Skip to main content

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 130))

Abstract

The association between late damage in irradiated tissues and the vasculature was reported shortly after the discovery of X-rays. Gross blood vessel abnormalities were a consistent finding in radiation-damaged tissues (Gassmann 1899; Mühsam 1904). Since then there have been numerous pathology reports emphasizing the significance of vascular damage in association with late radiation effects. This led to a hypothesis, to a major degree conceived by Rubin and Casarett (1968), that the vascular system was the main target for late radiation damage in normal tissues, the effects seen being related to vascular insufficiency. Although the validity of this hypothesis has been correctly challenged (Withers et al. 1980), there is still sufficient evidence to implicate the slowly dividing cells in the walls of blood vessels as the target cell populations in the pathogenesis of late radiation effects. Most recently, research related to radiation effects on the vasculature has focused on radiation-induced modifications in endothelial cell clonogenic survival and time-related changes in endothelial cell number. In addition, within the last decade, modifications in endothelial cell function have become more fully understood. Some of the most recent findings have raised the possibility of treating the endothelial-cell-mediated effects, leading to the amelioration of late radiation damage in normal tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Archambeau JO, Ines A, Fajardo LF (1984) Response of swine skin microvasculature to acute single exposures of x-rays: quantification of endothelial changes. Radiat Res 98: 37–51

    Article  PubMed  CAS  Google Scholar 

  • Allen JB, Sagerman RH, Stuart MJ (1981) Irradiation decreases vascular prostacyclin formation with no concomitant effects on platelet thromboxane production. Lancet 2: 1193–1196

    Article  PubMed  CAS  Google Scholar 

  • Aviado DM, Porter JM (1984) Pentoxifylline: a new drug for the treatment of intermittent claudication. Pharmacotherapy 6: 297–307

    Google Scholar 

  • Boisseau MR (1991) Microcirculation and microrheology. In: Vanhoutte PM, Douste-Blazy Ph (eds) Fish oil and blood—vessel wall interactions. Libbey Eurotext, Paris, pp 17–36

    Google Scholar 

  • Calvo W, Hopewell JW, Reinhold HS, van den Berg AP, Yeung TK (1987) Dose-dependent and time-dependent changes in the choroid plexus of the irradiated rat brain. Br J Radiol 60: 1109–1117

    Article  PubMed  CAS  Google Scholar 

  • Dinerman JL, Mehta JL (1990) Endothelial, platelet and leukocyte interactions in ischemic heart disease: insight into potential mechanisms and their clinical relevance. J Am Coll Cardiol 16: 207–222

    Article  PubMed  CAS  Google Scholar 

  • Dion MW, Hussey DH, Osborne JW (1989) The effect of pentoxifylline on early and late radiation injury following fractionated irradiation in C3H mice. Int J Radiat Oncol Biol Phys 17: 101–107

    PubMed  CAS  Google Scholar 

  • Dunn MM, Drab EA, Rubin DB (1986) Effects of irradiation on endothelial cell polymorphonuclear leukocyte interactions. J Appl Physiol 60: 1932–1937

    PubMed  CAS  Google Scholar 

  • Fajardo LF (1989) The unique physiology of endothelial cells and its implications in radiobiology. Front Radiat Ther Oncol 23: 96–112

    PubMed  CAS  Google Scholar 

  • Fike JR, Gillette EL (1978) 60Co gamma and negative Pi meson irradiation of microvasculature. Int J Radiat Oncol Biol Phys 4:825–828

    Google Scholar 

  • Gassmann A (1899) Zur Histologie der Roentgenulcera. Fortschr Rontgenstr 2:199–207

    Google Scholar 

  • Hickey WF, Kimura H (1988) Perivascular microglial cells of the CNS are bone-marrow derived and present antigen in vivo. Science 239: 290–292

    Article  PubMed  CAS  Google Scholar 

  • Hirst DG, Denekamp J, Hobson B (1980) Proliferation studies of the endothelial and smooth muscle cells of the mouse mesentery after irradiation. Cell Tissue Kinet 13: 91–104

    PubMed  CAS  Google Scholar 

  • Hopewell JW (1979) Late radiation damage to the central nervous system: a radiobiological interpretation. Neuropathol Appl Neurobiol 5: 329–343

    Article  PubMed  CAS  Google Scholar 

  • Hopewell JW (1983) Radiation effects on vascular tissue. In: Potten CS, Hendry JH (eds) Cytotoxic insult to tissue. Churchill Livingstone, Edinburgh, pp 228–257

    Google Scholar 

  • Hopewell JW, Patterson TJS (1972) The effect of previous x-irradiation on the revascularization of free skin grafts in the pig. Biorheology 9: 45

    Google Scholar 

  • Hopewell SW, Calvo W, Reinhold HS (1989) Radiation effects on blood vessels: role in normal tissue damage. In: Steel GG, Adams GE, Horwich A (eds) The biological basis of radiotherapy, 2nd edn. Elsevier, Amsterdam, pp 101–113

    Google Scholar 

  • Hopewell JW, Robbins MEC, Scott C (1992) The effects of So-1100 in reducing the severity of radiation-induced damage to pig skin. In: Nigam S, Honn KV, Mornott LJ, Walden T (eds) Eicosanoids and other bioactive lipids in cancer, inflammation and radiation injury. Kluwer Acad Pub (Boston), pp 345–348

    Google Scholar 

  • Hornsey S, Myers R, Jenkinson T (1990) The reduction of radiation damage to the spinal cord by post-irradiation administration of vasoactive drugs. Int J Radiat Oncol Biol Phys 18: 1437–1442

    Article  PubMed  CAS  Google Scholar 

  • Horrobin DF (1988) Prostaglandin El: physiological significance and clinical use. Wien Klin Wochenschr 10: 471–477

    Google Scholar 

  • Horrobin DF, Manku MS (1990) Clinical biochemistry of essential fatty acids. In: Horrobin DF (ed) Omega-6 essential fatty acids: pathophysiology and roles in clinical medicine. Liss, New York, pp 21–53

    Google Scholar 

  • Jaffe EA (1987) Cell biology of endothelial cells. Hum Pathol 18:234–239 Lipowsky HH, House SD, Firnell JC (1988) Leukocyte endothelial adhesion and microvascular hemodynamics. Adv Exp Med Biol 242: 85–93

    Google Scholar 

  • Matzner Y, Cohn M, Hyfim E, Razin E, Futs Z, Buchanan MR, Haas TA, Vlodarsky I, Eldar A (1988) Generation of lipid neutrophil chemoattractant by irradiated bovine aortic endothelial cells. J Immunol 140: 2681–2685

    PubMed  CAS  Google Scholar 

  • Mildenberger M, Beah TG, McGear EG, Ludgate CM (1990) An animal model of prophylatic cranial irradiation: histological effects at acute, early and delayed stages. Int J Radiat Oncol Biol Phys 18: 1051–1060

    Article  PubMed  CAS  Google Scholar 

  • Mühsam R (1904) Über Dermatitis der Hand nach Roentgenbestrahlung (Fingeramputation). Arch Klin Chir 74 (2): 434–453

    Google Scholar 

  • Muller R, Lehrach F (1981) Haemorheology and cerebrovascular disease: multifunctional approach with pentoxifylline. Curr Med Res Opin 7:253–263 Pearson JD (1991) Endothelial cell biology. Radiology 179: 9–14

    Google Scholar 

  • Pober JS, Cotran RS (1991) What can be learned from the expression of endothelial adhesion molecules in tissues? Lab Invest 64: 301–305

    PubMed  CAS  Google Scholar 

  • Raine CS, Cannella B, Duijvestijn AM, Cross AH (1990) Homing to central nervous system vasculature by antigen-specific lymphocytes. II. Lymphocyte/endothelial cell adhesion during the initial stages of autoimmune demyelination. Lab Invest 63: 476–489

    Google Scholar 

  • Reinhold HS (1972) Radiation and the microcirculation. Front Radiat Ther Oncol 6: 44–51

    Google Scholar 

  • Reinhold HS (1974) Cell viability in the vessel wall. Curr Top Radiat Res Q 10:9–28 Reinhold HS, Buisman GH (1973) Radiosensitivity of capillary endothelium. Br J Radiol 46: 54–57

    Google Scholar 

  • Reinhold HS, Hopewell JW, Buisman GH (1985) Colony regeneration techniques in vascular endothelium. In: Potten CS, Hendry JH (eds) Cell clones. Churchill Livingstone, Edinburgh, pp 160–169

    Google Scholar 

  • Reinhold HS, Fajardo LF, Hopewell JW (1990) The vascular system. Adv Radiat Biol 14: 177–226

    Google Scholar 

  • Reinhold HS, Hopewell JW, Calvo W, Keyeux A, Reyners H (1991) Vasculoconnective tissue. In: Scherer E, Streffer C, Trott K-R (eds) Radiopathology of organs and tissues. Springer, Berlin Heidelbery New York, pp 243–268

    Google Scholar 

  • Rubin P, Casarett GW (1968) Clinical radiation pathology, vols I and I I. Saunders, Philadelphia

    Google Scholar 

  • Sinzinger H, Cromwell M, Firbas W (1984) Long-lasting depression of rabbit aorta prostacyclin formation by single-dose irradiation. Radiat Res 97: 533–536

    Article  PubMed  CAS  Google Scholar 

  • Smith MJH (1982) Biological activities of leukotriene at (isomer III). In: Samuelsson B, Paoletti R (eds) Advances in prostoglandin, thromboxane and leukotriene research, vol 9. Raven, New York, pp 282–292

    Google Scholar 

  • Steel LK, Catravas GN (1988) Protection against ionizing radiation with eicosanoids. In: Polgar (ed) Eicosanoids in radiation. Kluwer, Boston, pp 79–87

    Chapter  Google Scholar 

  • Ward WF, Molteni A, Solliday NH, Jones GE (1985) The relationship between endothelial dysfunction and collagen accumulation in irradiated rat lung. Int J Radiat Oncol Biol Phys 11: 1985–1990

    Article  PubMed  CAS  Google Scholar 

  • Ward WF, Molteni A, Ts’ao CH, Solliday NH (1987) Pulmonary endothelial cell dysfunction induced by unilateral as compared to bilateral thoracic irradiation in rats. Radiat Res 111: 101–106

    Article  PubMed  CAS  Google Scholar 

  • Ward WF, Solliday NH, Molteni A, Port CD (1983) Radiation injury in rat lung II: angiotensin-converting enzyme activity. Radiat Res 96: 294–300

    Article  PubMed  CAS  Google Scholar 

  • Weisfeldt ML (1987) Reperfusion and reperfusion injury. Clin Res 35: 13–20

    PubMed  CAS  Google Scholar 

  • Withers HR, Peters LJ, Kogelnik HS (1980) The pathobiology of late effects of irradiation. In: Meyn RE, Withers HR (eds) Radiation biology in cancer research. Raven, New York, pp 439–448

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin · Heidelberg

About this paper

Cite this paper

Hopewell, J.W., Calvo, W., Jaenke, R., Reinhold, H.S., Robbins, M.E.C., Whitehouse, E.M. (1993). Microvasculature and Radiation Damage. In: Hinkelbein, W., Bruggmoser, G., Frommhold, H., Wannenmacher, M. (eds) Acute and Long-Term Side-Effects of Radiotherapy. Recent Results in Cancer Research, vol 130. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84892-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84892-6_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84894-0

  • Online ISBN: 978-3-642-84892-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics