Skip to main content

Advertisement

Log in

Understanding ischemic retinopathies: emerging concepts from oxygen-induced retinopathy

  • REVIEW ARTICLE
  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

Ischemic retinopathies, such as retinopathy of prematurity and diabetic retinopathy are characterized by an initial microvascular degeneration, followed by an abnormal hypoxia-induced neovascularization. Oxygen-induced retinopathy (OIR) is a well-established in vivo model of ischemic retinopathies, which, although the triggering insult varies, all share a common end result of capillary loss. Understanding the mechanisms of normal retinal vascular development as well as the pathophysiological processes leading to the primary vascular loss is the key to develop treatments to prevent the sight-threatening neovascularization associated with human ischemic retinopathies. The importance of oxygen-dependant vascular endothelial growth factor in the pathophysiology of both phases of OIR has long been recognized. However, recent studies point out that OIR is a multifactorial disease, resulting from additive effects of an unbalanced expression of pro- and anti-angiogenic factors, interrelated with protective effects of nutritional factors and cytotoxic effects of oxidative and nitro-oxidative stress-dependant mediators. This review summarizes the most recent aspects of the research on OIR conducted in our laboratory and others, with a particular focus on the role of new mediators of nitro-oxidative stress, the trans-arachidonic acids, in microvascular degeneration, and on a novel pathway of metabolic signaling where hypoxia-driven succinate, via receptor GPR91, governs normal and pathological retinal angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AA:

Arachidonic acid

DHA:

Docosahexaenoic acid

EPO:

Erythropoietin

HIF:

Hypoxia-induced factor

IGF-1:

Insulin-like growth factor-1

IGFBP-3:

Insulin-like growth factor binding protein-3

MAPK:

Mitogen-activated protein kinase

OIR:

Oxygen-induced retinopathy

NO:

Nitric oxide

PUFA:

Poly-unsaturated fatty acids

RGCs:

Retinal ganglion cells

ROP:

Retinopathy of prematurity

TAA:

Trans-arachidonic acids

TSP-1:

Thrombospondin-1

VEGF:

Vascular endothelial growth factor

References

  1. Penn JS, Tolman BL, Lowery LA (1993) Variable oxygen exposure causes preretinal neovascularization in the newborn rat. Invest Ophthalmol Vis Sci 34:576–585

    PubMed  CAS  Google Scholar 

  2. Penn JS, Tolman BL, Henry MM (1994) Oxygen-induced retinopathy in the rat: relationship of retinal nonperfusion to subsequent neovascularization. Invest Ophthalmol Vis Sci 35:3429–3435

    PubMed  CAS  Google Scholar 

  3. Smith LE, Wesolowski E, McLellan A, Kostyk SK, D’Amato R, Sullivan R, D’Amore PA (1994) Oxygen-induced retinopathy in the mouse. Invest Ophthalmol Vis Sci 35:101–111

    PubMed  CAS  Google Scholar 

  4. Chan-Ling T, Tout S, Hollander H, Stone J (1992) Vascular changes and their mechanisms in the feline model of retinopathy of prematurity. Invest Ophthalmol Vis Sci 33:2128–2147

    PubMed  CAS  Google Scholar 

  5. McLeod DS, D’Anna SA, Lutty GA (1998) Clinical and histopathologic features of canine oxygen-induced proliferative retinopathy. Invest Ophthalmol Vis Sci 39:1918–1932

    PubMed  CAS  Google Scholar 

  6. Gyllensten LJ, Hellstrom BE (1954) Experimental approach to the pathogenesis of retrolental fibroplasia. I. Changes of the eye induced by exposure of newborn mice to concentrated oxygen. Acta Paediatr 43:131–148

    Article  CAS  Google Scholar 

  7. Alon T, Hemo I, Itin A, Pe’er J, Stone J, Keshet E (1995) Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat Med 1:1024–1028

    Article  PubMed  CAS  Google Scholar 

  8. Pierce EA, Foley ED, Smith LE (1996) Regulation of vascular endothelial growth factor by oxygen in a model of retinopathy of prematurity [erratum 1997, 115:427]. Arch Ophthalmol 114:1219–1228

    PubMed  CAS  Google Scholar 

  9. Stone J, Chan-Ling T, Pe’er J, Itin A, Gnessin H, Keshet E (1996) Roles of vascular endothelial growth factor and astrocyte degeneration in the genesis of retinopathy of prematurity. Invest Ophthalmol Vis Sci 37:290–299

    PubMed  CAS  Google Scholar 

  10. Simons BD, Flynn JT (1999) Retinopathy of prematurity and associated factors. Int Ophthalmol Clin 39:29–48

    Article  PubMed  CAS  Google Scholar 

  11. Liu JP, Baker J, Perkins AS, Robertson EJ, Efstratiadis A (1993) Mice carrying null mutations of the genes encoding insulin-like growth factor I (IGF-1) and type 1 IGF receptor (IGF-1R). Cell 75:59–72

    PubMed  CAS  Google Scholar 

  12. Lassarre C, Hardouin S, Daffos F, Forestier F, Frankenne F, Binoux M (1991) Serum insulin-like growth factors and insulin-like growth factor binding proteins in the human fetus. Relationships with growth in normal subjects and in subjects with intrauterine growth retardation. Pediatr Res 29:219–225

    Article  PubMed  CAS  Google Scholar 

  13. Reece EA, Wiznitzer A, Le E, Homko CJ, Behrman H, Spencer EM (1994) The relation between human fetal growth and fetal blood levels of insulin-like growth factors I and II, their binding proteins, and receptors. Obstet Gynecol 84:88–95

    PubMed  CAS  Google Scholar 

  14. Langford K, Nicolaides K, Miell JP (1998) Maternal and fetal insulin-like growth factors and their binding proteins in the second and third trimesters of human pregnancy. Hum Reprod 13:1389–1393

    Article  PubMed  CAS  Google Scholar 

  15. Lineham JD, Smith RM, Dahlenburg GW, King RA, Haslam RR, Stuart MC, Faull L (1986) Circulating insulin-like growth factor I levels in newborn premature and full-term infants followed longitudinally. Early Hum Dev 13:37–46

    Article  PubMed  CAS  Google Scholar 

  16. Hellstrom A, Perruzzi C, Ju M, Engstrom E, Hard AL, Liu JL, Albertsson-Wikland K, Carlsson B, Niklasson A, Sjodell L, LeRoith D, Senger DR, Smith LE (2001) Low IGF-I suppresses VEGF-survival signaling in retinal endothelial cells: direct correlation with clinical retinopathy of prematurity. Proc Natl Acad Sci U S A 98:5804–5808

    Article  PubMed  CAS  Google Scholar 

  17. Hellstrom A, Engstrom E, Hard AL, Albertsson-Wikland K, Carlsson B, Niklasson A, Lofqvist C, Svensson E, Holm S, Ewald U, Holmstrom G, Smith LE (2003) Postnatal serum insulin-like growth factor I deficiency is associated with retinopathy of prematurity and other complications of premature birth. Pediatrics 112:1016–1020

    Article  PubMed  Google Scholar 

  18. Lofqvist C, Andersson E, Sigurdsson J, Engstrom E, Hard AL, Niklasson A, Smith LE, Hellstrom A (2006) Longitudinal postnatal weight and insulin-like growth factor I measurements in the prediction of retinopathy of prematurity. Arch Ophthalmol 124:1711–1718

    Article  PubMed  Google Scholar 

  19. Smith LE, Kopchick JJ, Chen W, Knapp J, Kinose F, Daley D, Foley E, Smith RG, Schaeffer JM (1997) Essential role of growth hormone in ischemia-induced retinal neovascularization. Science 276:1706–1709

    Article  PubMed  CAS  Google Scholar 

  20. Smith LE, Shen W, Perruzzi C, Soker S, Kinose F, Xu X, Robinson G, Driver S, Bischoff J, Zhang B, Schaeffer JM, Senger DR (1999) Regulation of vascular endothelial growth factor-dependent retinal neovascularization by insulin-like growth factor-1 receptor. Nat Med 5:1390–1395

    Article  PubMed  CAS  Google Scholar 

  21. Frystyk J (2004) Free insulin-like growth factors–measurements and relationships to growth hormone secretion and glucose homeostasis. Growth Horm IGF Res 14:337–375

    Article  PubMed  CAS  Google Scholar 

  22. Firth SM, Baxter RC (2002) Cellular actions of the insulin-like growth factor binding proteins. Endocr Rev 23:824–854

    Article  PubMed  CAS  Google Scholar 

  23. Lofqvist C, Chen J, Connor KM, Smith AC, Aderman CM, Liu N, Pintar JE, Ludwig T, Hellstrom A, Smith LE (2007) IGFBP3 suppresses retinopathy through suppression of oxygen-induced vessel loss and promotion of vascular regrowth. Proc Natl Acad Sci U S A 104:10589–10594

    Article  PubMed  CAS  Google Scholar 

  24. Chen J, Smith LE (2007) Retinopathy of prematurity. Angiogenesis 10:133–140

    Article  PubMed  Google Scholar 

  25. Jaquet K, Krause K, Tawakol-Khodai M, Geidel S, Kuck KH (2002) Erythropoietin and VEGF exhibit equal angiogenic potential. Microvasc Res 64:326–333

    Article  PubMed  CAS  Google Scholar 

  26. Ribatti D, Presta M, Vacca A, Ria R, Giuliani R, Dell’Era P, Nico B, Roncali L, Dammacco F (1999) Human erythropoietin induces a pro-angiogenic phenotype in cultured endothelial cells and stimulates neovascularization in vivo. Blood 93:2627–2636

    PubMed  CAS  Google Scholar 

  27. Brines M, Cerami A (2005) Emerging biological roles for erythropoietin in the nervous system. Nat Rev Neurosci 6:484–494

    Article  PubMed  CAS  Google Scholar 

  28. Chen J, Connor KM, Aderman CM, Smith LE (2008) Erythropoietin deficiency decreases vascular stability in mice. J Clin Invest 118:526–533

    PubMed  CAS  Google Scholar 

  29. Chen J, Connor KM, Aderman CM, Willett KL, Aspegren OP, Smith LE (2009) Erythropoietin siRNA suppresses retinal neovascularization in a mouse model of proliferative retinopathy. Invest Ophthalmol Vis Sci. doi:10.1167/iovs.1108-2521

    Google Scholar 

  30. Watanabe D, Suzuma K, Matsui S, Kurimoto M, Kiryu J, Kita M, Suzuma I, Ohashi H, Ojima T, Murakami T, Kobayashi T, Masuda S, Nagao M, Yoshimura N, Takagi H (2005) Erythropoietin as a retinal angiogenic factor in proliferative diabetic retinopathy. N Engl J Med 353:782–792

    Article  PubMed  CAS  Google Scholar 

  31. Katsura Y, Okano T, Matsuno K, Osako M, Kure M, Watanabe T, Iwaki Y, Noritake M, Kosano H, Nishigori H, Matsuoka T (2005) Erythropoietin is highly elevated in vitreous fluid of patients with proliferative diabetic retinopathy. Diabetes Care 28:2252–2254

    Article  PubMed  CAS  Google Scholar 

  32. Suk KK, Dunbar JA, Liu A, Daher NS, Leng CK, Leng JK, Lim P, Weller S, Fayard E (2008) Human recombinant erythropoietin and the incidence of retinopathy of prematurity: a multiple regression model. J AAPOS 12:233–238

    Article  PubMed  Google Scholar 

  33. Arjamaa O, Nikinmaa M (2006) Oxygen-dependent diseases in the retina: role of hypoxia-inducible factors. Exp Eye Res 83:473–483

    Article  PubMed  CAS  Google Scholar 

  34. Sears JE, Hoppe G, Ebrahem Q, Anand-Apte B (2008) Prolyl hydroxylase inhibition during hyperoxia prevents oxygen-induced retinopathy. Proc Natl Acad Sci U S A 105:19898–19903

    Article  PubMed  Google Scholar 

  35. Morita M, Ohneda O, Yamashita T, Takahashi S, Suzuki N, Nakajima O, Kawauchi S, Ema M, Shibahara S, Udono T, Tomita K, Tamai M, Sogawa K, Yamamoto M, Fujii-Kuriyama Y (2003) HLF/HIF-2alpha is a key factor in retinopathy of prematurity in association with erythropoietin. EMBO J 22:1134–1146

    Article  PubMed  CAS  Google Scholar 

  36. Dioum EM, Clarke SL, Ding K, Repa JJ, Garcia JA (2008) HIF-2alpha-haploinsufficient mice have blunted retinal neovascularization due to impaired expression of a proangiogenic gene battery. Invest Ophthalmol Vis Sci 49:2714–2720

    Article  PubMed  Google Scholar 

  37. Stone WL, Farnsworth CC, Dratz EA (1979) A reinvestigation of the fatty acid content of bovine, rat and frog retinal rod outer segments. Exp Eye Res 28:387–397

    Article  PubMed  CAS  Google Scholar 

  38. Fliesler SJ, Anderson RE (1983) Chemistry and metabolism of lipids in the vertebrate retina. Prog Lipid Res 22:79–131

    Article  PubMed  CAS  Google Scholar 

  39. SanGiovanni JP, Chew EY (2005) The role of omega-3 long-chain polyunsaturated fatty acids in health and disease of the retina. Prog Retin Eye Res 24:87–138

    Article  PubMed  CAS  Google Scholar 

  40. Clandinin MT, Chappell JE, Leong S, Heim T, Swyer PR, Chance GW (1980) Intrauterine fatty acid accretion rates in human brain: implications for fatty acid requirements. Early Hum Dev 4:121–129

    Article  PubMed  CAS  Google Scholar 

  41. Martinez M (1992) Tissue levels of polyunsaturated fatty acids during early human development. J Pediatr 120:S129–S138

    Article  PubMed  CAS  Google Scholar 

  42. Krauss-Etschmann S, Shadid R, Campoy C, Hoster E, Demmelmair H, Jimenez M, Gil A, Rivero M, Veszpremi B, Decsi T, Koletzko BV (2007) Effects of fish-oil and folate supplementation of pregnant women on maternal and fetal plasma concentrations of docosahexaenoic acid and eicosapentaenoic acid: a European randomized multicenter trial. Am J Clin Nutr 85:1392–1400

    PubMed  CAS  Google Scholar 

  43. Uauy R, Peirano P, Hoffman D, Mena P, Birch D, Birch E (1996) Role of essential fatty acids in the function of the developing nervous system. Lipids 31:S167–S176

    Article  PubMed  CAS  Google Scholar 

  44. Uauy R, Hoffman DR, Peirano P, Birch DG, Birch EE (2001) Essential fatty acids in visual and brain development. Lipids 36:885–895

    Article  PubMed  CAS  Google Scholar 

  45. Connor KM, SanGiovanni JP, Lofqvist C, Aderman CM, Chen J, Higuchi A, Hong S, Pravda EA, Majchrzak S, Carper D, Hellstrom A, Kang JX, Chew EY, Salem N Jr, Serhan CN, Smith LE (2007) Increased dietary intake of omega-3-polyunsaturated fatty acids reduces pathological retinal angiogenesis. Nat Med 13:868–873

    Article  PubMed  CAS  Google Scholar 

  46. Penn JS, Tolman BL, Bullard LE (1997) Effect of a water-soluble vitamin E analog, trolox C, on retinal vascular development in an animal model of retinopathy of prematurity. Free Radic Biol Med 22:977–984

    Article  PubMed  CAS  Google Scholar 

  47. Niesman MR, Johnson KA, Penn JS (1997) Therapeutic effect of liposomal superoxide dismutase in an animal model of retinopathy of prematurity. Neurochem Res 22:597–605

    Article  PubMed  CAS  Google Scholar 

  48. Spierer A, Rabinowitz R, Pri-Chen S, Rosner M (2005) An increase in superoxide dismutase ameliorates oxygen-induced retinopathy in transgenic mice. Eye 19:86–91

    Article  PubMed  CAS  Google Scholar 

  49. Ando A, Yang A, Mori K, Yamada H, Yamada E, Takahashi K, Saikia J, Kim M, Melia M, Fishman M, Huang P, Campochiaro PA (2002) Nitric oxide is proangiogenic in the retina and choroid. J Cell Physiol 191:116–124

    Article  PubMed  CAS  Google Scholar 

  50. Beauchamp MH, Sennlaub F, Speranza G, Gobeil F Jr, Checchin D, Kermorvant-Duchemin E, Abran D, Hardy P, Lachapelle P, Varma DR, Chemtob S (2004) Redox-dependent effects of nitric oxide on microvascular integrity in oxygen-induced retinopathy. Free Radic Biol Med 37:1885–1894

    Article  PubMed  CAS  Google Scholar 

  51. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A 87:1620–1624

    Article  PubMed  CAS  Google Scholar 

  52. Kirsch M, Korth HG, Sustmann R, de Groot H (2002) The pathobiochemistry of nitrogen dioxide. Biol Chem 383:389–399

    Article  PubMed  CAS  Google Scholar 

  53. Gu X, El-Remessy AB, Brooks SE, Al-Shabrawey M, Tsai NT, Caldwell RB (2003) Hyperoxia induces retinal vascular endothelial cell apoptosis through formation of peroxynitrite. Am J Physiol Cell Physiol 285:C546–C554

    PubMed  CAS  Google Scholar 

  54. Holmes JM, Duffner LA, Kappil JC (1994) The effect of raised inspired carbon dioxide on developing rat retinal vasculature exposed to elevated oxygen. Curr Eye Res 13:779–782

    Article  PubMed  CAS  Google Scholar 

  55. Holmes JM, Zhang S, Leske DA, Lanier WL (1997) The effect of carbon dioxide on oxygen-induced retinopathy in the neonatal rat. Curr Eye Res 16:725–732

    Article  PubMed  CAS  Google Scholar 

  56. Checchin D, Hou X, Hardy P, Abran D, Najarian T, Beauchamp MH, Bernier SG, Gobeil F Jr, Quiniou C, Varma DR, Chemtob S (2002) PGE2-mediated eNOS induction in prolonged hypercapnia. Invest Ophthalmol Vis Sci 43:1558–1566

    PubMed  Google Scholar 

  57. Checchin D, Sennlaub F, Sirinyan M, Brault S, Zhu T, Kermorvant-Duchemin E, Hardy P, Balazy M, Chemtob S (2006) Hypercapnia prevents neovascularization via nitrative stress. Free Radic Biol Med 40:543–553

    Article  PubMed  CAS  Google Scholar 

  58. Brooks SE, Gu X, Samuel S, Marcus DM, Bartoli M, Huang PL, Caldwell RB (2001) Reduced severity of oxygen-induced retinopathy in eNOS-deficient mice. Invest Ophthalmol Vis Sci 42:222–228

    PubMed  CAS  Google Scholar 

  59. Balazy M, Poff CD (2004) Biological nitration of arachidonic acid. Curr Vasc Pharmacol 2:81–93

    Article  PubMed  CAS  Google Scholar 

  60. Jiang H, Kruger N, Lahiri DR, Wang D, Vatele JM, Balazy M (1999) Nitrogen dioxide induces cis–trans-isomerization of arachidonic acid within cellular phospholipids. Detection of trans-arachidonic acids in vivo. J Biol Chem 274:16235–16241

    Article  PubMed  CAS  Google Scholar 

  61. Zghibeh CM, Raj Gopal V, Poff CD, Falck JR, Balazy M (2004) Determination of trans-arachidonic acid isomers in human blood plasma. Anal Biochem 332:137–144

    Article  PubMed  CAS  Google Scholar 

  62. Balazy M (2000) Trans-arachidonic acids: new mediators of inflammation. J Physiol Pharmacol 51:597–607

    PubMed  CAS  Google Scholar 

  63. Landry DW, Oliver JA (2001) The pathogenesis of vasodilatory shock. N Engl J Med 345:588–595

    Article  PubMed  CAS  Google Scholar 

  64. Vincent JL, Zhang H, Szabo C, Preiser JC (2000) Effects of nitric oxide in septic shock. Am J Respir Crit Care Med 161:1781–1785

    PubMed  CAS  Google Scholar 

  65. Kermorvant-Duchemin E, Sennlaub F, Sirinyan M, Brault S, Andelfinger G, Kooli A, Germain S, Ong H, d’Orleans-Juste P, Gobeil F Jr, Zhu T, Boisvert C, Hardy P, Jain K, Falck JR, Balazy M, Chemtob S (2005) Trans-arachidonic acids generated during nitrative stress induce a thrombospondin-1-dependent microvascular degeneration. Nat Med 11:1339–1345

    Article  PubMed  CAS  Google Scholar 

  66. Dawson DW, Pearce SF, Zhong R, Silverstein RL, Frazier WA, Bouck NP (1997) CD36 mediates the in vitro inhibitory effects of thrombospondin-1 on endothelial cells. J Cell Biol 138:707–717

    Article  PubMed  CAS  Google Scholar 

  67. Jimenez B, Volpert OV, Crawford SE, Febbraio M, Silverstein RL, Bouck N (2000) Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nat Med 6:41–48

    Article  PubMed  CAS  Google Scholar 

  68. Wang S, Wu Z, Sorenson CM, Lawler J, Sheibani N (2003) Thrombospondin-1-deficient mice exhibit increased vascular density during retinal vascular development and are less sensitive to hyperoxia-mediated vessel obliteration. Dev Dyn 228:630–642

    Article  PubMed  CAS  Google Scholar 

  69. Cai W, Rook SL, Jiang ZY, Takahara N, Aiello LP (2000) Mechanisms of hepatocyte growth factor-induced retinal endothelial cell migration and growth. Invest Ophthalmol Vis Sci 41:1885–1893

    PubMed  CAS  Google Scholar 

  70. D’Amore PA (1994) Mechanisms of retinal and choroidal neovascularization. Invest Ophthalmol Vis Sci 35:3974–3979

    PubMed  Google Scholar 

  71. Enge M, Bjarnegard M, Gerhardt H, Gustafsson E, Kalen M, Asker N, Hammes HP, Shani M, Fassler R, Betsholtz C (2002) Endothelium-specific platelet-derived growth factor-B ablation mimics diabetic retinopathy. EMBO J 21:4307–4316

    Article  PubMed  CAS  Google Scholar 

  72. Gariano RF, Gardner TW (2005) Retinal angiogenesis in development and disease. Nature 438:960–966

    Article  PubMed  CAS  Google Scholar 

  73. Lee MS, Moon EJ, Lee SW, Kim MS, Kim KW, Kim YJ (2001) Angiogenic activity of pyruvic acid in in vivo and in vitro angiogenesis models. Cancer Res 61:3290–3293

    PubMed  CAS  Google Scholar 

  74. Murray B, Wilson DJ (2001) A study of metabolites as intermediate effectors in angiogenesis. Angiogenesis 4:71–77

    Article  PubMed  CAS  Google Scholar 

  75. Neuman RE, Mc CT (1958) Growth-promoting properties of pyruvate oxal-acetate, and alpha-ketoglutarate for isolated Walker carcinosarcoma 256 cells. Proc Soc Exp Biol Med 98:303–306

    PubMed  CAS  Google Scholar 

  76. He W, Miao FJ, Lin DC, Schwandner RT, Wang Z, Gao J, Chen JL, Tian H, Ling L (2004) Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors. Nature 429:188–193

    Article  PubMed  CAS  Google Scholar 

  77. Sapieha P, Sirinyan M, Hamel D, Zaniolo K, Joyal JS, Cho JH, Honore JC, Kermorvant-Duchemin E, Varma DR, Tremblay S, Leduc M, Rihakova L, Hardy P, Klein WH, Mu X, Mamer O, Lachapelle P, Di Polo A, Beausejour C, Andelfinger G, Mitchell G, Sennlaub F, Chemtob S (2008) The succinate receptor GPR91 in neurons has a major role in retinal angiogenesis. Nat Med 14:1067–1076

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants form the Canadian Institutes of Health Research (CIHR), the March of Dimes Birth Defects Foundation, the Heart & Stroke Foundation of Québec, the Fonds de la Recherche en Santé du Québec and INSERM (France). SC also holds two Canada Research Chairs (perinatology and ophthalmology).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvain Chemtob.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kermorvant-Duchemin, E., Sapieha, P., Sirinyan, M. et al. Understanding ischemic retinopathies: emerging concepts from oxygen-induced retinopathy. Doc Ophthalmol 120, 51–60 (2010). https://doi.org/10.1007/s10633-009-9201-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-009-9201-x

Keywords

Navigation