Skip to main content

Engineering Complex Synthetic Organs

  • Chapter
  • First Online:
Tissue Engineering in Regenerative Medicine

Abstract

At this time there is a substantial, and as yet unmet, demand for organs to replace nonfunctional tissues resulting from congenital defects, or to repair damaged or degenerated tissues. The field of regenerative medicine hopes to provide engineered replacement tissues in situations where our body’s regenerative capability or nonbiological mechanical devices cannot adequately replace lost physiological functions. This technology holds the promise to supply customized organs to overcome the severe shortages we currently face. Engineering synthetic organs is a complex process which necessitates careful (1) selection of cells or controlled proliferation of stem or progenitor cells to achieve appropriate numbers of cells for seeding onto biodegradable scaffolds to create cell-scaffold constructs, (2) design and selection of appropriate biodegradable or biomodifiable scaffold materials, and (3) design and construction of bioreactors to support generation of functional tissue replacements. To be successful, ongoing efforts to understand and engineer multicellular systems must continue, and new efforts to induce vascularization and integration of engineered tissues into the body will need to be developed. Current studies lead to improved understanding of how tissue systems can be integrated, as well as development of biomedical technologies not traditionally considered in tissue engineering, such as development of biohybrid organs or “bionic” devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

COPD:

Chronic obstructive pulmonary disease

ECM:

Extracellular matrix

ESRD:

End-stage renal disease

FGF-2:

Fibroblast growth factor-2

FPC:

Fetal pulmonary cell

mESC:

Murine embryonic stem cell

P-SPC:

Pro-surfactant protein C

PF-127:

Pluronic F-127

PGA:

Polyglycolic acid

RAD:

Renal tubule assist device

SLPC:

Somatic lung progenitor cell

SP-A:

Surfactant protein A

SP-C:

Surfactant protein C

TTF1:

Thyroid transcription factor-1

References

  1. Nichol JW, Khademhosseini A (2009) Modular tissue engineering: engineering biological tissues from the bottom up. Soft Matter 5(7):1312–1319

    Article  PubMed  CAS  Google Scholar 

  2. Perin L, Giuliani S, Sedrakyan S, Da Sacco S, De Filippo R (2008) Stem cell and regenerative science application in the development of bioengineering of renal tissue. Pediatr Res 63:467–471

    Article  PubMed  Google Scholar 

  3. US Renal Data System. Annual data report. http://www.usrds.org/atlas.htm. Accessed 6 Aug 2011

  4. Nissenson AR (2009) Bottom-up nanotechnology: the human nephron filter. Semin Dialysis 22(6):661–664

    Article  Google Scholar 

  5. Reisner Y (2007) Growing organs for transplantation from embryonic precursor tissues. Immunol Res 38:261–273

    Article  PubMed  CAS  Google Scholar 

  6. Rosines E, Johkura K, Zhang X, Schmidt HJ, DeCambre M, Bush KT, Nigam SK (2010) Constructing kidney-like tissues from cells based on programs for organ development: towards a method of in vitro tissue engineering of the kidney. Tissue Eng Part A 16(8):2441–2455

    Article  PubMed  CAS  Google Scholar 

  7. Fissell WH, Roy S (2009) The implantable artificial kidney. Semin Dialysis 22(6):665–670

    Article  Google Scholar 

  8. Dankers PYW, Roomker JM, Huizinga-van der Vlag A, Wisse E, Appel WPJ, Smedts FMM, Hamsen MC, Bosman AW, Meijer W, van Luyn MJA (2010) Bioengineering of living renal membranes consisting of hierarchical, bioactive supramolecular meshes and human tubular cells. Biomaterials 32(3):723–733. doi:10.1016/j.biomaterials.2010.09.020

    Article  PubMed  Google Scholar 

  9. Subramanian B, Rudym D, Cannizzaro C, Perrone R, Zhou J, Kaplan DL (2010) Tissue-engineered three-dimensional in vitro models for normal and diseased kidney. Tissue Eng Part A 16(9):2821–2831

    Article  PubMed  CAS  Google Scholar 

  10. Humes HD, Buffington DA, MacKay SM, Funke AJ, Weitzel WF (1999) Replacement of a renal function in uremic animals with a tissue-engineered kidney. Nat Biotechnol 17:451–455

    Article  PubMed  CAS  Google Scholar 

  11. Nakayama KH, Batchelder CA, Lee CI, Tarantal AF (2010) Decellularized rhesus monkey kidney as three-dimensional scaffold for renal tissue engineering. Tissue Eng Part A 16(7):2207–2216

    Article  PubMed  CAS  Google Scholar 

  12. Squier CA, Kremer MJ (2001) Biology of oral mucosa and esophagus. J Natl Cancer Inst Monogr 29:7–15

    PubMed  Google Scholar 

  13. Pace F, Antinori S, Repici A (2009) What is new in esophageal injury (infection, drug-induced, caustic, stricture, perforation)? Curr Opin Gastroenterol 25(4):372–379

    Article  Google Scholar 

  14. Davenport M, Hosie GP, Tasker RC, Gordon I, Kiely EM, Spitz L (1996) Long-term effects of gastric transposition in children: a physiological study. J Pediatr Surg 31(4):588–593

    Article  PubMed  CAS  Google Scholar 

  15. Erdogan E, Emir H, Eroglu E, Danişmend N, Yeker D (2000) Esophageal replacement using the colon: a 15-year review. Pediatr Surg Int 16(6):546–549

    PubMed  CAS  Google Scholar 

  16. Borgnon J, Tounian P, Auber F, Larroquet M, Boeris Clemen F, Girardet JP, Audry G (2004) Esophageal replacement in children by an isoperistaltic gastric tube: a 12-year experience. Pediatr Surg Int 20(11–12):829–833

    Article  PubMed  CAS  Google Scholar 

  17. Beckstead BL, Pan S, Bhrany AD, Bratt-Leal AM, Ratner BD, Giachelli CM (2005) Esophageal epithelial cell interaction with synthetic and natural scaffolds for tissue engineering. Biomaterials 26(31):6217–6228

    Article  PubMed  CAS  Google Scholar 

  18. Takimoto Y, Nakamura T, Yamamoto Y, Kiyotani T, Teramachi M, Shimizu Y (1998) The experimental replacement of a cervical esophageal segment with an artificial prosthesis with the use of collagen matrix and a silicone stent. J Thorac Cardiovasc Surg 1169(1):98–106

    Article  Google Scholar 

  19. Sato M, Ando N, Ozawa S et al (1994) An artificial esophagus consisting of cultured human esophageal epithelial cells, polyglycolic acid mesh, and collagen. ASAIO J 40(3):M389–M392

    Article  PubMed  CAS  Google Scholar 

  20. Natsume T, Ike O, Okada T, Shimizu Y, Ikada Y, Tamura K (1990) Experimental studies of a hybrid artificial esophagus combined with autologous mucosal cells. ASAIO Trans 36(3):M435–M437

    PubMed  CAS  Google Scholar 

  21. Badylak S, Meurling S, Chen M, Spievack A, Simmons-Byrd A (2000) Resorbable bioscaffold for esophageal repair in a dog model. J Pediatr Surg 35(7):1097–1103

    Article  PubMed  CAS  Google Scholar 

  22. Badylak SF, Vorp DA, Spievack AR et al (2005) Esophageal reconstruction with ECM and muscle tissue in a dog model. J Surg Res 128(1):87–97

    PubMed  Google Scholar 

  23. Nieponice A, Gilbert TW, Badylak SF (2006) Reinforcement of esophageal anastomoses with an extracellular matrix scaffold in a canine model. Ann Thorac Surg 82(6):2050–2058

    Article  PubMed  Google Scholar 

  24. Nieponice A, McGrath K, Qureshi I, Beckman EJ, Luketich JD, Gilbert TW, Badylak SF (2009) An extracellular matrix scaffold for esophageal stricture prevention after circumferential EMR. Gastrointest Endosc 69(2):289–296

    Article  PubMed  Google Scholar 

  25. Nakase Y, Nakamura T, Kin S, Nakashima S, Yoshikawa T, Kuriu Y, Sakakura C, Yamagishi H, Hamuro J, Ikada Y, Otsuji E, Hagiwara A (2008) Intrathoracic esophageal replacement by in situ tissue-engineered esophagus. J Thorac Cardiovasc Surg 136(4):850–859

    Article  PubMed  Google Scholar 

  26. Saxena AK, Baumgart H, Komann C, Ainoedhofer H, Soltysiak P, Kofler K, Höllwarth ME (2010) Esophagus tissue engineering: in situ generation of rudimentary tubular vascularized esophageal conduit using the ovine model. J Pediatr Surg 45(5):859–864

    Article  PubMed  Google Scholar 

  27. Grillo HC (2002) Tracheal replacement: a critical review. Ann Thorac Surg 73:1995–2004

    Article  PubMed  Google Scholar 

  28. Grillo HC (1994) Slide tracheoplasty for long-segment congenital tracheal stenosis. Ann Thorac Surg 58:613–621

    Article  PubMed  CAS  Google Scholar 

  29. Weber TR, Connors RH, Tracy TF Jr (1991) Acquired tracheal stenosis in infants and children. J Thorac Cardiovasc Surg 102:29–35

    PubMed  CAS  Google Scholar 

  30. Elliott MJ (1967) Prosthetic replacement of the trachea. Ann Thorac Surg 4:1–11

    Article  Google Scholar 

  31. Bader A, Macchiarini P (2010) Moving towards in situ tracheal regeneration: the bionic tissue engineered transplantation approach. J Cell Mol Med 14(7):1877–1889

    Article  PubMed  CAS  Google Scholar 

  32. Kalathur M, Baiguera S, Macchiarini P (2010) Translating tissue-engineered tracheal replacement from bench to bedside. Cell Mol Life Sci 67(24):4185–4196.

    Article  PubMed  CAS  Google Scholar 

  33. Kojima K, Bonassar LJ, Roy AK, Vacanti CA, Cortiella J (2002) Autologous tissue-engineered trachea with sheep nasal chondrocytes. J Thorac Cardiovasc Surg 123(6):1177–1184

    Article  PubMed  Google Scholar 

  34. Kojima K, Bonassar LJ, Ignotz RA, Syed K, Cortiella J, Vacanti CA (2003) Comparison of tracheal and nasal chondrocytes for tissue engineering of the trachea. Ann Thorac Surg 76(6):1884–1888

    Article  PubMed  Google Scholar 

  35. Omori K, Nakamura T, Kanemaru S, Asato R, Yamashita M, Tanaka S, Magrufov A, Ito J, Shimizu Y (2005) Regenerative medicine of the trachea: the first human case. Ann Otol Rhinol Laryngol 114(6):429–433

    PubMed  Google Scholar 

  36. Weidenbecher M, Tucker HM, Gilpin DA, Dennis JE (2009) Tissue-engineered trachea for airway reconstruction. Laryngoscope 119(11):2118–2123

    Article  PubMed  Google Scholar 

  37. Gilpin DA, Weidenbecher MS, Dennis JE (2010) Scaffold-free tissue-engineered cartilage implants for laryngotracheal reconstruction. Laryngoscope 120(3):612–617

    Article  PubMed  CAS  Google Scholar 

  38. Cohen RC, Filler RM, Konuma K, Bahoric A, Kent G, Smith C (1986) A new model of tracheal stenosis and its repair with free periosteal grafts. J Thorac Cardiovasc Surg 92:296–304

    PubMed  CAS  Google Scholar 

  39. Jones RE, Morgan RF, Marcella KL, Mills SE, Kron IL (1986) Tracheal reconstruction with autogenous jejunal microsurgical transfer. Ann Thorac Surg 41:636–638

    Article  PubMed  CAS  Google Scholar 

  40. Papp C, McCraw JB, Arnold PG (1985) Experimental reconstruction of the trachea with autogenous materials. J Thorac Cardiovasc Surg 90:13–20

    PubMed  CAS  Google Scholar 

  41. Murakami S, Sato H, Yokoi K, Tunezuka N, Hayashi Y, Shimizu J, Watanabe Y (1994) An experimental study of tracheal reconstruction using a freed piece of the right bronchus. Thorac Cardiovasc Surg 42:76–80

    Article  PubMed  CAS  Google Scholar 

  42. Carbognani P, Spaggiari L, Solli P, Corradi A, Cantoni AM, Barocelli E et al (1999) Experimental tracheal transplantation using a cryopreserved aortic allograft. Eur Surg Res 31:210–215

    Article  PubMed  CAS  Google Scholar 

  43. Kato R, Onuki AS, Watanabe M, Hashizume T, Kawamura M, Kikuchi K, Kobayashi K, Ishihara T (1990) Tracheal reconstruction by esophageal interposition: an experimental study. Ann Thorac Surg 49:951–954

    Article  PubMed  CAS  Google Scholar 

  44. Remlinger NT, Czajka CA, Juhas ME, Vorp DA, Stolz DB, Badylak SF, Gilbert S, Gilbert TW (2010) Hydrated xenogeneic decellularized tracheal matrix as a scaffold for tracheal reconstruction. Biomaterials 31(13):3520–3526

    Article  PubMed  CAS  Google Scholar 

  45. Nakanishi R (2009) Cryopreservation of the tracheal grafts: review and perspective. Organogenesis 5(3):113–118

    Article  PubMed  Google Scholar 

  46. Gubbels SP, Richardson M, Trune D, Bascom DA, Wax MK (2006) Tracheal reconstruction with porcine small intestine submucosa in a rabbit model. Otolaryngol Head Neck Surg 134:1028–1035

    Article  PubMed  Google Scholar 

  47. Park JW, Pavcnik D, Uchida BT, Timmermans H, Corless CL, Yamakado K, Yamada K, Keller FS, Rosch J (2000) Small intestinal submucosa covered expandable Z stents for treatment of tracheal injury: an experimental pilot study in swine. J Vasc Interv Radiol 11:1325–1330

    Article  PubMed  CAS  Google Scholar 

  48. Gilbert TW, Gilbert S, Madden M, Reynolds SD, Badylak SF (2008) Morphologic assessment of extracellular matrix scaffolds for patch tracheoplasty in a canine model. Ann Thorac Surg 86(3):967–974

    Article  PubMed  Google Scholar 

  49. Macchiarini P, Walles T, Biancosino C, Mertsching H (2004) First human transplantation of a bioengineered airway tissue. J Thorac Cardiovasc Surg 128(4):638–641

    Article  PubMed  Google Scholar 

  50. Hurd S (2000) The impact of COPD on lung health worldwide. Chest 117(2):1S–4S

    Article  PubMed  CAS  Google Scholar 

  51. Cortiella J, Nichols JE, Kojima K, Bonassar LJ, Dargon P, Roy AK, Vacanti MP, Niles JA, Vacanti CA (2006) Tissue-engineered lung: an in vivo and in vitro comparison of polyglycolic acid and pluronic F-127 hydrogel/somatic lung progenitor cell constructs to support tissue growth. Tissue Eng 12:1213–1225

    Article  PubMed  CAS  Google Scholar 

  52. Nichols JE, Niles JA, Cortiella J (2009) Design and development of tissue engineered lung: progress and challenges. Organogenesis 5(2):57–61

    Article  PubMed  Google Scholar 

  53. Nichols JE, Cortiella J (2008) Engineering of a complex organ: progress toward development of a tissue-engineered lung. Proc Am Thorac Soc 5(6):723–730

    Article  PubMed  Google Scholar 

  54. Sugihara H, Toda S, Miyabara S, Fujiyama C, Yonemitsu N (1993) Reconstruction of alveolus-like structure from alveolar type II epithelial cells in three-dimensional collagen gel matrix culture. Am J Pathol 142(3):783–792

    PubMed  CAS  Google Scholar 

  55. Chakir J, Pagé N, Hamid Q, Laviolette M, Boulet LP, Rouabhia M (2001) Bronchial mucosa produced by tissue engineering: a new tool to study cellular interactions in asthma. J Allergy Clin Immunol 107:36–40

    Article  PubMed  CAS  Google Scholar 

  56. Mondrinos MJ, Koutzaki S, Lelkes PI, Finck CM (2007) A tissue-engineered model of fetal distal lung tissue. Am J Physiol Lung Cell Mol Physiol 293(3):L639–L650

    Article  PubMed  CAS  Google Scholar 

  57. Chen P, Marsilio E, Goldstein RH, Yannas IV, Spector M (2005) Formation of lung alveolar-like structures in collagen-glycosaminoglycan scaffolds in vitro. Tissue Eng 11(9–10):1436–1448

    Article  PubMed  CAS  Google Scholar 

  58. Blau H, Guzowski DE, Siddiqi ZA, Scarpelli EM, Bienkowski RS (1988) Fetal type 2 pneumocytes form alveolar-like structures and maintain long-term differentiation on extracellular matrix. J Cell Physiol 136:203–214

    Article  PubMed  CAS  Google Scholar 

  59. Mondrinos MJ, Koutzaki SH, Poblete HM, Crisanti MC, Lelkes PI, Finck CM (2008) In vivo pulmonary tissue engineering: contribution of donor-derived endothelial cells to construct vascularization. Tissue Eng 14:361–368

    Article  CAS  Google Scholar 

  60. Mondrinos MJ, Koutzaki S, Jiwanmall E, Li M, Dechadarevian JP, Lelkes PI, Finck CM (2006) Engineering three-dimensional pulmonary tissue constructs. Tissue Eng 12:717–728

    Article  PubMed  CAS  Google Scholar 

  61. Lin YM, Zhang A, Rippon HJ, Bismark A, Bishop AE (2010) Tissue engineering of lung: the effect of extracellular matrix on the differentiation of embryonic stem cells to pneumocytes. Tissue Eng Part A 16(5):1515–1526

    Article  PubMed  CAS  Google Scholar 

  62. Shannon JM, Mason RJ, Jennings SD (1987) Functional differentiation of alveolar type II epithelial cells in vitro: effects of cell shape, cell-matrix interactions and cell-cell interactions. Biochim Biophys Acta 931:143–156

    Article  PubMed  CAS  Google Scholar 

  63. Zhang WJ, Lin QX, Zhang Y, Liu CT, Qui LY, Wang HB, Duan CM, Liu ZQ, Zhou J, Wang CY (2010) The reconstruction of lung alveolus-like structure in collagen-matrigel/microcapsules scaffolds in vitro. J Cell Mol Med Oct 3. doi:10.1111/j.1582-4934.2010.01189.x

  64. Lavik E, Langer R (2004) Tissue engineering: current state and perspectives. Appl Microbiol Biotechnol 65:1–8

    Article  PubMed  CAS  Google Scholar 

  65. Andrade CF, Wong AP, Waddell TK, Keshavjee S, Liu M (2007) Cell-based tissue engineering for lung regeneration. Am J Physiol Lung Cell Mol Physiol 292(2):L510–L518

    Article  PubMed  CAS  Google Scholar 

  66. Cortiella J, Niles J, Cantu A, Brettler A, Pham A, Vargas G, Winston S, Wang J, Walls S, Nichols JE (2010) Influence of acellular natural lung matrix on murine embryonic stem cell differentiation and tissue formation. Tissue Eng Part A 16(8):2565–2580

    Article  PubMed  CAS  Google Scholar 

  67. Ott HC, Clippinger B, Conrad C, Schuetz C, Pomerantseva I, Ikonomou L, Kotton D, Vacanti JP (2010) Regeneration and orthotopic transplantation of a bioartificial lung. Nat Med 16(8):927–933

    Article  PubMed  CAS  Google Scholar 

  68. Petersen TH, Calle EA, Zhao L, Lee EJ, Gui L, Raredon MB, Gavrilov K, Yi T, Zhuang ZW, Breuer C, Herzog E, Niklason LE (2010) Tissue-engineered lungs for in vivo implantation. Science 329(5991):538–541

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Kenneth D. Frohne for his photographic and editorial assistance during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan E. Nichols .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Nichols, J.E., Niles, J.A., Cortiella, J. (2011). Engineering Complex Synthetic Organs. In: Bernstein, H. (eds) Tissue Engineering in Regenerative Medicine. Stem Cell Biology and Regenerative Medicine. Humana Press. https://doi.org/10.1007/978-1-61779-322-6_16

Download citation

Publish with us

Policies and ethics