:39–48.

    PubMed  Google Scholar 

  178. Sugiyama T, Mashima Y, Yoshioka Y, Oku H, Ikeda T. Effect of unoprostone on topographic and blood flow changes in the ischemic optic nerve head of rabbits. Arch Ophthalmol. 2009;127:454–9.

    PubMed  Google Scholar 

  179. Aartsen WM, van Cleef KW, Pellissier LP, Hoek RM, Vos RM, Blits B, Ehlert EM, Balaggan KS, Ali RR, Verhaagen J, et al. GFAP-driven GFP expression in activated mouse MĂĽller glial cells aligning retinal blood vessels following intravitreal injection of AAV2/6 vectors. PLoS One. 2010;5:e12387.

    PubMed  Google Scholar 

  180. Beck SC, Schaeferhoff K, Michalakis S, Fischer MD, Huber G, Rieger N, Riess O, Wissinger B, Biel M, Bonin M, et al. In vivo analysis of cone survival in mice. Invest Ophthalmol Vis Sci. 2010;51:49493–7.

    Google Scholar 

  181. Tolmachova T, Wavre-Shapton ST, Barnard AR, MacLaren RE, Futter CE, Seabra MC. Retinal pigment epithelium defects accelerate photoreceptor degeneration in cell type-specific knockout mouse models of choroideremia. Invest Ophthalmol Vis Sci. 2010;51:4913–20.

    PubMed  Google Scholar 

  182. Scoles D, Gray DC, Hunter JJ, Wolfe R, Gee BP, Geng Y, Masella BD, Libby RT, Russell S, Williams DR, et al. In vivo imaging of retinal nerve fiber layer vasculature: imaging histology comparison. BMC Ophthalmol. 2009;9:9.

    PubMed  Google Scholar 

  183. Greenfield DS, Weinreb RN. Role of optic nerve imaging in glaucoma clinical practice and clinical trials. Am J Ophthalmol. 2008;145:598–603.

    PubMed  Google Scholar 

  184. Weinreb RN, Zangwill LM, Jain S, Becerra LM, Dirkes K, Piltz-Seymour JR, Cioffi GA, Trick GL, Coleman AL, Brandt JD, et al. Predicting the onset of glaucoma: the confocal scanning laser ophthalmoscopy ancillary study to the Ocular Hypertension Treatment Study. Ophthalmology. 2010;117:1674–83.

    PubMed  Google Scholar 

  185. Leung CK, Medeiros FA, Zangwill LM, Sample PA, Bowd C, Ng D, Cheung CY, Lam DS, Weinreb RN. American Chinese glaucoma imaging study: a comparison of the optic disc and retinal nerve fiber layer in detecting glaucomatous damage. Invest Ophthalmol Vis Sci. 2007;48:2644–52.

    PubMed  Google Scholar 

  186. Mumcuoglu T, Townsend KA, Wollstein G, Ishikawa H, Bilonick RA, Sung KR, Kagemann L, Schuman JS, Advanced Imaging in Glaucoma Study Group. Assessing the relationship between central corneal thickness and retinal nerve fiber layer thickness in healthy subjects. Am J Ophthalmol. 2008;146:561–6.

    PubMed  Google Scholar 

  187. Landa G, Garcia PM, Rosen RB. Correlation between retina blood flow velocity assessed by retinal function imager and retina thickness estimated by scanning laser ophthalmoscopy/optical coherence tomography. Ophthalmologica. 2009;223:155–61.

    PubMed  Google Scholar 

  188. Talcott KE, Ratnam K, Sundquist SM, Lucero AS, Lujan BJ, Tao W, Porco TC, Roorda A, Duncan JL. Longitudinal study of cone photoreceptors during retinal degeneration and in response to ciliary neurotrophic factor treatment. Invest Ophthalmol Vis Sci. 2011;52:2219–26.

    PubMed  CAS  Google Scholar 

  189. Finger PT, Chin K. Anti-vascular endothelial growth factor bevacizumab (Avastin) for radiation retinopathy. Arch Ophthalmol. 2007;125:751–6.

    PubMed  CAS  Google Scholar 

  190. Fleckenstein M, Schmitz-Valckenberg S, Adrion C, Krämer I, Eter N, Helb HM, Brinkmann CK, Charbel Issa P, Mansmann U, Holz FG. Tracking progression with spectral-domain optical coherence tomography in geographic atrophy caused by age-related macular degeneration. Invest Ophthalmol Vis Sci. 2010;51:3846–52.

    PubMed  Google Scholar 

  191. Charbel Issa P, Troeger E, Finger R, Holz FG, Wilke R, Scholl HP. Structure-function correlation of the human central retina. PLoS One. 2010;5:e12864.

    PubMed  Google Scholar 

  192. Wild JM, Robson CR, Jones AL, Cunliffe IA, Smith PE. Detecting vigabatrin toxicity by imaging of the retinal nerve fiber layer. Invest Ophthalmol Vis Sci. 2006;47:917–24.

    PubMed  Google Scholar 

  193. Gabriele ML, Wollstein G, Ishikawa H, Kagemann L, Xu J, Folio LS, Schuman JS. Optical coherence tomography: history, current status, and laboratory work. Invest Ophthalmol Vis Sci. 2011;52:2425–36.

    PubMed  Google Scholar 

  194. Mujat M, Park BH, Cense B, Chen TC, de Boer JF. Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination. J Biomed Opt. 2007;12:041205.

    PubMed  Google Scholar 

  195. Srinivasan VJ, Adler DC, Chen Y, Gorczynska I, Huber R, Duker JS, Schuman JS, Fujimoto JG. Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head. Invest Ophthalmol Vis Sci. 2008;49:5103–10.

    PubMed  Google Scholar 

  196. Nassif N, Cense B, Park B, Pierce M, Yun S, Bouma B, Tearney G, Chen T, de Boer J. In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve. Opt Express. 2004;12:367–76.

    PubMed  CAS  Google Scholar 

  197. Makita S, Fabritius T, Yasuno Y. Full-range, high-speed, high-resolution 1 microm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye. Opt Express. 2008;16:8406–20.

    PubMed  Google Scholar 

  198. Kanadani FN, Hood DC, Grippo TM, Wangsupadilok B, Harizman N, Greenstein VC, Liebmann JM, Ritch R. Structural and functional assessment of the macular region in patients with glaucoma. Br J Ophthalmol. 2006;90:1393–7.

    PubMed  CAS  Google Scholar 

  199. Bowd C. Optical coherence tomography for clinical detection and monitoring of glaucoma? Br J Ophthalmol. 2007;91:853–4.

    PubMed  Google Scholar 

  200. Kagemann L, Mumcuoglu T, Wollstein G, Bilonick R, Ishikawa H, Townsend KA, Gabriele M, Fujimoto JG, Schuman JS. Sources of longitudinal variability in optical coherence tomography nerve-fibre layer measurements. Br J Ophthalmol. 2008;92:806–9.

    PubMed  CAS  Google Scholar 

  201. Medeiros FA, Zangwill LM, Alencar LM, Bowd C, Sample PA, Susanna Jr R, Weinreb RN. Detection of glaucoma progression with stratus OCT retinal nerve fiber layer, optic nerve head, and macular thickness measurements. Invest Ophthalmol Vis Sci. 2009;50:5741–8.

    PubMed  Google Scholar 

  202. Townsend KA, Wollstein G, Schuman JS. Imaging of the retinal nerve fibre layer for glaucoma. Br J Ophthalmol. 2009;93:139–43.

    PubMed  CAS  Google Scholar 

  203. Lee EJ, Kim TW, Weinreb RN, Park KH, Kim SH, Kim DM. Trend-based analysis of retinal nerve fiber layer thickness measured by optical coherence tomography in eyes with localized nerve fiber layer defects. Invest Ophthalmol Vis Sci. 2011;52:1138–44.

    PubMed  Google Scholar 

  204. Shoji T, Sato H, Ishida M, Takeuchi M, Chihara E. Assessment of glaucomatous changes in subjects with high myopia using spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52:1098–102.

    PubMed  Google Scholar 

  205. Xin D, Greenstein VC, Ritch R, Liebmann JM, De Moraes CG, Hood DC. A comparison of functional and structural measures for identifying progression of glaucoma. Invest Ophthalmol Vis Sci. 2011;52:519–26.

    PubMed  Google Scholar 

  206. Pasol J. Neuro-ophthalmic disease and optical coherence tomography: glaucoma look-alikes. Curr Opin Ophthalmol. 2011;22:124–32.

    PubMed  Google Scholar 

  207. Sakata LM, Lavanya R, Friedman DS, Aung HT, Gao H, Kumar RS, Foster PJ, Aung T. Comparison of gonioscopy and anterior segment ocular coherence tomography in detecting angle closure in different quadrants of the anterior chamber angle. Ophthalmology. 2008;115:769–74.

    PubMed  Google Scholar 

  208. Thomas MG, Kumar A, Kohl S, Proudlock FA, Gottlob I. High-resolution in vivo imaging in achromatopsia. Ophthalmology. 2011;118:882–7.

    PubMed  Google Scholar 

  209. Wylegala E, Dobrowolski D, Nowińska A, Tarnawska D. Anterior segment optical coherence tomography in eye injuries. Graefes Arch Clin Exp Ophthalmol. 2009;247:451–5.

    PubMed  Google Scholar 

  210. Inoue R, Hangai M, Kotera Y, Nakanishi H, Mori S, Morishita S, Yoshimura N. Three-dimensional high-speed optical coherence tomography imaging of lamina cribrosa in glaucoma. Ophthalmology. 2009;116:214–22.

    PubMed  Google Scholar 

  211. Inoue M, Watanabe Y, Arakawa A, Sato S, Kobayashi S, Kadonosono K. Spectral-domain optical coherence tomography images of inner/outer segment junctions and macular hole surgery outcomes. Graefes Arch Clin Exp Ophthalmol. 2009;247:325–30.

    PubMed  Google Scholar 

  212. Mansour AM, Yunis MH, Medawar WA. Ocular coherence tomography of symptomatic phototoxic retinopathy after cataract surgery: a case report. J Med Case Reports. 2011;5:133.

    Google Scholar 

  213. Sarunic MV, Asrani S, Izatt JA. Imaging the ocular anterior segment with real-time, full-range Fourier-domain optical coherence tomography. Arch Ophthalmol. 2008;126:537–42.

    PubMed  Google Scholar 

  214. Lee EC, de Boer JF, Mujat M, Lim H, Yun SH. In vivo optical frequency domain imaging of human retina and choroid. Opt Express. 2006;14:4403–11.

    PubMed  Google Scholar 

  215. Wakabayashi T, Sawa M, Gomi F, Tsujikawa M. Correlation of fundus autofluorescence with photoreceptor morphology and functional changes in eyes with retinitis pigmentosa. Acta Ophthalmol. 2010;88:e177–83.

    PubMed  Google Scholar 

  216. Oishi A, Nakamura H, Tatsumi I, Sasahara M, Kojima H, Kurimoto M, Otani A, Yoshimura N. Optical coherence tomographic pattern and focal electroretinogram in patients with retinitis pigmentosa. Eye (Lond). 2009;23:299–303.

    CAS  Google Scholar 

  217. Hood DC, Lazow MA, Locke KG, Greenstein VC, Birch DG. The transition zone between healthy and diseased retina in patients with retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2011;52:101–8.

    PubMed  Google Scholar 

  218. Rosen RB, Hathaway M, Rogers J, Pedro J, Garcia P, Dobre GM, Podoleanu AG. Simultaneous OCT/SLO/ICG imaging. Invest Ophthalmol Vis Sci. 2009;50:851–60.

    PubMed  Google Scholar 

  219. Ruggeri M, Wehbe H, Jiao S, Wang J, Jockovich ME, Rosenfeld PJ, Major JC, McKeown C, Puliafito CA. Ultra high-resolution optical coherence tomography for non-contact ocular imaging of small animals. Presented at Biomedical Optics, Optical Society of America; March 2008, St. Petersburg, FL.

    Google Scholar 

  220. Ruggeri M, Wehbe H, Jiao S, Gregori G, Jockovich ME, Hackam A, Duan Y, Puliafito CA. In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2007;48:1808–14.

    PubMed  Google Scholar 

  221. Albert DM, Neekhra A, Wang S, Darjatmoko SR, Sorenson CM, Dubielzig RR, Sheibani N. Development of choroidal neovascularization in rats with advanced intense cyclic light-induced retinal degeneration. Arch Ophthalmol. 2010;128:212–22.

    PubMed  Google Scholar 

  222. Gabriele ML, Ishikawa H, Schuman JS, Bilonick RA, Kim J, Kagemann L, Wollstein G. Reproducibility of spectral-domain optical coherence tomography total retinal thickness measurements in mice. Invest Ophthalmol Vis Sci. 2010;51:6519–23.

    PubMed  Google Scholar 

  223. Strouthidis NG, Fortune B, Yang H, Sigal IA, Burgoyne CF. Longitudinal change detected by spectral domain optical coherence tomography in the optic nerve head and peripapillary retina in experimental glaucoma. Invest Ophthalmol Vis Sci. 2011;52:1206–19.

    PubMed  Google Scholar 

  224. Luo X, Patel NB, Harwerth RS, Frishman LJ. Loss of the low-frequency component of the global-flash multifocal electroretinogram in primate eyes with experimental glaucoma. Invest Ophthalmol Vis Sci. 2011;52:3792–804.

    PubMed  Google Scholar 

  225. Schuman JS, Pedut-Kloizman T, Pakter H, Wang N, Guedes V, Huang L, Pieroth L, Scott W, Hee MR, Fujimoto JG, et al. Optical coherence tomography and histologic measurements of nerve fiber layer thickness in normal and glaucomatous monkey eyes. Invest Ophthalmol Vis Sci. 2007;48:3645–54.

    PubMed  Google Scholar 

  226. Patel NB, Luo X, Wheat JL, Harwerth RS. Retinal nerve fiber layer assessment: area versus thickness measurements from elliptical scans centered on the optic nerve. Invest Ophthalmol Vis Sci. 2011;52:2477–89.

    PubMed  Google Scholar 

  227. Zhu H, Crabb DP, Schlottmann PG, Ho T, Garway-Heath DF. Floating canvas: quantification of 3D retinal structures from spectral-domain optical coherence tomography. Opt Express. 2010;18:24595–610.

    PubMed  Google Scholar 

  228. Vermeer KA, van der Schoot J, Lemij HG, de Boer JF. Automated segmentation by pixel classification of retinal layers in ophthalmic OCT images. Biomed Opt Express. 2011;2:1743–56.

    PubMed  CAS  Google Scholar 

  229. Yazdanpanah A, Hamarneh G, Smith BR, Sarunic MV. Segmentation of intra-retinal layers from optical coherence tomography images using an active contour approach. IEEE Trans Med Imaging. 2011;30:484–96.

    PubMed  Google Scholar 

  230. McIntyre KB, Rasmussen CA, Goulding AK, Bantseev V, Ver Hoeve JN, Kaufman PL, Christian BJ, Nork TM. Spectral domain OCT segmentation accuracy in monkeys. Presented at Association for Research in Vision and Ophthalmology, May 2010, Fort Lauderdale, FL.

    Google Scholar 

  231. Malamos P, Ahlers C, Mylonas G, Schutze C, Deak G, Ritter M, Sacu S, Schmidt-Erfurth U. Evaluation of segmentation procedures using spectral domain optical coherence tomography in exudative age-related macular degeneration. Retina. 2011;31:453–63.

    PubMed  Google Scholar 

  232. Rathke F, Schmidt S, Schnorr C. Order preserving and shape prior constrained intra-retinal layer segmentation in optical coherence tomography. Med Image Comput Comput Assist Interv. 2011;14:370–7.

    PubMed  Google Scholar 

  233. Marmor MF. Comparison of screening procedures in hydroxychloroquine toxicity. Arch Ophthalmol. 2012 Apr;130(4):461–9. Epub 2011 Dec 12.

    Google Scholar 

  234. Nork TM, Murphy CJ, Kim CB, Ver Hoeve JN, Rasmussen CA, Miller PE, Wabers HD, Neider MW, Dubielzig RR, McCulloh RJ, et al. Functional and anatomic consequences of subretinal dosing in the cynomolgus macaque. Arch Ophthalmol. 2012;130:65–75.

    PubMed  CAS  Google Scholar 

  235. Nork TM, Murphy CJ, Kim CB, Ver Hoeve JN, Rasmussen CA, Miller PE, Wabers HD, Neider MW, Dubielzig RR, McCulloh RJ, et al. Functional and anatomic consequences of subretinal dosing in the cynomolgus macaque. Arch Ophthalmol, 14 Aug 2011 [Epub ahead of print].

    Google Scholar 

  236. Xu L, Cao WF, Wang YX, Chen CX, Jonas JB. Anterior chamber depth and chamber angle and their associations with ocular and general parameters: the Beijing Eye Study. Am J Ophthalmol. 2008;145:929–36.

    PubMed  Google Scholar 

  237. Grover S, Murthy RK, Brar VS, Chalam KV. Normative data for macular thickness by high-definition spectral-domain optical coherence tomography (spectralis). Am J Ophthalmol. 2009;148:266–71.

    PubMed  Google Scholar 

  238. Budenz DL, Anderson DR, Varma R, Schuman J, Cantor L, Savell J, Greenfield DS, Patella VM, Quigley HA, Tielsch J. Determinants of normal retinal nerve fiber layer thickness measured by Stratus OCT. Ophthalmology. 2007;114:1046–52.

    PubMed  Google Scholar 

  239. Fleckenstein M, Charbel Issa P, Helb HM, Schmitz-Valckenberg S, Finger RP, Scholl HP, Loeffler KU, Holz FG. High-resolution spectral domain-OCT imaging in geographic atrophy associated with age-related macular degeneration. Invest Ophthalmol Vis Sci. 2008;49:4137–44.

    PubMed  Google Scholar 

  240. Khanifar AA, Koreishi AF, Izatt JA, Toth CA. Drusen ultrastructure imaging with spectral domain optical coherence tomography in age-related macular degeneration. Ophthalmology. 2008;115:1883–90.

    PubMed  Google Scholar 

  241. Cense B, Nassif N, Chen T, Pierce M, Yun SH, Park B, Bouma B, Tearney G, de Boer J. Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography. Opt Express. 2004;12:2435–47.

    PubMed  Google Scholar 

  242. Witkin AJ, Vuong LN, Srinivasan VJ, Gorczynska I, Reichel E, Baumal CR, Rogers AH, Schuman JS, Fujimoto JG, Duker JS. High-speed ultrahigh resolution optical coherence tomography before and after ranibizumab for age-related macular degeneration. Ophthalmology. 2009;116:956–63.

    PubMed  Google Scholar 

  243. Gabriele ML, Ishikawa H, Schuman JS, Ling Y, Bilonick RA, Kim JS, Kagemann L, Wollstein G. Optic nerve crush mice followed longitudinally with spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52:2250–4.

    PubMed  Google Scholar 

  244. Považay B, Hofer B, Torti C, Hermann B, Tumlinson AR, Esmaeelpour M, Egan CA, Bird AC, Drexler W. Impact of enhanced resolution, speed and penetration on three-dimensional retinal optical coherence tomography. Opt Express. 2009;17:4134–50.

    PubMed  Google Scholar 

  245. DeLeón Ortega JE, Sakata LM, Kakati B, McGwin Jr G, Monheit BE, Arthur SN, Girkin CA. Effect of glaucomatous damage on repeatability of confocal scanning laser ophthalmoscope, scanning laser polarimetry, and optical coherence tomography. Invest Ophthalmol Vis Sci. 2007;48:1156–63.

    PubMed  Google Scholar 

  246. Ho J, Sull AC, Vuong LN, Chen Y, Liu J, Fujimoto JG, Schuman JS, Duker JS. Assessment of artifacts and reproducibility across spectral- and time-domain optical coherence tomography devices. Ophthalmology. 2009;116:1960–70.

    PubMed  Google Scholar 

  247. Sull AC, Vuong LN, Price LL, Srinivasan VJ, Gorczynska I, Fujimoto JG, Schuman JS, Duker JS. Comparison of spectral/Fourier domain optical coherence tomography instruments for assessment of normal macular thickness. Retina. 2010;30:235–45.

    PubMed  Google Scholar 

  248. Kim JS, Ishikawa H, Sung KR, Xu J, Wollstein G, Bilonick RA, Gabriele ML, Kagemann L, Duker JS, Fujimoto JG, et al. Retinal nerve fibre layer thickness measurement reproducibility improved with spectral domain optical coherence tomography. Br J Ophthalmol. 2009;93:1057–63.

    PubMed  CAS  Google Scholar 

  249. Leung CK, Cheung CY, Weinreb RN, Qiu Q, Liu S, Li H, Xu G, Fan N, Huang L, Pang CP, et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a variability and diagnostic performance study. Ophthalmology. 2009;116:1257–63.

    PubMed  Google Scholar 

  250. Knight OJ, Chang RT, Feuer WJ, Budenz DL. Comparison of retinal nerve fiber layer measurements using time domain and spectral domain optical coherent tomography. Ophthalmology. 2009;116:1271–7.

    PubMed  Google Scholar 

  251. Vizzeri G, Weinreb RN, Gonzalez-Garcia AO, Bowd C, Medeiros FA, Sample PA, Zangwill LM. Agreement between spectral-domain and time-domain OCT for measuring RNFL thickness. Br J Ophthalmol. 2009;93:775–81.

    PubMed  CAS  Google Scholar 

  252. Leung CK, Li H, Weinreb RN, Liu J, Cheung CY, Lai RY, Pang CP, Lam DS. Anterior chamber angle measurement with anterior segment optical coherence tomography: a comparison between slit lamp OCT and Visante OCT. Invest Ophthalmol Vis Sci. 2008;49:3469–74.

    PubMed  Google Scholar 

  253. Schuman JS. Spectral domain optical coherence tomography for glaucoma (an AOS thesis). Trans Am Ophthalmol Soc. 2008;106:426–58.

    PubMed  Google Scholar 

  254. Wolf-Schnurrbusch UE, Ceklic L, Brinkmann CK, Iliev ME, Frey M, Rothenbuehler SP, Enzmann V, Wolf S. Macular thickness measurements in healthy eyes using six different optical coherence tomography instruments. Invest Ophthalmol Vis Sci. 2009;50:3432–7.

    PubMed  Google Scholar 

  255. Huang XR, Knighton RW. Microtubules contribute to the birefringence of the retinal nerve fiber layer. Invest Ophthalmol Vis Sci. 2005;46:4588–93.

    PubMed  Google Scholar 

  256. Alencar LM, Zangwill LM, Weinreb RN, Bowd C, Vizzeri G, Sample PA, Susanna Jr R, Medeiros FA. Agreement for detecting glaucoma progression with the GDx guided progression analysis, automated perimetry, and optic disc photography. Ophthalmology. 2010;117:462–70.

    PubMed  Google Scholar 

  257. Grewal DS, Sehi M, Greenfield DS. Detecting glaucomatous progression using GDx with variable and enhanced corneal compensation using Guided Progression Analysis. Br J Ophthalmol. 2011;95:502–8.

    PubMed  Google Scholar 

  258. Poinoosawmy D, Tan JC, Bunce C, Hitchings RA. The ability of the GDx nerve fibre analyser neural network to diagnose glaucoma. Graefes Arch Clin Exp Ophthalmol. 2001;239:122–7.

    PubMed  CAS  Google Scholar 

  259. Brusini P, Salvetat ML, Zeppieri M, Tosoni C, Parisi L, Felletti M. Comparison between GDx VCC scanning laser polarimetry and Stratus OCT optical coherence tomography in the diagnosis of chronic glaucoma. Acta Ophthalmol Scand. 2006;84:650–5.

    PubMed  Google Scholar 

  260. Frohman EM, Dwyer MG, Frohman T, Cox JL, Salter A, Greenberg BM, Hussein S, Conger A, Calabresi P, Balcer LJ, et al. Relationship of optic nerve and brain conventional and non-conventional MRI measures and retinal nerve fiber layer thickness, as assessed by OCT and GDx: a pilot study. J Neurol Sci. 2009;282:96–105.

    PubMed  Google Scholar 

  261. Pueyo V, Ara JR, Almarcegui C, Martin J, Güerri N, García E, Pablo LE, Honrubia FM, Fernandez FJ. Sub-clinical atrophy of the retinal nerve fibre layer in multiple sclerosis. Acta Ophthalmol. 2010;88:748–52.

    PubMed  Google Scholar 

  262. Weinreb RN, Bowd C, Greenfield DS, Zangwill LM. Measurement of the magnitude and axis of corneal polarization with scanning laser polarimetry. Arch Ophthalmol. 2002;120:901–6.

    PubMed  Google Scholar 

  263. Fortune B, Wang L, Cull G, Cioffi GA. Intravitreal colchicine causes decreased RNFL birefringence without altering RNFL thickness. Invest Ophthalmol Vis Sci. 2008;49:255–61.

    PubMed  Google Scholar 

  264. Fortune B, Cull GA, Burgoyne CF. Relative course of retinal nerve fiber layer birefringence and thickness and retinal function changes after optic nerve transection. Invest Ophthalmol Vis Sci. 2008;49:4444–52.

    PubMed  Google Scholar 

  265. Reus NJ, Lemij HG. Diagnostic accuracy of the GDx VCC for glaucoma. Ophthalmology. 2004;111:1860–5.

    PubMed  Google Scholar 

  266. Shaikh A, Salmon JF. The role of scanning laser polarimetry using the GDx variable corneal compensator in the management of glaucoma suspects. Br J Ophthalmol. 2006;90:1454–7.

    PubMed  CAS  Google Scholar 

  267. Baraibar B, Sánchez-Cano A, Pablo LE, Honrubia FM. Preperimetric glaucoma assessment with scanning laser polarimetry (GDx VCC): analysis of retinal nerve fiber layer by sectors. J Glaucoma. 2007;16:659–64.

    PubMed  Google Scholar 

  268. Reus NJ, de Graaf M, Lemij HG. Accuracy of GDx VCC, HRT I, and clinical assessment of stereoscopic optic nerve head photographs for diagnosing glaucoma. Br J Ophthalmol. 2007;91:313–8.

    PubMed  Google Scholar 

  269. Pablo LE, Ferreras A, Schlottmann PG. Retinal nerve fibre layer evaluation in ocular hypertensive eyes using optical coherence tomography and scanning laser polarimetry in the diagnosis of early glaucomatous defects. Br J Ophthalmol. 2011;95:51–5.

    PubMed  Google Scholar 

  270. Leung CK, Chan WM, Chong KK, Yung WH, Tang KT, Woo J, Chan WM, Tse KK. Comparative study of retinal nerve fiber layer measurement by Stratus OCT and GDx VCC, I: correlation analysis in glaucoma. Invest Ophthalmol Vis Sci. 2005;46:3214–20.

    PubMed  Google Scholar 

  271. Zarei R, Soleimani M, Moghimi S, et al. Relationship between the GDx VCC and Stratus OCT in primary open angle glaucoma. Iran J Ophthalmol. 2009;21:55–62.

    Google Scholar 

  272. Zareii R, Soleimani M, Moghimi S, Eslami Y, Fakhraie G, Amini H. Relationship between GDx VCC and Stratus OCT in juvenile glaucoma. Eye (Lond). 2009;23:2182–6.

    CAS  Google Scholar 

  273. Ma KT, Lee SH, Hong S, Park KS, Kim CY, Seong GJ, Hong YJ. Relationship between the retinal thickness analyzer and the GDx VCC scanning laser polarimeter, Stratus OCT optical coherence tomograph, and Heidelberg retina tomograph II confocal scanning laser ophthalmoscopy. Korean J Ophthalmol. 2008;22:10–7.

    PubMed  Google Scholar 

  274. Zheng W, Baohua C, Qun C, Zhi Q, Hong D. Retinal nerve fiber layer images captured by GDx-VCC in early diagnosis of glaucoma. Ophthalmologica. 2008;222:17–20.

    PubMed  Google Scholar 

  275. Medeiros FA, Alencar LM, Zangwill LM, Sample PA, Susanna Jr R, Weinreb RN. Impact of atypical retardation patterns on detection of glaucoma progression using the GDx with variable corneal compensation. Am J Ophthalmol. 2009;148:155–63.

    PubMed  Google Scholar 

  276. Tóth M, Holló G. Increased Long-term measurement variability with scanning laser polarimetry employing enhanced corneal compensation: an early sign of glaucoma progression. J Glaucoma. 2008;17:571–7.

    PubMed  Google Scholar 

  277. Weinreb RN, Kaufman PL. Glaucoma research community and FDA look to the future, II: NEI/FDA Glaucoma Clinical Trial Design and Endpoints Symposium: measures of structural change and visual function. Invest Ophthalmol Vis Sci. 2011;4:7842–51.

    Google Scholar 

  278. Mai TA, Reus NJ, Lemij HG. Structure-function relationship is stronger with enhanced corneal compensation than with variable corneal compensation in scanning laser polarimetry. Invest Ophthalmol Vis Sci. 2007;48:1651–8.

    PubMed  Google Scholar 

  279. Reus NJ, Zhou Q, Lemij HG. Enhanced imaging algorithm for scanning laser polarimetry with variable corneal compensation. Invest Ophthalmol Vis Sci. 2006;47:3870–7.

    PubMed  Google Scholar 

  280. Aristeidou AP, Labiris G, Paschalis EI, Foudoulakis NC, Koukoula SC, Kozobolis VP. Evaluation of the retinal nerve fiber layer measurements, after photorefractive keratectomy and laser in situ keratomileusis, using scanning laser polarimetry (GDX VCC). Graefes Arch Clin Exp Ophthalmol. 2010;248:731–6.

    PubMed  Google Scholar 

  281. Kunimatsu S, Tomidokoro A, Saito H, Aihara M, Tomita G, Araie M. Performance of GDx VCC in eyes with peripapillary atrophy: comparison of three circle sizes. Eye (Lond). 2008;22:173–8.

    CAS  Google Scholar 

  282. Resch H, Deak G, Vass C. Influence of optic-disc size on parameters of retinal nerve fibre analysis as measured using GDx VCC and ECC in healthy subjects. Br J Ophthalmol. 2010;94:424–7.

    PubMed  Google Scholar 

  283. Gabelt BT, Kiland JA, Tian B, Kaufman PL. Aqueous humor: Secretion and dynamics. In: Tasman W, Jaeger EA, editors. Duane’s foundations of clinical ophthalmology, vol. 2. Philadelphia: Lippincott Williams & Wilkins; 2006.

    Google Scholar 

Download references

Acknowledgements

The authors thank Michael W. Neider and Hugh D. Wabers for their helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. Michael Nork M.D., M.S., DABO, FARVO or Christopher J. Murphy D.V.M., Ph.D., DACVO .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Nork, T.M., Rasmussen, C.A., Christian, B.J., Croft, M.A., Murphy, C.J. (2012). Emerging Imaging Technologies for Assessing Ocular Toxicity in Laboratory Animals. In: Weir, A., Collins, M. (eds) Assessing Ocular Toxicology in Laboratory Animals. Molecular and Integrative Toxicology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-164-6_3

Download citation

Publish with us

Policies and ethics