Skip to main content

The Role of Reactive Oxygen Species and Oxidative Signaling in Retinopathy of Prematurity

  • Chapter
  • First Online:
Studies on Retinal and Choroidal Disorders

Abstract

Oxidative stress has been proposed to play a role in the pathogenesis of retinopathy of prematurity (ROP) for years, because of the effects of changing oxygen concentrations that occur in the preterm infant on reactive oxygen species (ROS) generation, the reduced antioxidant reserve in the preterm infant, and the high concentration of polyunsaturated fatty acids in the retina. In addition, greater evidence exists that oxidative compounds are involved in triggering angiogenesis and apoptosis, two events that have relevance to the development of features of severe ROP, namely, aberrant neovascularization into the vitreous and avascular retina. However, oxidative compounds are important as transcription factors for pathways involved in vascular development and as a first line of defense against invading microorganisms. Clinical studies designed to test the effect of antioxidants on the development of ROP have not yielded clear-cut results or have been associated with toxicity to the overall health of the preterm infant. In this chapter, we will review the role of ROS in the developing preterm infant and examine evidence from clinical studies and laboratory models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Katz ML, Robison WG Jr (1988) Autoxidative damage to the retina: potential role in retinopathy of prematurity. Birth Defects Orig Artic Ser 24:237–248

    PubMed  CAS  Google Scholar 

  2. Penn JS (1990) Oxygen-induced retinopathy in the rat: possible contribution of peroxidation reactions. Doc Ophthalmol 74:179–186

    Article  PubMed  CAS  Google Scholar 

  3. Phelps DL, Rosenbaum AL (1979) Vitamin E in kitten oxygen-induced retinopathy. II. Blockage of vitreal neovascularization. Arch Ophthalmol 97:1522–1526

    Article  PubMed  CAS  Google Scholar 

  4. Penn JS, Tolman BL, Lowery LA (1993) Variable oxygen exposure causes preretinal neovascularisation in the newborn rat. Invest Ophthalmol Vis Sci 34:576–585

    PubMed  CAS  Google Scholar 

  5. Ward JPT (2008) Oxygen sensors in context. Biochim Biophys Acta 1777(1):1–14

    Article  PubMed  CAS  Google Scholar 

  6. O’Brien JR, Usher RH, Maughan GB (1966) Causes of birth asphyxia and trauma. Can Med Assoc J 94(21):1077

    PubMed  Google Scholar 

  7. Stiller R, Mering R, König V, Huch A, Huch R (2002) How well does reflectance pulse oximetry reflect intrapartum fetal acidosis? Am J Obstet Gynecol 186(6):1351–1357

    Article  PubMed  Google Scholar 

  8. Strauss RG (2006) Controversies in the management of the anemia of prematurity using single-donor red blood cell transfusions and/or recombinant human erythropoietin. Transfus Med Rev 20(1):34–44

    Article  PubMed  Google Scholar 

  9. Saito Y, Uppal A, Byfield G, Budd S, Hartnett ME (2008) Activated NAD(P)H oxidase from supplemental oxygen induces neovascularization independent of VEGF in retinopathy of prematurity model. Invest Ophthalmol Vis Sci 49(4):1591–1598

    Article  PubMed  Google Scholar 

  10. Akula JD, Hansen RM, Martinez-Perez ME, Fulton AB (2007) Rod photoreceptor function predicts blood vessel abnormality in retinopathy of prematurity. Invest Ophthalmol Vis Sci 48(9):4351–4359

    Article  PubMed  Google Scholar 

  11. Berkowitz BA, Roberts R, Penn JS, Gradianu M (2007) High-resolution manganese-enhanced MRI of experimental retinopathy of prematurity. Invest Ophthalmol Vis Sci 48(10): 4733–4740

    Article  PubMed  Google Scholar 

  12. Askikainen TM, Heikkilä P, Kaarteenaho-Wiik R, Kinnula VL, Raivio KO (2001) Cell-specific expression of manganese superoxide dismutase protein in the lungs of patients with respiratory distress syndrome, chronic lung disease, or persistent pulmonary hypertension. Pediatr Pulmonol 32:193–200

    Article  Google Scholar 

  13. Rodieck W (1973) Structure of the retinal epithelium and receptor inner segments. W.H. Freeman and Company, San Francisco

    Google Scholar 

  14. Daemen FJ (1973) Vertebrate rod outer segment membranes. Biochim Biophys Acta 300(3):255–288

    PubMed  CAS  Google Scholar 

  15. Reynolds JD, Hardy RJ, Kennedy KA, Spencer R, van Heuven WAJ, Fielder AR (1998) Lack of efficacy of light reduction in preventing retinopathy of prematurity. N Engl J Med 338:1572–1576

    Article  PubMed  CAS  Google Scholar 

  16. Dennery PA (2004) Role of redox in fetal development and neonatal diseases. Antioxid Redox Signal 6(1):147–153

    Article  PubMed  CAS  Google Scholar 

  17. Gibson K, Halliday JL, Kirby DM, Yaplito-Lee J, Thorburn DR, Boneh A (2008) Mitochondrial oxidative phosphorylation disorders presenting in neonates: clinical manifestations and enzymatic and molecular diagnoses. Pediatrics 122(5):1003–1008

    Article  PubMed  Google Scholar 

  18. Fulton AB, Hansen RM, Peterson RA, Vanderveen DK (2001) The rod photoreceptors in retinopathy of prematurity: an electroretinographic study. Arch Ophthalmol 119:499–505

    PubMed  CAS  Google Scholar 

  19. Gardiner TA, Gibson DS, de Gooyer TE, de la Cruz VF, McDonald DM, Stitt AW (2005) Inhibition of tumor necrosis factor-{alpha} improves physiological angiogenesis and reduces pathological neovascularization in ischemic retinopathy. Am J Pathol 166(2):637–644

    Article  PubMed  CAS  Google Scholar 

  20. Ernest JT, Goldstick TK (1984) Retinal oxygen tension and oxygen reactivity in retinopathy of prematurity in kittens. Invest Ophthalmol Vis Sci 25:1129–1134

    PubMed  CAS  Google Scholar 

  21. Zeng G, Taylor SM, McColm JR, Kappas NC, Kearney JB, Williams LH et al (2007) Orientation of endothelial cell division is regulated by VEGF signaling during blood vessel formation. Blood 109(4):1345–1352

    Article  PubMed  CAS  Google Scholar 

  22. Beauchamp MH, Martinez-Bermudez AK, Gobeil F, Marrache AM, Hou X, Speranza G et al (2001) Role of thromboxane in retinal microvascular degeneration in oxygen-induced retinopathy. J Appl Physiol 90:2279–2288

    PubMed  CAS  Google Scholar 

  23. Terry TL (1942) Extreme prematurity and fibroblastic overgrowth of persistent vascular sheath behind each crystalline lens: (1) Preliminary report. Am J Ophthalmol 25:203–204

    Google Scholar 

  24. Palmer EA, Flynn JT, Hardy RJ, Phelps DL, Phillips CL, Schaffer DB et al (1991) Incidence and early course of retinopathy of prematurity. Ophthalmology 98:1628–1640

    PubMed  CAS  Google Scholar 

  25. Semenza GL, Prabhakar NR (2007) HIF-1-dependent respiratory, cardiovascular, and redox responses to chronic intermittent hypoxia. Antioxid Redox Signal 9(9):1391–1396

    Article  PubMed  CAS  Google Scholar 

  26. Cunningham S, Fleck BW, Elton RA, Mclntosh N (1995) Transcutaneous oxygen levels in retinopathy of prematurity. Lancet 346:1464–1465

    Article  PubMed  CAS  Google Scholar 

  27. Ushio-Fukai M, Alexander RW (2004) Reactive oxygen species as mediators of angiogenesis signaling. Role of NAD(P)H oxidase. Mol Cell Biochem V264(1):85–97

    Article  Google Scholar 

  28. Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87(1):245–313

    Article  PubMed  CAS  Google Scholar 

  29. Beauchamp MH, Marrache AM, Hou X, Gobeil F Jr, Bernier SG, Lachapelle P et al (2002) Platelet-activating factor in vasoobliteration of oxygen-induced retinopathy. Invest Ophthalmol Vis Sci 43(10):3327–3337

    PubMed  Google Scholar 

  30. Saugstad OD, Ramji S, Soll RF, Vento M (2008) Resuscitation of newborn infants with 21% or 100% oxygen: an updated systematic review and meta-analysis. Neonatology 94(3):176–182

    Article  PubMed  CAS  Google Scholar 

  31. Najarian T, Hardy P, Hou X, Lachapelle J, Doke A, Gobeil F Jr et al (2000) Preservation of neural function in the perinate by high PGE2 levels acting via EP2 receptors. J Appl Physiol 89(2):777–784

    PubMed  CAS  Google Scholar 

  32. Buhimschi IA, Buhimschi CS, Pupkin M, Weiner CP (2003) Beneficial impact of term labor: nonenzymatic antioxidant reserve in the human fetus. Am J Obstet Gynecol 189(1):181–188

    Article  PubMed  Google Scholar 

  33. Sanchez-Alvarez R, Almeida A, Medina JM (2002) Oxidative stress in preterm rat brain is due to mitochondrial dysfunction (article). Pediatr Res 51(1):34–39

    Article  PubMed  CAS  Google Scholar 

  34. Birch EE, Birch DG, Hoffman DR, Uauy R (1992) Dietary essential fatty acid supply and visual acuity development. Invest Ophthalmol Vis Sci 33(11):3242–3253

    PubMed  CAS  Google Scholar 

  35. Ates O, Alp HH, Caner I, Yildirim A, Tastekin A, Kocer I et al (2009) Oxidative DNA damage in retinopathy of prematurity. Eur J Ophthalmol 19(1):80–85

    PubMed  CAS  Google Scholar 

  36. Weinberger B, Anwar M, Henien S, Sosnovsky A, Hiatt M, Jochnowitz N et al (2004) Association of lipid peroxidation with antenatal betamethasone and oxygen radial disorders in preterm infants. Biol Neonate 85(2):121–127

    Article  PubMed  CAS  Google Scholar 

  37. Tsukahara H, Jiang MZ, Ohta N, Sato S, Tamura S, Hiraoka M et al (2004) Oxidative stress in neonates: evaluation using specific biomarkers. Life Sci 75(8):933–938

    Article  PubMed  CAS  Google Scholar 

  38. Vento M, Aguar M, Escobar J, Arduini A, Escrig R, Brugada M et al (2009) Antenatal steroids and antioxidant enzyme activity in preterm infants: influence of gender and timing. Antioxid Redox Signal 11(12):2945–2955

    Article  PubMed  CAS  Google Scholar 

  39. Verhaeghe J, van Bree R, Van Herck E (2009) Oxidative stress after antenatal betamethasone: acute downregulation of glutathione peroxidase-3. Early Hum Dev 85(12):767–771

    Article  PubMed  CAS  Google Scholar 

  40. Cervantes-Munguía R, Espinosa-López L, Gómez-Contreras P, Hernández-Flores G, Domínguez-Rodríguez J, Bravo-Cuéllar A (2006) Retinopathy of prematurity and oxidative stress. An Pediatr (Barc) 64(2):126–131

    Article  Google Scholar 

  41. Weinberger B, Nisar S, Anwar M, Ostfeld B, Hegyi T (2006) Lipid peroxidation in cord blood and neonatal outcome. Pediatr Int 48(5):479–483

    Article  PubMed  CAS  Google Scholar 

  42. Winterbourn CC, Chan T, Buss H, Inder TE, Mogridge N, Darlow BA (2000) Protein carbonyls and lipid peroxidation products as oxidation markers in preterm infant plasma: associations with chronic lung disease and retinopathy and effects of selenium supplementation. Pediatr Res 48(1):84–90

    Article  PubMed  CAS  Google Scholar 

  43. Buonocore G, Perrone S, Bracci R (2001) Free radicals and brain damage in the newborn. Biol Neonate 79(3–4):180–186

    PubMed  CAS  Google Scholar 

  44. Papp A, Németh I, Pelle Z (1993) Retrospective biochemical study of the preventive property of antioxidants in retinopathy of prematurity. Orv Hetil 134(19):1021–1026

    PubMed  CAS  Google Scholar 

  45. Papp A, Nqmeth I, Karg E, Papp E (1999) Glutathione status in retinopathy of prematurity. Free Radic Biol Med 27(7–8):738–743

    Article  PubMed  CAS  Google Scholar 

  46. Rogers S, Witz G, Anwar M, Hiatt M, Hegyi T (2000) Antioxidant capacity and oxygen radical diseases in the preterm newborn. Arch Pediatr Adolesc Med 154(6):544–548

    PubMed  CAS  Google Scholar 

  47. Saugstad OD (2005) Oxidative stress in the newborn—a 30-year perspective. Biol Neonate 88(3):228–236

    Article  PubMed  CAS  Google Scholar 

  48. Kermorvant-Duchemin E, Sapieha P, Sirinyan M, Beauchamp M, Checchin D, Hardy P et al (2010) Understanding ischemic retinopathies: emerging concepts from oxygen-induced retinopathy. Doc Ophthalmol 120(1):51–60

    Article  PubMed  Google Scholar 

  49. Sood BG, Madam A, Saha S, Schendel D, Thorsen P, Skogstrand K et al (2010) Perinatal systemic inflammatory response syndrome and retinopathy of prematurity (article). Pediatr Res 67(4):394–400

    Article  PubMed  Google Scholar 

  50. Sakurai E, Anand A, Ambati BK, van Rooijen N, Ambati J (2003) Macrophage depletion inhibits experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 44(8):3578–3585

    Article  PubMed  Google Scholar 

  51. Barnett JM, McCollum GW, Penn JS (2010) Role of cytosolic phospholipase A2 in retinal neovascularization. Invest Ophthalmol Vis Sci 51(2):1136–1142

    Article  PubMed  Google Scholar 

  52. Hardy P, Beauchamp M, Sennlaub F, Gobeil J, Tremblay L, Mwaikambo B et al (2005) New insights into the retinal circulation: inflammatory lipid mediators in ischemic retinopathy. Prostaglandins Leukot Essent Fatty Acids 72(5):301–325

    Article  PubMed  CAS  Google Scholar 

  53. Lambert IH, Pedersen SF, Poulsen KA (2006) Activation of PLA2 isoforms by cell swelling and ischaemia/hypoxia. Acta Physiol (Oxf) 187(1–2):75–85

    Article  CAS  Google Scholar 

  54. Dammann O, Phillips TM, Allred EN, O’Shea TM, Paneth N, Van Marter LJ et al (2001) Mediators of fetal inflammation in extremely low gestational age newborns. Cytokine 13(4):234–239

    Article  PubMed  CAS  Google Scholar 

  55. O’Donovan DJ, Fernandes CJ (2000) Mitochondrial glutathione and oxidative stress: implications for pulmonary oxygen toxicity in premature infants. Mol Genet Metab 71(1–2): 352–358

    Article  PubMed  CAS  Google Scholar 

  56. Gilbert C, Rahi J, Eckstein M, O’Sullivan J, Foster A (1997) Retinopathy of prematurity in middle-income countries. Lancet 350:12–14

    Article  PubMed  CAS  Google Scholar 

  57. Saugstad OD (2006) Oxygen and retinopathy of prematurity. J Perinatol 26(Suppl 1): S46–S50

    PubMed  CAS  Google Scholar 

  58. SUPPORT Study Group of the Eunice Kennedy Shriver NICHD Neonatal Research Network (2010) Target ranges of oxygen saturation in extremely preterm infants. N Engl J Med 362(21):1959–1969

    Article  Google Scholar 

  59. Tin W, Milligan DWA, Pennefather PM, Hey E (2001) Pulse oximetry, severe retinopathy, and outcome at one year in babies of less than 28 weeks gestation. Arch Dis Child Fetal Neonatal Ed 84:106–110

    Article  Google Scholar 

  60. Chow LC, Wright KW, Sola A (2003) Can changes in clinical practice decrease the incidence of severe retinopathy of prematurity in very low birth weight infants? Pediatrics 111: 339–345

    Article  PubMed  Google Scholar 

  61. The STOP-ROP Multicenter Study Group (2000) Supplemental therapeutic oxygen for prethreshold retinopathy of prematurity (STOP-ROP), a randomized, controlled trial. I: primary outcomes. Pediatrics 105(2):295–310

    Article  Google Scholar 

  62. Sears JE, Pietz J, Sonnie C, Dolcini D, Hoppe G (2009) A change in oxygen supplementation can decrease the incidence of retinopathy of prematurity. Ophthalmology 116(3):513–518

    Article  PubMed  Google Scholar 

  63. Wallace DK, Veness-Meehan KA, Miller WC (2007) Incidence of severe retinopathy of prematurity before and after a modest reduction in target oxygen saturation levels. J AAPOS 11(2):170–174

    Article  PubMed  Google Scholar 

  64. Vanderveen DK, Mansfield TA, Eichenwald EC (2006) Lower oxygen saturation alarm limits decrease the severity of retinopathy of prematurity. J AAPOS 10(5):445–448

    Article  PubMed  Google Scholar 

  65. Phelps DL (1988) The role of vitamin E therapy in high-risk neonates. Clin Perinatol 15(4):955–963

    PubMed  CAS  Google Scholar 

  66. Raju TNK, Langenberg P, Bhutani V, Quinn GE (1997) Vitamin E prophylaxis to reduce retinopathy of prematurity: a reappraisal of published trials. J Pediatr 131(6):844–850

    Article  PubMed  CAS  Google Scholar 

  67. Lofqvist C, Andersson E, Sigurdsson J, Engstrom E, Hard AL, Niklasson A et al (2006) Longitudinal postnatal weight and insulin-like growth factor I measurements in the prediction of retinopathy of prematurity. Arch Ophthalmol 124(12):1711–1718

    Article  PubMed  Google Scholar 

  68. Hellstrom A, Hard AL, Engstrom E, Niklasson A, Andersson E, Smith L et al (2009) Early weight gain predicts retinopathy in preterm infants: new, simple, efficient approach to screening. Pediatrics 123(4):e638–e645

    Article  PubMed  Google Scholar 

  69. Smith LEH, Wesolowski E, McLellan A, Kostyk SK, D’Amato R, Sullivan R et al (1994) Oxygen induced retinopathy in the mouse. Invest Ophthalmol Vis Sci 35(1):101–111

    PubMed  CAS  Google Scholar 

  70. Hirano K, Morinobu T, Kim H, Hiroi M, Ban R, Ogawa S et al (2001) Blood transfusion increases radical promoting non-transferrin bound iron in preterm infants. Arch Dis Child Fetal Neonatal Ed 84(3):F188–F193

    Article  PubMed  CAS  Google Scholar 

  71. Bell EF, Strauss RG, Widness JA, Mahoney LT, Mock DM, Seward VJ et al (2005) Randomized trial of liberal versus restrictive guidelines for red blood cell transfusion in preterm infants. Pediatrics 115(6):1685–1691

    Article  PubMed  Google Scholar 

  72. Kirpalani H, Whyte RK, Andersen C, Asztalos EV, Heddle N, Blajchman MA et al (2006) The premature infants in need of transfusion (pint) study: a randomized, controlled trial of a restrictive (LOW) versus liberal (HIGH) transfusion threshold for extremely low birth weight infants. J Pediatr 149(3):301

    Article  PubMed  Google Scholar 

  73. Bracci R, Perrone S, Buonocore G (2001) Red blood cell involvement in fetal/neonatal hypoxia. Biol Neonate 79(3–4):210–212

    PubMed  CAS  Google Scholar 

  74. Lubetzky R, Stolovitch C, Dollberg S, Mimouni FB, Salomon M, Mandel D (2005) Nucleated red blood cells in preterm infants with retinopathy of prematurity. Pediatrics 116(5): e619–e622

    Article  PubMed  Google Scholar 

  75. Aher SM, Ohlsson A (2006) Early versus late erythropoietin for preventing red blood cell transfusion in preterm and/or low birth weight infants. Cochrane Database Syst Rev CD004865(3):1–21

    Google Scholar 

  76. Ohlsson A, Aher SM (2006) Early erythropoietin for preventing red blood cell transfusion in preterm and/or low birth weight infants. Cochrane Database Syst Rev 3:CD004863

    PubMed  CAS  Google Scholar 

  77. Suk KK, Dunbar JA, Liu A, Daher NS, Leng CK, Leng JK et al (2008) Human recombinant erythropoietin and the incidence of retinopathy of prematurity: a multiple regression model. J AAPOS 12(3):233–238

    Article  PubMed  Google Scholar 

  78. Brown MS, Baron AE, France EK, Hamman RF (2006) Association between higher cumulative doses of recombinant erythropoietin and risk for retinopathy of prematurity. J AAPOS 10(2):143–149

    Article  PubMed  Google Scholar 

  79. Gao G, Li Y, Zhang D, Gee S, Crosson C, Ma J (2001) Unbalanced expression of VEGF and PEDF in ischemia-induced retinal neovascularization. FEBS Lett 489(2–3):270–276

    Article  PubMed  CAS  Google Scholar 

  80. McLeod DS, Brownstein R, Lutty GA (1996) Vaso-obliteration in the canine model of ­oxygen-induced retinopathy. Invest Ophthalmol Vis Sci 37:300–311

    PubMed  CAS  Google Scholar 

  81. McLeod DS, Crone SN, Lutty GA (1996) Vasoproliferation in the neonatal dog model of oxygen-induced retinopathy. Invest Ophthalmol Vis Sci 37(7):1322–1333

    PubMed  CAS  Google Scholar 

  82. Phelps DL (1990) Oxygen and developmental retinal capillary remodelling in the kitten. Invest Ophthalmol Vis Sci 31:2194–2200

    PubMed  CAS  Google Scholar 

  83. Penn JS, Henry MM, Tolman BL (1994) Exposure to alternating hypoxia and hyperoxia causes severe proliferative retinopathy in the newborn rat. Pediatr Res 36:724–731

    Article  PubMed  CAS  Google Scholar 

  84. Saito Y, Geisen P, Uppal A, Hartnett ME (2007) Inhibition of NAD(P)H oxidase reduces apoptosis and avascular retina in an animal model of retinopathy of prematurity. Mol Vis 13:840–853

    PubMed  CAS  Google Scholar 

  85. Sapieha P, Sirinyan M, Hamel D, Zaniolo K, Joyal JS, Cho JH et al (2008) The succinate receptor GPR91 in neurons has a major role in retinal angiogenesis. Nat Med 14(10): 1067–1076

    Article  PubMed  CAS  Google Scholar 

  86. Armstrong D, Ueda T, Aljeda A, Browne R, Fukuda S, Spengler R et al (1998) Lipid hydroperoxide stimulates retinal neovascularization in rabbit retina through expression of TNF-alpha, VEGF, and PDGF. Angiogenesis 2:93–104

    Article  PubMed  CAS  Google Scholar 

  87. Gardiner TA, Gibson DS, de Gooyer TE, de la Cruz VF, McDonald DM, Stitt AW (2005) Inhibition of tumor necrosis factor-alpha improves physiological angiogenesis and reduces pathological neovascularization in ischemic retinopathy. Am J Pathol 166(2):637–644

    Article  PubMed  CAS  Google Scholar 

  88. Armstrong D, Ueda T, Ueda T, Aljada A, Browne R, Fukuda S et al (1998) Lipid hydroperoxide stimulates retinal neovascularization in rabbit retina through expression of tumor necrosis factor-alpha, vascular endothelial growth factor and platelet-derived growth factor. Angiogenesis 2(1):93–104

    Article  PubMed  CAS  Google Scholar 

  89. Iruela-Arispe ML, Davis GE (2009) Cellular and molecular mechanisms of vascular lumen formation. Dev Cell 16(2):222–231

    Article  PubMed  CAS  Google Scholar 

  90. Guaiquil V, Swendeman S, Yoshida T, Chavala S, Campochiaro P, Blobel CP (2009) ADAM9 is involved in pathological retinal neovascularization. Mol Cell Biol 29(10):2694–2703

    Article  PubMed  CAS  Google Scholar 

  91. Rey S, Semenza GL (2010) Hypoxia-inducible factor-1-dependent mechanisms of vascularization and vascular remodelling. Cardiovasc Res 86(2):236–242

    Article  PubMed  CAS  Google Scholar 

  92. Brafman A, Mett I, Shafir M, Gottlieb H, Damari G, Gozlan-Kelner S et al (2004) Inhibition of oxygen-induced retinopathy in RTP801-deficient mice. Invest Ophthalmol Vis Sci 45(10):3796–3805

    Article  PubMed  Google Scholar 

  93. Garrett TA, Van Buul JD, Burridge K (2007) VEGF-induced Rac1 activation in endothelial cells is regulated by the guanine nucleotide exchange factor Vav2. Exp Cell Res 313(15): 3285–3297

    Article  PubMed  CAS  Google Scholar 

  94. Monaghan-Benson E, Hartmann J, Vendrov AE, Budd S, Byfield G, Parker A et al (2010) The role of VEGF-induced activation of NADPH oxidase in choroidal endothelial cells and choroidal neovascularization. Am J Pathol 177(4):2091–2102

    Article  PubMed  CAS  Google Scholar 

  95. Mettu P, Agron E, Samtani S, Chew EY, Wong WT (2010) Genotype-phenotype correlation in ocular von Hippel-Lindau (VHL) disease: the effect of missense mutation position on ocular VHL phenotype. Invest Ophthalmol Vis Sci 51(9):4464–4470

    Article  PubMed  Google Scholar 

  96. Sears JE, Hoppe G, Ebrahem Q, Anand-Apte B (2008) Prolyl hydroxylase inhibition during hyperoxia prevents oxygen-induced retinopathy. Proc Natl Acad Sci 105(50):19898–19903

    Article  PubMed  CAS  Google Scholar 

  97. Byfield GE, Budd S, Hartnett ME (2009) Supplemental oxygen can cause intravitreous neovascularization through JAK/STAT pathways in a model of retinopathy of prematurity. Invest Ophthalmol Vis Sci 50(7):3360–3365

    Google Scholar 

  98. Al Shabrawey M, Bartoli M, El Remessy AB, Platt DH, Matragoon S, Behzadian MA et al (2005) Inhibition of NAD(P)H oxidase activity blocks vascular endothelial growth factor overexpression and neovascularization during ischemic retinopathy. Am J Pathol 167(2):599–607

    Article  PubMed  CAS  Google Scholar 

  99. Tawfik A, Sanders T, Kahook K, Akeel S, Elmarakby A, Al Shabrawey M (2009) Suppression of retinal peroxisome proliferator-activated receptor gamma in experimental diabetes and oxygen-induced retinopathy: role of NADPH oxidase. Invest Ophthalmol Vis Sci 50(2): 878–884

    Article  PubMed  Google Scholar 

  100. Tang Y, Scheef EA, Wang S, Sorenson CM, Marcus CB, Jefcoate CR et al (2009) CYP1B1 expression promotes the proangiogenic phenotype of endothelium through decreased intracellular oxidative stress and thrombospondin-2 expression. Blood 113(3):744–754

    Article  PubMed  CAS  Google Scholar 

  101. Caro AA, Cederbaum AI (2006) Role of cytochrome P450 in phospholipase A2- and arachidonic acid-mediated cytotoxicity. Free Radic Biol Med 40(3):364–375

    Article  PubMed  CAS  Google Scholar 

  102. Lee JJ, Natsuizaka M, Ohashi S, Wong GS, Takaoka M, Michaylira CZ et al (2010) Hypoxia activates the cyclooxygenase-2-prostaglandin E synthase axis. Carcinogenesis 31(3): 427–434

    Article  PubMed  CAS  Google Scholar 

  103. Chemtob S, Hardy P, Abran D, Li DY, Peri K, Cuzzani O et al (1995) Peroxide-cyclooxygenase interactions in postasphyxial changes in retinal and choroidal hemodynamics. J Appl Physiol 78(6):2039–2046

    PubMed  CAS  Google Scholar 

  104. Wilkinson-Berka JL, Alousis NS, Kelly DJ, Gilbert RE (2003) COX-2 inhibition and retinal angiogenesis in a mouse model of retinopathy of prematurity. Invest Ophthalmol Vis Sci 44(3):974–979

    Article  PubMed  Google Scholar 

  105. Yanni SE, Barnett JM, Clark ML, Penn JS (2009) The role of PGE2 receptor EP4 in pathologic ocular angiogenesis. Invest Ophthalmol Vis Sci 50(11):5479–5486

    Article  PubMed  Google Scholar 

  106. Beauchamp MH, Sennlaub F, Speranza G, Gobeil J, Checchin D, Kermorvant-Duchemin E et al (2004) Redox-dependent effects of nitric oxide on microvascular integrity in oxygen-induced retinopathy. Free Radic Biol Med 37(11):1885–1894

    Article  PubMed  CAS  Google Scholar 

  107. Brooks SE, Gu X, Samuel S, Marcus DM, Bartoli M, Huang PL et al (2001) Reduced severity of oxygen-induced retinopathy in eNOS-deficient mice. Invest Ophthalmol Vis Sci 42: 222–228

    PubMed  CAS  Google Scholar 

  108. Gu X, El Remessy AB, Brooks SE, Al Shabrawey M, Tsai NT, Caldwell RB (2003) Hyperoxia induces retinal vascular endothelial cell apoptosis through formation of peroxynitrite. Am J Physiol Cell Physiol 285(3):C546–C554

    PubMed  CAS  Google Scholar 

  109. Geisen P, Peterson L, Martiniuk D, Uppal A, Saito Y, Hartnett M (2008) Neutralizing antibody to VEGF reduces intravitreous neovascularization and does not interfere with vascularization of avascular retina in an ROP model. Mol Vis 14:345–357

    PubMed  CAS  Google Scholar 

  110. Hartnett ME, Martiniuk DJ, Byfield GE, Geisen P, Zeng G, Bautch VL (2008) Neutralizing VEGF decreases tortuosity and alters endothelial cell division orientation in arterioles and veins in rat model of ROP: relevance to plus disease. Invest Ophthalmol Vis Sci 49(7): 3107–3114

    Article  PubMed  Google Scholar 

  111. Goldenberg-Cohen N, Dadon-Bar-El S, Hasanreisoglu M, Avraham-Lubin BC, Dratviman-Storobinsky O, Cohen Y et al (2009) Possible neuroprotective effect of brimonidine in a mouse model of ischaemic optic neuropathy. Clin Experiment Ophthalmol 37(7):718–729

    Article  PubMed  Google Scholar 

  112. Penn JS (1992) Oxygen-induced retinopathy in the rat. Vitamins C and E as potential therapies. Invest Ophthalmol Vis Sci 33:1836–1845

    PubMed  CAS  Google Scholar 

  113. Penn JS, Tolman BL, Bullard LE (1997) Effect of a water-soluble vitamin E analog, Trolox C, on retinal vascular development in an animal model of retinopathy of prematurity. Free Radic Biol Med 22(6):977–984

    Article  PubMed  CAS  Google Scholar 

  114. Niesman MR, Johnson KA, Penn JS (1997) Therapeutic effect of liposomal superoxide dismutase in an animal model of retinopathy of prematurity. Neurochem Res 22(5):597–605

    Article  PubMed  CAS  Google Scholar 

  115. Flynn JT (1987) Retinopathy of prematurity. Pediatr Clin North Am 34(6):1487–1516

    PubMed  CAS  Google Scholar 

  116. Aruoma OI, Halliwell B, Hoey BM, Butler J (1989) The antioxidant action of N-acetylcysteine—its reaction with hydrogen-peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radic Biol Med 6(6):593–597

    Article  PubMed  CAS  Google Scholar 

  117. Benrahmoune M, Therond P, Abedinzadeh Z (2000) The reaction of superoxide radical with N-acetylcysteine. Free Radic Biol Med 29(8):775–782

    Article  PubMed  CAS  Google Scholar 

  118. Grinberg L, Fibach E, Amer J, Atlas D (2005) N-acetylcysteine amide, a novel cell-permeating thiol, restores cellular glutathione and protects human red blood cells from oxidative stress. Free Radic Biol Med 38(1):136–145

    Article  PubMed  CAS  Google Scholar 

  119. Fox ES, Brower JS, Bellezzo JM, Leingang KA (1997) N-acetylcysteine and alpha-tocopherol reverse the inflammatory response in activated rat Kupffer cells. J Immunol 158(11): 5418–5423

    PubMed  CAS  Google Scholar 

  120. Wuyts WA, Vanaudenaerde BM, Dupont LJ, Demedts MG, Verleden GM (2003) N-acetylcysteine reduces chemokine release via inhibition of p38 MAPK in human airway smooth muscle cells. Eur Respir J 22(1):43–49

    Article  PubMed  CAS  Google Scholar 

  121. Rocksen D, Lilliehook B, Larsson R, Johansson T, Bucht A (2000) Differential anti-inflammatory and anti-oxidative effects of dexamethasone and N-acetylcysteine in endotoxin-induced lung inflammation. Clin Exp Immunol 122(2):249–256

    Article  PubMed  CAS  Google Scholar 

  122. Koch T, Heller S, Heissler S, Breil I, Schiefer HG, VanAckern K et al (1996) Effects of N-acetylcysteine on bacterial clearance. Eur J Clin Invest 26(10):884–892

    Article  PubMed  CAS  Google Scholar 

  123. Blackwell TS, Blackwell TR, Holden EP, Christman BW, Christman JW (1996) In vivo antioxidant treatment suppresses nuclear factor-kappa B activation and neutrophilic lung inflammation. J Immunol 157(4):1630–1637

    PubMed  CAS  Google Scholar 

  124. Soghier LM, Brion LP (2006) Cysteine, cystine or N-acetylcysteine supplementation in parenterally fed neonates. Cochrane Database Syst Rev (4):CD004869

    Google Scholar 

  125. Sadowska AM, Keenoy B, De Backer WA (2007) Antioxidant and anti-inflammatory efficacy of NAC in the treatment of COPD: discordant in vitro and in vivo dose-effects: a review. Pulm Pharmacol Ther 20(1):9–22

    Article  PubMed  CAS  Google Scholar 

  126. Halligan EP, Lowes D, Mistry N, Dove R, Cooke M, Evans M et al (2007) A comparison of the gene expression profiles of CRL-1807 colonocytes exposed to endogenous AAPH-generated peroxides and exogenous peroxides from heated oil. Redox Rep 12(1):86–90

    Article  PubMed  CAS  Google Scholar 

  127. Yildiz M, Karkucak M, Yakut T, Gorukmez O, Ozmen A (2010) Lack of association of genetic polymorphisms of angiotensin-converting enzyme gene I/D and glutathione-S-transferase enzyme T1 and M1 with retinopathy of prematures. Genet Mol Res 94(4):2131–2139

    Google Scholar 

  128. Bizzarro MJ, Hussain N, Jonsson B, Feng R, Ment LR, Gruen JR et al (2006) Genetic susceptibility to retinopathy of prematurity. Pediatrics 118(5):1858–1863

    Article  PubMed  Google Scholar 

  129. van Wijngaarden P, Coster DJ, Brereton HM, Gibbins IL, Williams KA (2005) Strain-dependent differences in oxygen-induced retinopathy in the inbred rat. Invest Ophthalmol Vis Sci 46(4):1445–1452

    Article  PubMed  Google Scholar 

  130. Hutcheson KA, Paluru PC, Bernstein SL, Koh J, Rappaport EF, Leach RA et al (2005) Norrie disease gene sequence variants in an ethnically diverse population with retinopathy of prematurity. Mol Vis 11:501–508

    PubMed  CAS  Google Scholar 

  131. Dickinson JL, Sale MM, Passmore A, FitzGerald LM, Wheatley CM, Burdon KP et al (2006) Mutations in the NDP gene: contribution to Norrie disease, familial exudative vitreoretinopathy and retinopathy of prematurity. Clin Experiment Ophthalmol 34(7):682–688

    Article  PubMed  Google Scholar 

  132. Shastry BS (2007) Assessment of the contribution of insulin-like growth factor I receptor 3174 G– > A polymorphism to the progression of advanced retinopathy of prematurity. Eur J Ophthalmol 17(6):950–953

    PubMed  CAS  Google Scholar 

  133. Mohamed S, Schaa K, Cooper ME, Ahrens E, Alvarado A, Colaizy T et al (2009) Genetic contributions to the development of retinopathy of prematurity. Pediatr Res 65(2):193–197

    Article  PubMed  CAS  Google Scholar 

  134. Vannay A, Dunai G, Banyansz I, Szabo M, Vamos R, Trezl A et al (2005) Association of genetic polymorphisms of vascular endothelial growth factor and risk for proliferative retinopathy of prematurity. Pediatr Res 57(3):396–398

    Article  PubMed  CAS  Google Scholar 

  135. MacDonald MLE, Goldberg YP, MacFarlane J, Samuels ME, Trese MT, Shastry BS (2005) Genetic variants of frizzled-4 gene in familial exudative vitreoretinopathy and advanced retinopathy of prematurity. Clin Genet 67(4):363–366

    Article  PubMed  CAS  Google Scholar 

  136. Ahola T, Lapatto R, Raivio KO, Selander B, Stigson L, Jonsson B et al (2003) N-acetylcysteine does not prevent bronchopulmonary dysplasia in immature infants: a randomized controlled trial. J Pediatr 143(6):713–719

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Elizabeth Hartnett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hartnett, M.E., DeAngelis, M.M. (2012). The Role of Reactive Oxygen Species and Oxidative Signaling in Retinopathy of Prematurity. In: Stratton, R., Hauswirth, W., Gardner, T. (eds) Studies on Retinal and Choroidal Disorders. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press. https://doi.org/10.1007/978-1-61779-606-7_28

Download citation

Publish with us

Policies and ethics