Skip to main content

Tetrahydrobiopterin and Endothelial Nitric Oxide Synthase: Implications for Radiation-Induced Endothelial Dysfunction and Normal Tissue Radiation Injury

  • Chapter
  • First Online:
Oxidative Stress in Cancer Biology and Therapy

Abstract

Radiation-induced microvascular injury plays an important role in the mechanisms of acute, as well as chronic normal tissue radiation toxicities. There is currently a growing body of evidence suggesting that depletion of the nitric oxide synthase (NOS) cofactor, 5,6,7,8-tetrahydrobiopterin (BH4) is involved in the pathogenesis of endothelial dysfunction in many disorders. BH4 is an essential cofactor for all NOS enzymes, which, in the presence of adequate amounts of BH4, produce mainly nitric oxide (NO). Under conditions of BH4 deficiency, however, NOS is in the “uncoupled” state and production shifts to highly reactive oxygen radicals, superoxide, and peroxynitrite, at the expense of NO. Excessive oxidative stress, which occurs after exposure to ionizing radiation, reduces the bioavailability of BH4 because of rapid oxidation to 7,8-dihydrobiopterin (7,8-BH2). Free radical-induced BH4 insufficiency may thus further increase oxidative stress locally, inhibit beneficial NO-dependent endothelial processes, and contribute to the development of endothelial dysfunction. Given that BH4 depletion and subsequent endothelial NOS uncoupling appear to play a major role in the pathogenesis of endothelial dysfunction in a number of disease processes, there is substantial reason to believe that improving postirradiation BH4 bioavailability, either by exogenous supplementation of BH4 or by modulating BH4 metabolism, might be a novel strategy by which radiation-induced endothelial dysfunction and subsequent tissue injury could be reduced. This chapter presents evidence to support the therapeutic potential of BH4 as a biological modulator of radiation toxicity.

Financial Support:

National Institutes of Health/National Cancer Institute (grant CA83719 to MH-J) and Defense Threat Reduction Agency (grant HDTRA1-07-C-0028 to MH-J and H.10027-07-AR-R to KSK).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weiss JF, Kumar KS (1988) Antioxidant mechanisms in radiation injury and radioprotection. In: Chow CK (ed) Cellular antioxidant defense mechanisms, vol 2. CRC, Boca Raton, FL, pp 163–189

    Google Scholar 

  2. Weiss JF, Landauer MR (2000) Radioprotection by antioxidants. Ann NY Acad Sci 899:44–60

    Article  PubMed  CAS  Google Scholar 

  3. Hosseinimehr SJ (2007) Trends in the development of radioprotective agents. Drug Discov Today 12:794–805

    Article  PubMed  CAS  Google Scholar 

  4. Koukourakis MI, Kyrias G, Kakolyris S, Kouroussis C, Frangiadaki C, Giatromanolaki A, Retalis G, Georgoulias V (2000) Subcutaneous administration of amifostine during fractionated radiotherapy: a randomized phase II study. J Clin Oncol 18:2226–2233

    PubMed  CAS  Google Scholar 

  5. Wang J, Boerma M, Fu Q, Hauer-Jensen M (2007) Significance of endothelial dysfunction in the pathogenesis of early and delayed radiation enteropathy. World J Gastroenterol 13:3047–3055

    PubMed  CAS  Google Scholar 

  6. Paris F, Fuks Z, Kang A, Capodieci P, Juan G, Ehleiter D, Haimovitz-Friedman A, Cordon-Cardo C, Kolesnick R (2001) Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science 293:293–297

    Article  PubMed  CAS  Google Scholar 

  7. Maj JG, Paris F, Haimovitz-Friedman A, Venkatraman E, Kolesnick R, Fuks Z (2003) Microvascular function regulates intestinal crypt response to radiation. Cancer Res 63:4338–4341

    PubMed  CAS  Google Scholar 

  8. Baker DG, Krochak RJ (1989) The response of the microvascular system to radiation: a review. Cancer Invest 7:287–294

    Article  PubMed  CAS  Google Scholar 

  9. Hopewell JW, Calvo W, Jaenke R, Reinhold HS, Robbins ME, Whitehouse EM (1993) Microvasculature and radiation damage. Recent Results Cancer Res 130:1–16

    Article  PubMed  CAS  Google Scholar 

  10. Jaenke RS, Robbins ME, Bywaters T, Whitehouse E, Rezvani M, Hopewell JW (1993) Capillary endothelium. Target site of renal radiation injury. Lab Invest 68:396–405

    PubMed  CAS  Google Scholar 

  11. Lyubimova N, Hopewell JW (2004) Experimental evidence to support the hypothesis that damage to vascular endothelium plays the primary role in the development of late radiation-induced CNS injury. Br J Radiol 77:488–492

    Article  PubMed  CAS  Google Scholar 

  12. Rezvani M, Hopewell JW, Robbins ME (1995) Initiation of non-neoplastic late effects: the role of endothelium and connective tissue. Stem Cells 13(Suppl 1):248–256

    Article  PubMed  Google Scholar 

  13. Wang J, Zheng H, Ou X, Fink LM, Hauer-Jensen M (2002) Deficiency of microvascular thrombomodulin and up-regulation of protease-activated receptor-1 in irradiated rat intestine: possible link between endothelial dysfunction and chronic radiation fibrosis. Am J Pathol 160:2063–2072

    Article  PubMed  CAS  Google Scholar 

  14. Alp NJ, Mussa S, Khoo J, Cai S, Guzik T, Jefferson A, Goh N, Rockett KA, Channon KM (2003) Tetrahydrobiopterin-dependent preservation of nitric oxide-mediated endothelial function in diabetes by targeted transgenic GTP-cyclohydrolase I overexpression. J Clin Invest 112:725–735

    PubMed  CAS  Google Scholar 

  15. Pannirselvam M, Simon V, Verma S, Anderson T, Triggle CR (2003) Chronic oral supplementation with sepiapterin prevents endothelial dysfunction and oxidative stress in small mesenteric arteries from diabetic (db/db) mice. Br J Pharmacol 140:701–706

    Article  PubMed  CAS  Google Scholar 

  16. Landmesser U, Dikalov S, Price SR, McCann L, Fukai T, Holland SM, Mitch WE, Harrison DG (2003) Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest 111:1201–1209

    PubMed  CAS  Google Scholar 

  17. Cosentino F, Patton S, d’Uscio LV, Werner ER, Werner-Felmayer G, Moreau P, Malinski T, Luscher TF (1998) Tetrahydrobiopterin alters superoxide and nitric oxide release in prehypertensive rats. J Clin Invest 101:1530–1537

    Article  PubMed  CAS  Google Scholar 

  18. Cosentino F, Hurlimann D, Delli GC, Chenevard R, Blau N, Alp NJ, Channon KM, Eto M, Lerch P, Enseleit F, Ruschitzka F, Volpe M, Luscher TF, Noll G (2008) Chronic treatment with tetrahydrobiopterin reverses endothelial dysfunction and oxidative stress in hypercholesterolemia. Heart 94(4):487–92

    Article  PubMed  CAS  Google Scholar 

  19. Stroes E, Kastelein J, Cosentino F, Erkelens W, Wever R, Koomans H, Luscher T, Rabelink T (1997) Tetrahydrobiopterin restores endothelial function in hypercholesterolemia. J Clin Invest 99:41–46

    Article  PubMed  CAS  Google Scholar 

  20. Dumitrescu C, Biondi R, Xia Y, Cardounel AJ, Druhan LJ, Ambrosio G, Zweier JL (2007) Myocardial ischemia results in tetrahydrobiopterin (BH4) oxidation with impaired endothelial function ameliorated by BH4. Proc Natl Acad Sci USA 104:15081–15086

    Article  PubMed  CAS  Google Scholar 

  21. Napoli C, Ignarro LJ (2009) Nitric oxide and pathogenic mechanisms involved in the development of vascular diseases. Arch Pharm Res 32:1103–1108

    Article  PubMed  CAS  Google Scholar 

  22. Harrison DG (1997) Cellular and molecular mechanisms of endothelial cell dysfunction. J Clin Invest 100:2153–2157

    Article  PubMed  CAS  Google Scholar 

  23. Naseem KM (2005) The role of nitric oxide in cardiovascular diseases. Mol Aspects Med 26:33–65

    Article  PubMed  CAS  Google Scholar 

  24. Li H, Forstermann U (2000) Nitric oxide in the pathogenesis of vascular disease. J Pathol 190:244–254

    Article  PubMed  CAS  Google Scholar 

  25. Maynard KI, Stewart-Lee AL, Milner P, Burnstock G (1992) X-irradiation attenuates relaxant responses in the rabbit ear artery. Br J Pharmacol 105:126–128

    Article  PubMed  CAS  Google Scholar 

  26. Qi F, Sugihara T, Hattori Y, Yamamoto Y, Kanno M, Abe K (1998) Functional and morphological damage of endothelium in rabbit ear artery following irradiation with cobalt60. Br J Pharmacol 123:653–660

    Article  PubMed  CAS  Google Scholar 

  27. Sugihara T, Hattori Y, Yamamoto Y, Qi F, Ichikawa R, Sato A, Liu MY, Abe K, Kanno M (1999) Preferential impairment of nitric oxide-mediated endothelium-dependent relaxation in human cervical arteries after irradiation. Circulation 100:635–641

    Article  PubMed  CAS  Google Scholar 

  28. Zhang XH, Matsuda N, Jesmin S, Sakuraya F, Gando S, Kemmotsu O, Hattori Y (2003) Normalization by edaravone, a free radical scavenger, of irradiation-reduced endothelial nitric oxide synthase expression. Eur J Pharmacol 476:131–137

    Article  PubMed  CAS  Google Scholar 

  29. Hatoum OA, Otterson MF, Kopelman D, Miura H, Sukhotnik I, Larsen BT, Selle RM, Moulder JE, Gutterman DD (2006) Radiation induces endothelial dysfunction in murine intestinal arterioles via enhanced production of reactive oxygen species. Arterioscler Thromb Vasc Biol 26:287–294

    Article  PubMed  CAS  Google Scholar 

  30. Siegal T, Pfeffer MR, Meltzer A, Shezen E, Nimrod A, Ezov N, Ovadia H (1996) Cellular and secretory mechanisms related to delayed radiation-induced microvessel dysfunction in the spinal cord of rats. Int J Radiat Oncol Biol Phys 36:649–659

    Article  PubMed  CAS  Google Scholar 

  31. Soloviev AI, Tishkin SM, Parshikov AV, Ivanova IV, Goncharov EV, Gurney AM (2003) Mechanisms of endothelial dysfunction after ionized radiation: selective impairment of the nitric oxide component of endothelium-dependent vasodilation. Br J Pharmacol 138:837–844

    Article  PubMed  CAS  Google Scholar 

  32. Suvorava T, Luksha L, Bulanova KY, Lobanok LM (2006) Dose-rate dependent effects of ionizing radiation on vascular reactivity. Radiat Prot Dosimetry 122:543–545

    Article  PubMed  CAS  Google Scholar 

  33. Kwon NS, Nathan CF, Stuehr DJ (1989) Reduced biopterin as a cofactor in the generation of nitrogen oxides by murine macrophages. J Biol Chem 264:20496–20501

    PubMed  CAS  Google Scholar 

  34. Werner ER, Gorren AC, Heller R, Werner-Felmayer G, Mayer B (2003) Tetrahydrobiopterin and nitric oxide: mechanistic and pharmacological aspects. Exp Biol Med 228:1291–1302

    CAS  Google Scholar 

  35. Alp NJ, Channon KM (2004) Regulation of endothelial nitric oxide synthase by tetrahydrobiopterin in vascular disease. Arterioscler Thromb Vasc Biol 24:413–420

    Article  PubMed  CAS  Google Scholar 

  36. Gorren AC, Mayer B (2002) Tetrahydrobiopterin in nitric oxide synthesis: a novel biological role for pteridines. Curr Drug Metab 3:133–157

    Article  PubMed  CAS  Google Scholar 

  37. Andrew PJ, Mayer B (1999) Enzymatic function of nitric oxide synthases. Cardiovasc Res 43:521–531

    Article  PubMed  CAS  Google Scholar 

  38. Gorren AC, List BM, Schrammel A, Pitters E, Hemmens B, Werner ER, Schmidt K, Mayer B (1996) Tetrahydrobiopterin-free neuronal nitric oxide synthase: evidence for two identical highly anticooperative pteridine binding sites. Biochemistry 35:16735–16745

    Article  PubMed  CAS  Google Scholar 

  39. Rodriguez-Crespo I, Moenne-Loccoz P, Loehr TM, Ortiz de Montellano PR (1997) Endothelial nitric oxide synthase: modulations of the distal heme site produced by progressive N-terminal deletions. Biochemistry 36:8530–8538

    Article  PubMed  CAS  Google Scholar 

  40. Klatt P, Schmid M, Leopold E, Schmidt K, Werner ER, Mayer B (1994) The pteridine binding site of brain nitric oxide synthase. Tetrahydrobiopterin binding kinetics, specificity, and allosteric interaction with the substrate domain. J Biol Chem 269:13861–13866

    PubMed  CAS  Google Scholar 

  41. Ghosh DK, Wu C, Pitters E, Moloney M, Werner ER, Mayer B, Stuehr DJ (1997) Characterization of the inducible nitric oxide synthase oxygenase domain identifies a 49 amino acid segment required for subunit dimerization and tetrahydrobiopterin interaction. Biochemistry 36:10609–10619

    Article  PubMed  CAS  Google Scholar 

  42. Gorren AC, Kungl AJ, Schmidt K, Werner ER, Mayer B (2001) Electrochemistry of pterin cofactors and inhibitors of nitric oxide synthase. Nitric Oxide 5:176–186

    Article  PubMed  CAS  Google Scholar 

  43. Reif A, Frohlich LG, Kotsonis P, Frey A, Bommel HM, Wink DA, Pfleiderer W, Schmidt HH (1999) Tetrahydrobiopterin inhibits monomerization and is consumed during catalysis in neuronal NO synthase. J Biol Chem 274:24921–24929

    Article  PubMed  CAS  Google Scholar 

  44. Kotsonis P, Frohlich LG, Shutenko ZV, Horejsi R, Pfleiderer W, Schmidt HH (2000) Allosteric regulation of neuronal nitric oxide synthase by tetrahydrobiopterin and suppression of auto-damaging superoxide. Biochem J 346(Pt 3):767–776

    Article  PubMed  CAS  Google Scholar 

  45. Thony B, Auerbach G, Blau N (2000) Tetrahydrobiopterin biosynthesis, regeneration and functions. Biochem J 347(Pt 1):1–16

    Article  PubMed  CAS  Google Scholar 

  46. Hattori Y, Nakanishi N, Kasai K, Murakami Y, Shimoda S (1996) Tetrahydrobiopterin and GTP cyclohydrolase I in a rat model of endotoxic shock: relation to nitric oxide synthesis. Exp Physiol 81:665–671

    PubMed  CAS  Google Scholar 

  47. Widder JD, Chen W, Li L, Dikalov S, Thony B, Hatakeyama K, Harrison DG (2007) Regulation of tetrahydrobiopterin biosynthesis by shear stress. Circ Res 101:830–838

    Article  PubMed  CAS  Google Scholar 

  48. De Bono JP, Channon KM (2007) Endothelial cell tetrahydrobiopterin: going with the flow. Circ Res 101:752–754

    Article  PubMed  Google Scholar 

  49. Maita N, Hatakeyama K, Okada K, Hakoshima T (2004) Structural basis of biopterin-induced inhibition of GTP cyclohydrolase I by GFRP, its feedback regulatory protein. J Biol Chem 279:51534–51540

    Article  PubMed  CAS  Google Scholar 

  50. Gesierich A, Niroomand F, Tiefenbacher CP (2003) Role of human GTP cyclohydrolase I and its regulatory protein in tetrahydrobiopterin metabolism. Basic Res Cardiol 98:69–75

    Article  PubMed  CAS  Google Scholar 

  51. Ishii M, Shimizu S, Wajima T, Hagiwara T, Negoro T, Miyazaki A, Tobe T, Kiuchi Y (2005) Reduction of GTP cyclohydrolase I feedback regulating protein expression by hydrogen peroxide in vascular endothelial cells. J Pharmacol Sci 97:299–302

    Article  PubMed  CAS  Google Scholar 

  52. Chalupsky K, Cai H (2005) Endothelial dihydrofolate reductase: critical for nitric oxide bioavailability and role in angiotensin II uncoupling of endothelial nitric oxide synthase. Proc Natl Acad Sci USA 102:9056–9061

    Article  PubMed  CAS  Google Scholar 

  53. Gao L, Chalupsky K, Stefani E, Cai H (2009) Mechanistic insights into folic acid-dependent vascular protection: Dihydrofolate reductase (DHFR)-mediated reduction in oxidant stress in endothelial cells and angiotensin II-infused mice: A novel HPLC-based fluorescent assay for DHFR activity. J Mol Cell Cardiol 47(6):752–60

    Article  PubMed  CAS  Google Scholar 

  54. Berbee M, Fu Q, Werner ER, Kumar KS, Hauer-Jensen M (2009) The effect of total body irradiation on the availability of the NOS cofactor tetrahydrobiopterin (abstr.). Radiat Res Soc 55:106–107

    Google Scholar 

  55. Cui L, Berbee M, Fu Q, Boerma M, Wang J, Kumar KS, Hauer-Jensen M (2009) Exogenous administration of tetrahydrobiopterin (BH4) ameliorates DNA and lipid oxidative damage in mice after total body irradiation (abstr.). Radiat Res Soc 55:67–68

    Google Scholar 

  56. Wang J, Boerma M, Fu Q, Kulkarni A, Fink LM, Hauer-Jensen M (2007) Simvastatin ameliorates radiation enteropathy development after localized, fractionated irradiation by a protein C-independent mechanism. Int J Radiat Oncol Biol Phys 68:1483–1490

    Article  PubMed  CAS  Google Scholar 

  57. Haydont V, Bourgier C, Pocard M, Lusinchi A, Aigueperse J, Mathe D, Bourhis J, Vozenin-Brotons MC (2007) Pravastatin Inhibits the Rho/CCN2/extracellular matrix cascade in human fibrosis explants and improves radiation-induced intestinal fibrosis in rats. Clin Cancer Res 13:5331–5340

    Article  PubMed  CAS  Google Scholar 

  58. Tamura Y, Naemura A, Inoue A, Ijiri Y, Seki J, Yada T, Goto M, Shinohara M, Kawashima S, Giddings JC, Yamamoto J (2009) Impaired endothelial function may be due to decreased aortic tetrahydrobiopterin, assessed by a new flow-mediated vasodilation in vivo in hypercholesterolemic/atherogenic mice. Blood Coagul Fibrinolysis 20(8):699–705

    Article  PubMed  CAS  Google Scholar 

  59. Shinozaki K, Nishio Y, Okamura T, Yoshida Y, Maegawa H, Kojima H, Masada M, Toda N, Kikkawa R, Kashiwagi A (2000) Oral administration of tetrahydrobiopterin prevents endothelial dysfunction and vascular oxidative stress in the aortas of insulin-resistant rats. Circ Res 87:566–573

    Article  PubMed  CAS  Google Scholar 

  60. Pieper GM (1997) Acute amelioration of diabetic endothelial dysfunction with a derivative of the nitric oxide synthase cofactor, tetrahydrobiopterin. J Cardiovasc Pharmacol 29:8–15

    Article  PubMed  CAS  Google Scholar 

  61. Cosentino F, Hurlimann D, Delli GC, Chenevard R, Blau N, Alp NJ, Channon KM, Eto M, Lerch P, Enseleit F, Ruschitzka F, Volpe M, Luscher TF, Noll G (2008) Chronic treatment with tetrahydrobiopterin reverses endothelial dysfunction and oxidative stress in hypercholesterolaemia. Heart 94:487–492

    Article  PubMed  CAS  Google Scholar 

  62. Heitzer T, Krohn K, Albers S, Meinertz T (2000) Tetrahydrobiopterin improves endothelium-dependent vasodilation by increasing nitric oxide activity in patients with Type II diabetes mellitus. Diabetologia 43:1435–1438

    Article  PubMed  CAS  Google Scholar 

  63. Heitzer T, Brockhoff C, Mayer B, Warnholtz A, Mollnau H, Henne S, Meinertz T, Munzel T (2000) Tetrahydrobiopterin improves endothelium-dependent vasodilation in chronic smokers: evidence for a dysfunctional nitric oxide synthase. Circ Res 86:E36–E41

    Article  PubMed  CAS  Google Scholar 

  64. Higashi Y, Sasaki S, Nakagawa K, Fukuda Y, Matsuura H, Oshima T, Chayama K (2002) Tetrahydrobiopterin enhances forearm vascular response to acetylcholine in both normotensive and hypertensive individuals. Am J Hypertens 15:326–332

    Article  PubMed  CAS  Google Scholar 

  65. Settergren M, Bohm F, Malmstrom RE, Channon KM, Pernow J (2009) L-arginine and tetrahydrobiopterin protects against ischemia/reperfusion-induced endothelial dysfunction in patients with type 2 diabetes mellitus and coronary artery disease. Atherosclerosis 204:73–78

    Article  PubMed  CAS  Google Scholar 

  66. Fiege B, Ballhausen D, Kierat L, Leimbacher W, Goriounov D, Schircks B, Thony B, Blau N (2004) Plasma tetrahydrobiopterin and its pharmacokinetic following oral administration. Mol Genet Metab 81:45–51

    Article  PubMed  CAS  Google Scholar 

  67. Sawabe K, Wakasugi KO, Hasegawa H (2004) Tetrahydrobiopterin uptake in supplemental administration: elevation of tissue tetrahydrobiopterin in mice following uptake of the exogenously oxidized product 7,8-dihydrobiopterin and subsequent reduction by an anti-folate-sensitive process. J Pharmacol Sci 96:124–133

    Article  PubMed  CAS  Google Scholar 

  68. Hasegawa H, Sawabe K, Nakanishi N, Wakasugi OK (2005) Delivery of exogenous tetrahydrobiopterin (BH4) to cells of target organs: role of salvage pathway and uptake of its precursor in effective elevation of tissue BH4. Mol Genet Metab 86(Suppl 1):S2–10

    Article  PubMed  CAS  Google Scholar 

  69. Tiefenbacher CP, Bleeke T, Vahl C, Amann K, Vogt A, Kubler W (2000) Endothelial dysfunction of coronary resistance arteries is improved by tetrahydrobiopterin in atherosclerosis. Circulation 102:2172–2179

    Article  PubMed  CAS  Google Scholar 

  70. Tiefenbacher CP, Lee CH, Kapitza J, Dietz V, Niroomand F (2003) Sepiapterin reduces postischemic injury in the rat heart. Pflugers Arch 447:1–7

    Article  PubMed  CAS  Google Scholar 

  71. Vasquez-Vivar J, Martasek P, Whitsett J, Joseph J, Kalyanaraman B (2002) The ratio between tetrahydrobiopterin and oxidized tetrahydrobiopterin analogues controls superoxide release from endothelial nitric oxide synthase: an EPR spin trapping study. Biochem J 362:733–739

    Article  PubMed  CAS  Google Scholar 

  72. Tarpey MM (2002) Sepiapterin treatment in atherosclerosis. Arterioscler Thromb Vasc Biol 22:1519–1521

    Article  PubMed  Google Scholar 

  73. Hattori Y, Nakanishi N, Akimoto K, Yoshida M, Kasai K (2003) HMG-CoA reductase inhibitor increases GTP cyclohydrolase I mRNA and tetrahydrobiopterin in vascular endothelial cells. Arterioscler Thromb Vasc Biol 23:176–182

    Article  PubMed  CAS  Google Scholar 

  74. Wenzel P, Daiber A, Oelze M, Brandt M, Closs E, Xu J, Thum T, Bauersachs J, Ertl G, Zou MH, Forstermann U, Munzel T (2008) Mechanisms underlying recoupling of eNOS by HMG-CoA reductase inhibition in a rat model of streptozotocin-induced diabetes mellitus. Atherosclerosis 198:65–76

    Article  PubMed  CAS  Google Scholar 

  75. Williams JP, Hernady E, Johnston CJ, Reed CM, Fenton B, Okunieff P, Finkelstein JN (2004) Effect of administration of lovastatin on the development of late pulmonary effects after whole-lung irradiation in a murine model. Radiat Res 161:560–567

    Article  PubMed  CAS  Google Scholar 

  76. Haydont V, Gilliot O, Rivera S, Bourgier C, Francois A, Aigueperse J, Bourhis J, Vozenin-Brotons MC (2007) Successful mitigation of delayed intestinal radiation injury using pravastatin is not associated with acute injury improvement or tumor protection. Int J Radiat Oncol Biol Phys 68:1471–1482

    Article  PubMed  CAS  Google Scholar 

  77. Gaugler MH, Vereycken-Holler V, Squiban C, Vandamme M, Vozenin-Brotons MC, Benderitter M (2005) Pravastatin limits endothelial activation after irradiation and decreases the resulting inflammatory and thrombotic responses. Radiat Res 163:479–487

    Article  PubMed  CAS  Google Scholar 

  78. Holler V, Buard V, Gaugler MH, Guipaud O, Baudelin C, Sache A, Perez MR, Squiban C, Tamarat R, Milliat F, Benderitter M (2009) Pravastatin limits radiation-induced vascular dysfunction in the skin. J Invest Dermatol 129:1280–1291

    Article  PubMed  CAS  Google Scholar 

  79. Huang A, Vita JA, Venema RC, Keaney JF Jr (2000) Ascorbic acid enhances endothelial nitric-oxide synthase activity by increasing intracellular tetrahydrobiopterin. J Biol Chem 275:17399–17406

    Article  PubMed  CAS  Google Scholar 

  80. Kuzkaya N, Weissmann N, Harrison DG, Dikalov S (2003) Interactions of peroxynitrite, tetrahydrobiopterin, ascorbic acid, and thiols: implications for uncoupling endothelial nitric-oxide synthase. J Biol Chem 278:22546–22554

    Article  PubMed  CAS  Google Scholar 

  81. d’Uscio LV, Milstien S, Richardson D, Smith L, Katusic ZS (2003) Long-term vitamin C treatment increases vascular tetrahydrobiopterin levels and nitric oxide synthase activity. Circ Res 92:88–95

    Article  PubMed  Google Scholar 

  82. Kennedy M, Bruninga K, Mutlu EA, Losurdo J, Choudhary S, Keshavarzian A (2001) Successful and sustained treatment of chronic radiation proctitis with antioxidant vitamins E and C. Am J Gastroenterol 96:1080–1084

    Article  PubMed  CAS  Google Scholar 

  83. Halperin EC, Gaspar L, George S, Darr D, Pinnell S (1993) A double-blind, randomized, prospective trial to evaluate topical vitamin C solution for the prevention of radiation dermatitis. CNS Cancer Consortium. Int J Radiat Oncol Biol Phys 26:413–416

    Article  PubMed  CAS  Google Scholar 

  84. Wagdi P, Fluri M, Aeschbacher B, Fikrle A, Meier B (1996) Cardioprotection in patients undergoing chemo- and/or radiotherapy for neoplastic disease. A pilot study. Jpn Heart J 37:353–359

    Article  PubMed  CAS  Google Scholar 

  85. van Etten RW, de Koning EJ, Verhaar MC, Gaillard CA, Rabelink TJ (2002) Impaired NO-dependent vasodilation in patients with Type II (non-insulin-dependent) diabetes mellitus is restored by acute administration of folate. Diabetologia 45:1004–1010

    Article  PubMed  Google Scholar 

  86. Verhaar MC, Wever RM, Kastelein JJ, van Dam T, Koomans HA, Rabelink TJ (1998) 5-methyltetrahydrofolate, the active form of folic acid, restores endothelial function in familial hypercholesterolemia. Circulation 97:237–241

    Article  PubMed  CAS  Google Scholar 

  87. Woo KS, Chook P, Lolin YI, Sanderson JE, Metreweli C, Celermajer DS (1999) Folic acid improves arterial endothelial function in adults with hyperhomocystinemia. J Am Coll Cardiol 34:2002–2006

    Article  PubMed  CAS  Google Scholar 

  88. Moulder JE, Fish BL, Cohen EP (1998) Radiation nephropathy is treatable with an angiotensin converting enzyme inhibitor or an angiotensin II type-1 (AT1) receptor antagonist. Radiother Oncol 46:307–315

    Article  PubMed  CAS  Google Scholar 

  89. Molteni A, Moulder JE, Cohen EP, Fish BL, Taylor JM, Veno PA, Wolfe LF, Ward WF (2001) Prevention of radiation-induced nephropathy and fibrosis in a model of bone marrow transplant by an angiotensin II receptor blocker. Exp Biol Med 226:1016–1023

    CAS  Google Scholar 

  90. Molteni A, Moulder JE, Cohen EF, Ward WF, Fish BL, Taylor JM, Wolfe LF, Brizio-Molteni L, Veno P (2000) Control of radiation-induced pneumopathy and lung fibrosis by angiotensin-converting enzyme inhibitors and an angiotensin II type 1 receptor blocker. Int J Radiat Biol 76:523–532

    Article  PubMed  CAS  Google Scholar 

  91. Molteni A, Wolfe LF, Ward WF, Tsao CH, Molteni LB, Veno P, Fish BL, Taylor JM (2007) Effect of an angiotensin II receptor blocker and two angiotensin converting enzyme inhibitors on transforming growth factor-beta (TGF-beta) and alpha-actomyosin (alpha SMA), important mediators of radiation-induced pneumopathy and lung fibrosis. Curr Pharm Des 13:1307–1316

    Article  PubMed  CAS  Google Scholar 

  92. Robbins ME, Payne V, Tommasi E, Diz DI, Hsu FC, Brown WR, Wheeler KT, Olson J, Zhao W (2009) The AT1 receptor antagonist, L-158,809, prevents or ameliorates fractionated whole-brain irradiation-induced cognitive impairment. Int J Radiat Oncol Biol Phys 73:499–505

    Article  PubMed  CAS  Google Scholar 

  93. Satoh M, Fujimoto S, Arakawa S, Yada T, Namikoshi T, Haruna Y, Horike H, Sasaki T, Kashihara N (2008) Angiotensin II type 1 receptor blocker ameliorates uncoupled endothelial nitric oxide synthase in rats with experimental diabetic nephropathy. Nephrol Dial Transplant 23:3806–3813

    Article  PubMed  CAS  Google Scholar 

  94. Berbee M, Fu Q, Boerma M, Wang J, Kumar KS, Hauer-Jensen M (2009) Gamma-Tocotrienol ameliorates intestinal radiation injury and reduces vascular oxidative stress after total-body irradiation by an HMG-CoA reductase-dependent mechanism. Radiat Res 171:596–605

    Article  PubMed  CAS  Google Scholar 

  95. Ghosh SP, Kulkarni S, Hieber K, Toles R, Romanyukha L, Kao TC, Hauer-Jensen M, Kumar KS (2009) Gamma-tocotrienol, a tocol antioxidant as a potent radioprotector. Int J Radiat Biol 85:598–606

    Article  PubMed  CAS  Google Scholar 

  96. Parker RA, Pearce BC, Clark RW, Gordon DA, Wright JJ (1993) Tocotrienols regulate cholesterol production in mammalian cells by post-transcriptional suppression of 3-hydroxy-3-­methylglutaryl-coenzyme A reductase. J Biol Chem 268:11230–11238

    PubMed  CAS  Google Scholar 

  97. Song BL, DeBose-Boyd RA (2006) Insig-dependent ubiquitination and degradation of 3-hydroxy-3-methylglutaryl coenzyme a reductase stimulated by delta- and gamma-tocotrienols. J Biol Chem 281:25054–25061

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Hauer-Jensen MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Berbée, M., Fu, Q., Kumar, K.S., Hauer-Jensen, M. (2012). Tetrahydrobiopterin and Endothelial Nitric Oxide Synthase: Implications for Radiation-Induced Endothelial Dysfunction and Normal Tissue Radiation Injury. In: Spitz, D., Dornfeld, K., Krishnan, K., Gius, D. (eds) Oxidative Stress in Cancer Biology and Therapy. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-397-4_7

Download citation

Publish with us

Policies and ethics