Advertisement

Engineering Complex Synthetic Organs

  • Joan E. NicholsEmail author
  • Jean A. Niles
  • Joaquin Cortiella
Chapter
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)

Abstract

At this time there is a substantial, and as yet unmet, demand for organs to replace nonfunctional tissues resulting from congenital defects, or to repair damaged or degenerated tissues. The field of regenerative medicine hopes to provide engineered replacement tissues in situations where our body’s regenerative capability or nonbiological mechanical devices cannot adequately replace lost physiological functions. This technology holds the promise to supply customized organs to overcome the severe shortages we currently face. Engineering synthetic organs is a complex process which necessitates careful (1) selection of cells or controlled proliferation of stem or progenitor cells to achieve appropriate numbers of cells for seeding onto biodegradable scaffolds to create cell-scaffold constructs, (2) design and selection of appropriate biodegradable or biomodifiable scaffold materials, and (3) design and construction of bioreactors to support generation of functional tissue replacements. To be successful, ongoing efforts to understand and engineer multicellular systems must continue, and new efforts to induce vascularization and integration of engineered tissues into the body will need to be developed. Current studies lead to improved understanding of how tissue systems can be integrated, as well as development of biomedical technologies not traditionally considered in tissue engineering, such as development of biohybrid organs or “bionic” devices.

Keywords

Esophageal Atresia Scaffold Material Esophageal Replacement Congenital Tracheal Stenosis Synthetic Organ 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

COPD

Chronic obstructive pulmonary disease

ECM

Extracellular matrix

ESRD

End-stage renal disease

FGF-2

Fibroblast growth factor-2

FPC

Fetal pulmonary cell

mESC

Murine embryonic stem cell

P-SPC

Pro-surfactant protein C

PF-127

Pluronic F-127

PGA

Polyglycolic acid

RAD

Renal tubule assist device

SLPC

Somatic lung progenitor cell

SP-A

Surfactant protein A

SP-C

Surfactant protein C

TTF1

Thyroid transcription factor-1

Notes

Acknowledgment

The authors would like to thank Kenneth D. Frohne for his photographic and editorial assistance during the preparation of this manuscript.

References

  1. 1.
    Nichol JW, Khademhosseini A (2009) Modular tissue engineering: engineering biological tissues from the bottom up. Soft Matter 5(7):1312–1319PubMedCrossRefGoogle Scholar
  2. 2.
    Perin L, Giuliani S, Sedrakyan S, Da Sacco S, De Filippo R (2008) Stem cell and regenerative science application in the development of bioengineering of renal tissue. Pediatr Res 63:467–471PubMedCrossRefGoogle Scholar
  3. 3.
    US Renal Data System. Annual data report. http://www.usrds.org/atlas.htm. Accessed 6 Aug 2011
  4. 4.
    Nissenson AR (2009) Bottom-up nanotechnology: the human nephron filter. Semin Dialysis 22(6):661–664CrossRefGoogle Scholar
  5. 5.
    Reisner Y (2007) Growing organs for transplantation from embryonic precursor tissues. Immunol Res 38:261–273PubMedCrossRefGoogle Scholar
  6. 6.
    Rosines E, Johkura K, Zhang X, Schmidt HJ, DeCambre M, Bush KT, Nigam SK (2010) Constructing kidney-like tissues from cells based on programs for organ development: towards a method of in vitro tissue engineering of the kidney. Tissue Eng Part A 16(8):2441–2455PubMedCrossRefGoogle Scholar
  7. 7.
    Fissell WH, Roy S (2009) The implantable artificial kidney. Semin Dialysis 22(6):665–670CrossRefGoogle Scholar
  8. 8.
    Dankers PYW, Roomker JM, Huizinga-van der Vlag A, Wisse E, Appel WPJ, Smedts FMM, Hamsen MC, Bosman AW, Meijer W, van Luyn MJA (2010) Bioengineering of living renal membranes consisting of hierarchical, bioactive supramolecular meshes and human tubular cells. Biomaterials 32(3):723–733. doi: 10.1016/j.biomaterials.2010.09.020 PubMedCrossRefGoogle Scholar
  9. 9.
    Subramanian B, Rudym D, Cannizzaro C, Perrone R, Zhou J, Kaplan DL (2010) Tissue-engineered three-dimensional in vitro models for normal and diseased kidney. Tissue Eng Part A 16(9):2821–2831PubMedCrossRefGoogle Scholar
  10. 10.
    Humes HD, Buffington DA, MacKay SM, Funke AJ, Weitzel WF (1999) Replacement of a renal function in uremic animals with a tissue-engineered kidney. Nat Biotechnol 17:451–455PubMedCrossRefGoogle Scholar
  11. 11.
    Nakayama KH, Batchelder CA, Lee CI, Tarantal AF (2010) Decellularized rhesus monkey kidney as three-dimensional scaffold for renal tissue engineering. Tissue Eng Part A 16(7):2207–2216PubMedCrossRefGoogle Scholar
  12. 12.
    Squier CA, Kremer MJ (2001) Biology of oral mucosa and esophagus. J Natl Cancer Inst Monogr 29:7–15PubMedGoogle Scholar
  13. 13.
    Pace F, Antinori S, Repici A (2009) What is new in esophageal injury (infection, drug-induced, caustic, stricture, perforation)? Curr Opin Gastroenterol 25(4):372–379CrossRefGoogle Scholar
  14. 14.
    Davenport M, Hosie GP, Tasker RC, Gordon I, Kiely EM, Spitz L (1996) Long-term effects of gastric transposition in children: a physiological study. J Pediatr Surg 31(4):588–593PubMedCrossRefGoogle Scholar
  15. 15.
    Erdogan E, Emir H, Eroglu E, Danişmend N, Yeker D (2000) Esophageal replacement using the colon: a 15-year review. Pediatr Surg Int 16(6):546–549PubMedGoogle Scholar
  16. 16.
    Borgnon J, Tounian P, Auber F, Larroquet M, Boeris Clemen F, Girardet JP, Audry G (2004) Esophageal replacement in children by an isoperistaltic gastric tube: a 12-year experience. Pediatr Surg Int 20(11–12):829–833PubMedCrossRefGoogle Scholar
  17. 17.
    Beckstead BL, Pan S, Bhrany AD, Bratt-Leal AM, Ratner BD, Giachelli CM (2005) Esophageal epithelial cell interaction with synthetic and natural scaffolds for tissue engineering. Biomaterials 26(31):6217–6228PubMedCrossRefGoogle Scholar
  18. 18.
    Takimoto Y, Nakamura T, Yamamoto Y, Kiyotani T, Teramachi M, Shimizu Y (1998) The experimental replacement of a cervical esophageal segment with an artificial prosthesis with the use of collagen matrix and a silicone stent. J Thorac Cardiovasc Surg 1169(1):98–106CrossRefGoogle Scholar
  19. 19.
    Sato M, Ando N, Ozawa S et al (1994) An artificial esophagus consisting of cultured human esophageal epithelial cells, polyglycolic acid mesh, and collagen. ASAIO J 40(3):M389–M392PubMedCrossRefGoogle Scholar
  20. 20.
    Natsume T, Ike O, Okada T, Shimizu Y, Ikada Y, Tamura K (1990) Experimental studies of a hybrid artificial esophagus combined with autologous mucosal cells. ASAIO Trans 36(3):M435–M437PubMedGoogle Scholar
  21. 21.
    Badylak S, Meurling S, Chen M, Spievack A, Simmons-Byrd A (2000) Resorbable bioscaffold for esophageal repair in a dog model. J Pediatr Surg 35(7):1097–1103PubMedCrossRefGoogle Scholar
  22. 22.
    Badylak SF, Vorp DA, Spievack AR et al (2005) Esophageal reconstruction with ECM and muscle tissue in a dog model. J Surg Res 128(1):87–97PubMedGoogle Scholar
  23. 23.
    Nieponice A, Gilbert TW, Badylak SF (2006) Reinforcement of esophageal anastomoses with an extracellular matrix scaffold in a canine model. Ann Thorac Surg 82(6):2050–2058PubMedCrossRefGoogle Scholar
  24. 24.
    Nieponice A, McGrath K, Qureshi I, Beckman EJ, Luketich JD, Gilbert TW, Badylak SF (2009) An extracellular matrix scaffold for esophageal stricture prevention after circumferential EMR. Gastrointest Endosc 69(2):289–296PubMedCrossRefGoogle Scholar
  25. 25.
    Nakase Y, Nakamura T, Kin S, Nakashima S, Yoshikawa T, Kuriu Y, Sakakura C, Yamagishi H, Hamuro J, Ikada Y, Otsuji E, Hagiwara A (2008) Intrathoracic esophageal replacement by in situ tissue-engineered esophagus. J Thorac Cardiovasc Surg 136(4):850–859PubMedCrossRefGoogle Scholar
  26. 26.
    Saxena AK, Baumgart H, Komann C, Ainoedhofer H, Soltysiak P, Kofler K, Höllwarth ME (2010) Esophagus tissue engineering: in situ generation of rudimentary tubular vascularized esophageal conduit using the ovine model. J Pediatr Surg 45(5):859–864PubMedCrossRefGoogle Scholar
  27. 27.
    Grillo HC (2002) Tracheal replacement: a critical review. Ann Thorac Surg 73:1995–2004PubMedCrossRefGoogle Scholar
  28. 28.
    Grillo HC (1994) Slide tracheoplasty for long-segment congenital tracheal stenosis. Ann Thorac Surg 58:613–621PubMedCrossRefGoogle Scholar
  29. 29.
    Weber TR, Connors RH, Tracy TF Jr (1991) Acquired tracheal stenosis in infants and children. J Thorac Cardiovasc Surg 102:29–35PubMedGoogle Scholar
  30. 30.
    Elliott MJ (1967) Prosthetic replacement of the trachea. Ann Thorac Surg 4:1–11CrossRefGoogle Scholar
  31. 31.
    Bader A, Macchiarini P (2010) Moving towards in situ tracheal regeneration: the bionic tissue engineered transplantation approach. J Cell Mol Med 14(7):1877–1889PubMedCrossRefGoogle Scholar
  32. 32.
    Kalathur M, Baiguera S, Macchiarini P (2010) Translating tissue-engineered tracheal replacement from bench to bedside. Cell Mol Life Sci 67(24):4185–4196.PubMedCrossRefGoogle Scholar
  33. 33.
    Kojima K, Bonassar LJ, Roy AK, Vacanti CA, Cortiella J (2002) Autologous tissue-engineered trachea with sheep nasal chondrocytes. J Thorac Cardiovasc Surg 123(6):1177–1184PubMedCrossRefGoogle Scholar
  34. 34.
    Kojima K, Bonassar LJ, Ignotz RA, Syed K, Cortiella J, Vacanti CA (2003) Comparison of tracheal and nasal chondrocytes for tissue engineering of the trachea. Ann Thorac Surg 76(6):1884–1888PubMedCrossRefGoogle Scholar
  35. 35.
    Omori K, Nakamura T, Kanemaru S, Asato R, Yamashita M, Tanaka S, Magrufov A, Ito J, Shimizu Y (2005) Regenerative medicine of the trachea: the first human case. Ann Otol Rhinol Laryngol 114(6):429–433PubMedGoogle Scholar
  36. 36.
    Weidenbecher M, Tucker HM, Gilpin DA, Dennis JE (2009) Tissue-engineered trachea for airway reconstruction. Laryngoscope 119(11):2118–2123PubMedCrossRefGoogle Scholar
  37. 37.
    Gilpin DA, Weidenbecher MS, Dennis JE (2010) Scaffold-free tissue-engineered cartilage implants for laryngotracheal reconstruction. Laryngoscope 120(3):612–617PubMedCrossRefGoogle Scholar
  38. 38.
    Cohen RC, Filler RM, Konuma K, Bahoric A, Kent G, Smith C (1986) A new model of tracheal stenosis and its repair with free periosteal grafts. J Thorac Cardiovasc Surg 92:296–304PubMedGoogle Scholar
  39. 39.
    Jones RE, Morgan RF, Marcella KL, Mills SE, Kron IL (1986) Tracheal reconstruction with autogenous jejunal microsurgical transfer. Ann Thorac Surg 41:636–638PubMedCrossRefGoogle Scholar
  40. 40.
    Papp C, McCraw JB, Arnold PG (1985) Experimental reconstruction of the trachea with autogenous materials. J Thorac Cardiovasc Surg 90:13–20PubMedGoogle Scholar
  41. 41.
    Murakami S, Sato H, Yokoi K, Tunezuka N, Hayashi Y, Shimizu J, Watanabe Y (1994) An experimental study of tracheal reconstruction using a freed piece of the right bronchus. Thorac Cardiovasc Surg 42:76–80PubMedCrossRefGoogle Scholar
  42. 42.
    Carbognani P, Spaggiari L, Solli P, Corradi A, Cantoni AM, Barocelli E et al (1999) Experimental tracheal transplantation using a cryopreserved aortic allograft. Eur Surg Res 31:210–215PubMedCrossRefGoogle Scholar
  43. 43.
    Kato R, Onuki AS, Watanabe M, Hashizume T, Kawamura M, Kikuchi K, Kobayashi K, Ishihara T (1990) Tracheal reconstruction by esophageal interposition: an experimental study. Ann Thorac Surg 49:951–954PubMedCrossRefGoogle Scholar
  44. 44.
    Remlinger NT, Czajka CA, Juhas ME, Vorp DA, Stolz DB, Badylak SF, Gilbert S, Gilbert TW (2010) Hydrated xenogeneic decellularized tracheal matrix as a scaffold for tracheal reconstruction. Biomaterials 31(13):3520–3526PubMedCrossRefGoogle Scholar
  45. 45.
    Nakanishi R (2009) Cryopreservation of the tracheal grafts: review and perspective. Organogenesis 5(3):113–118PubMedCrossRefGoogle Scholar
  46. 46.
    Gubbels SP, Richardson M, Trune D, Bascom DA, Wax MK (2006) Tracheal reconstruction with porcine small intestine submucosa in a rabbit model. Otolaryngol Head Neck Surg 134:1028–1035PubMedCrossRefGoogle Scholar
  47. 47.
    Park JW, Pavcnik D, Uchida BT, Timmermans H, Corless CL, Yamakado K, Yamada K, Keller FS, Rosch J (2000) Small intestinal submucosa covered expandable Z stents for treatment of tracheal injury: an experimental pilot study in swine. J Vasc Interv Radiol 11:1325–1330PubMedCrossRefGoogle Scholar
  48. 48.
    Gilbert TW, Gilbert S, Madden M, Reynolds SD, Badylak SF (2008) Morphologic assessment of extracellular matrix scaffolds for patch tracheoplasty in a canine model. Ann Thorac Surg 86(3):967–974PubMedCrossRefGoogle Scholar
  49. 49.
    Macchiarini P, Walles T, Biancosino C, Mertsching H (2004) First human transplantation of a bioengineered airway tissue. J Thorac Cardiovasc Surg 128(4):638–641PubMedCrossRefGoogle Scholar
  50. 50.
    Hurd S (2000) The impact of COPD on lung health worldwide. Chest 117(2):1S–4SPubMedCrossRefGoogle Scholar
  51. 51.
    Cortiella J, Nichols JE, Kojima K, Bonassar LJ, Dargon P, Roy AK, Vacanti MP, Niles JA, Vacanti CA (2006) Tissue-engineered lung: an in vivo and in vitro comparison of polyglycolic acid and pluronic F-127 hydrogel/somatic lung progenitor cell constructs to support tissue growth. Tissue Eng 12:1213–1225PubMedCrossRefGoogle Scholar
  52. 52.
    Nichols JE, Niles JA, Cortiella J (2009) Design and development of tissue engineered lung: progress and challenges. Organogenesis 5(2):57–61PubMedCrossRefGoogle Scholar
  53. 53.
    Nichols JE, Cortiella J (2008) Engineering of a complex organ: progress toward development of a tissue-engineered lung. Proc Am Thorac Soc 5(6):723–730PubMedCrossRefGoogle Scholar
  54. 54.
    Sugihara H, Toda S, Miyabara S, Fujiyama C, Yonemitsu N (1993) Reconstruction of alveolus-like structure from alveolar type II epithelial cells in three-dimensional collagen gel matrix culture. Am J Pathol 142(3):783–792PubMedGoogle Scholar
  55. 55.
    Chakir J, Pagé N, Hamid Q, Laviolette M, Boulet LP, Rouabhia M (2001) Bronchial mucosa produced by tissue engineering: a new tool to study cellular interactions in asthma. J Allergy Clin Immunol 107:36–40PubMedCrossRefGoogle Scholar
  56. 56.
    Mondrinos MJ, Koutzaki S, Lelkes PI, Finck CM (2007) A tissue-engineered model of fetal distal lung tissue. Am J Physiol Lung Cell Mol Physiol 293(3):L639–L650PubMedCrossRefGoogle Scholar
  57. 57.
    Chen P, Marsilio E, Goldstein RH, Yannas IV, Spector M (2005) Formation of lung alveolar-like structures in collagen-glycosaminoglycan scaffolds in vitro. Tissue Eng 11(9–10):1436–1448PubMedCrossRefGoogle Scholar
  58. 58.
    Blau H, Guzowski DE, Siddiqi ZA, Scarpelli EM, Bienkowski RS (1988) Fetal type 2 pneumocytes form alveolar-like structures and maintain long-term differentiation on extracellular matrix. J Cell Physiol 136:203–214PubMedCrossRefGoogle Scholar
  59. 59.
    Mondrinos MJ, Koutzaki SH, Poblete HM, Crisanti MC, Lelkes PI, Finck CM (2008) In vivo pulmonary tissue engineering: contribution of donor-derived endothelial cells to construct vascularization. Tissue Eng 14:361–368CrossRefGoogle Scholar
  60. 60.
    Mondrinos MJ, Koutzaki S, Jiwanmall E, Li M, Dechadarevian JP, Lelkes PI, Finck CM (2006) Engineering three-dimensional pulmonary tissue constructs. Tissue Eng 12:717–728PubMedCrossRefGoogle Scholar
  61. 61.
    Lin YM, Zhang A, Rippon HJ, Bismark A, Bishop AE (2010) Tissue engineering of lung: the effect of extracellular matrix on the differentiation of embryonic stem cells to pneumocytes. Tissue Eng Part A 16(5):1515–1526PubMedCrossRefGoogle Scholar
  62. 62.
    Shannon JM, Mason RJ, Jennings SD (1987) Functional differentiation of alveolar type II epithelial cells in vitro: effects of cell shape, cell-matrix interactions and cell-cell interactions. Biochim Biophys Acta 931:143–156PubMedCrossRefGoogle Scholar
  63. 63.
    Zhang WJ, Lin QX, Zhang Y, Liu CT, Qui LY, Wang HB, Duan CM, Liu ZQ, Zhou J, Wang CY (2010) The reconstruction of lung alveolus-like structure in collagen-matrigel/microcapsules scaffolds in vitro. J Cell Mol Med Oct 3. doi: 10.1111/j.1582-4934.2010.01189.x
  64. 64.
    Lavik E, Langer R (2004) Tissue engineering: current state and perspectives. Appl Microbiol Biotechnol 65:1–8PubMedCrossRefGoogle Scholar
  65. 65.
    Andrade CF, Wong AP, Waddell TK, Keshavjee S, Liu M (2007) Cell-based tissue engineering for lung regeneration. Am J Physiol Lung Cell Mol Physiol 292(2):L510–L518PubMedCrossRefGoogle Scholar
  66. 66.
    Cortiella J, Niles J, Cantu A, Brettler A, Pham A, Vargas G, Winston S, Wang J, Walls S, Nichols JE (2010) Influence of acellular natural lung matrix on murine embryonic stem cell differentiation and tissue formation. Tissue Eng Part A 16(8):2565–2580PubMedCrossRefGoogle Scholar
  67. 67.
    Ott HC, Clippinger B, Conrad C, Schuetz C, Pomerantseva I, Ikonomou L, Kotton D, Vacanti JP (2010) Regeneration and orthotopic transplantation of a bioartificial lung. Nat Med 16(8):927–933PubMedCrossRefGoogle Scholar
  68. 68.
    Petersen TH, Calle EA, Zhao L, Lee EJ, Gui L, Raredon MB, Gavrilov K, Yi T, Zhuang ZW, Breuer C, Herzog E, Niklason LE (2010) Tissue-engineered lungs for in vivo implantation. Science 329(5991):538–541PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Joan E. Nichols
    • 1
    • 2
    Email author
  • Jean A. Niles
    • 1
  • Joaquin Cortiella
    • 3
  1. 1.Laboratory of Regenerative and Nano-MedicineUniversity of Texas Medical BranchGalvestonUSA
  2. 2.Departments of Internal Medicine and Infectious DiseasesUniversity of Texas Medical BranchGalvestonUSA
  3. 3.Laboratory of Regenerative and Nano-Medicine, Department of AnesthesiologyUniversity of Texas Medical BranchGalvestonUSA

Personalised recommendations