Skip to main content

Imaging Cancer Stem Cells

  • Chapter
  • First Online:
Cancer Stem Cells in Solid Tumors

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

With increasing evidence of a role for cancer stem cells (CSC) in tumor initiation, proliferation, and metastasis, and a multitude of advanced imaging technologies being developed for noninvasive in vivo cell tracking, the need for imaging studies with a focus on monitoring the fate of CSCs in vivo appears clear. Preclinical investigations of CSCs would benefit from techniques that could dynamically monitor cells from their earliest appearance in tissues and throughout the processes of tumor development and metastasis in entire organs or animals. Traditionally, the assays used to identify and examine CSC are labor-intensive, time-consuming, invasive, and provide little information on the dynamics of cancer cells in vivo. CSC studies should take advantage of advanced imaging technology to increase our understanding of the CSC model, dormancy, tumor growth, and metastasis. With the ability to reliably track the metastasis and proliferation of small numbers of cancer cells, and specific subsets of cancer cells, will come new knowledge of the behavior of these cells in a relatively undisturbed environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

18FDG:

18-Fluoro-2-deoxyglucose

2D:

Two-dimensional

3D:

Three-dimensional

BLI:

Bioluminescence imaging

CCD:

Charge-coupled device

CD:

Cluster of differentiation

cODC:

Carboxyl-terminal degron of ornithine decarboxylase

CSC:

Cancer stem cell

CT:

Computed tomography

Cu-64:

Copper 64

FI:

Fluorescence imaging

FITC:

Fluorescein isothiocyanate

GFP:

Green fluorescence protein

GRE:

Gradient echo

HSV1-TK:

Herpes simplex virus type 1 thymidine kinase

MRI:

Magnetic resonance imaging

NIR:

Near-infrared

PET:

Positron emission tomography

PTSM:

Pyruvalde-hyde-bis (N4-methylthiosemicarbazone)

RFP:

Red fluorescence protein

SE:

Spin echo

SPECT:

Single photon emission computed tomography

SPIO:

Superparamagnetic iron oxide

References

  1. Pierce MC, Javier DJ, Richards-Kortum R (2008) Optical contrast agents and imaging systems for detection and diagnosis of cancer. Int J Cancer 123(9):1979–1990.

    Article  PubMed  CAS  Google Scholar 

  2. Rodt T, von Falck C, Halter R, Ringe K, Shin HO, Galanski M, Borlak M (2009) In vivo microCT quantification of lung tumor growth in SPC-raf transgenic mice. J Front Biosci 14:1939–1944.

    Article  Google Scholar 

  3. Rychak JJ, Graba J, Cheung AM, Mystry BS, Lindner JR, Kerbel RS, Foster FS (2007) Microultrasound molecular imaging of vascular endothelial growth factor receptor 2 in a mouse model of tumor angiogenesis. Mol Imaging 6(5):289–296.

    PubMed  Google Scholar 

  4. Herschman HR (2004) PET reporter genes for noninvasive imaging of gene therapy, cell tracking and transgenic analysis Crit Rev Oncol Hematol 51(3):191–204.

    Article  PubMed  Google Scholar 

  5. Emonts P, Bourgeois P, Lemort M, Flamen P (2009) Functional imaging of head and neck cancers. Curr Opin Oncol 21(3):212–217.

    Article  PubMed  CAS  Google Scholar 

  6. Bernas LM, Foster PJ, Rutt BK (2010) Imaging iron-loaded mouse glioma tumors with bSSFP at 3 T. Magn Reson Med 64(1):23–31.

    Article  PubMed  Google Scholar 

  7. Bulte JW, Douglas T, Witwer B, Zhang SC, Strable E, Lewis BK, Zywicke H, Miller B, van Gelderen P, Moskowitz BM, Duncan ID, Frank JA (2001) Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotechnol 19(12):1141–1147.

    Article  PubMed  CAS  Google Scholar 

  8. Hinds KA, Hill JM, Shapiro EM, Laukkanen MO, Silva AC, Combs CA, Varney TR, Balaban RS, Koretsky AP, Dunbar CE (2003) Highly efficient endosomal labeling of progenitor and stem cells with large magnetic particles allows magnetic resonance imaging of single cells. Blood 102(3): 867–872.

    Article  PubMed  CAS  Google Scholar 

  9. Stroh A, Faber C, Neuberger T, Lorenz P, Sieland K, Jakob PM, Webb A, Pilgrimm H, Schober R, Pohl EE, Zimmer C (2005) In vivo detection limits of magnetically labeled embryonic stem cells in the rat brain using high-field (17.6 T) magnetic resonance imaging. Neuroimage 24(3):635–645.

    Article  PubMed  Google Scholar 

  10. Boddington S, Henning TD, Sutton EJ, Daldrup-Link HE (2008) Labeling stem cells with fluorescent dyes for non-invasive detection with optical imaging. J Vis Exp 2(14): 686. doi: 10.3791/686.

    Google Scholar 

  11. Narsinh KH, Cao F, Wu JC (2009) Molecular imaging of human embryonic stem cells. Methods Mol Biol 515:13–32.

    Article  PubMed  CAS  Google Scholar 

  12. Gera A, Steinberg GK, Guzman R (2010) In vivo neural stem cell imaging: current modalities and future directions. Regen Med 5(1):73–86.

    Article  PubMed  Google Scholar 

  13. Huang J, Lee CC, Sutcliffe JL, Cherry SR, Tarantal AF (2008) Radiolabeling rhesus monkey CD34+ hematopoietic and mesenchymal stem cells with 64Cu-pyruvaldehyde-bis(N4-methylthiosemicarbazone) for microPET imaging. Mol Imaging 7(1):1–11.

    PubMed  CAS  Google Scholar 

  14. Gyöngyösi M, Blanco J, Marian T, Trón L, Petneházy O, Petrasi Z, Hemetsberger R, Rodriguez J, Font G, Pavo IJ, Kertész I, Balkay L, Pavo N, Posa A, Emri M, Galuska L, Kraitchman DL, Wojta J, Huber K, Glogar D (2008) Serial noninvasive in vivo positron emission tomographic tracking of percutaneously intramyocardially injected autologous porcine mesenchymal stem cells modified for transgene reporter gene expression. Circ Cardiovasc Imaging 1(2):94–103.

    Article  PubMed  Google Scholar 

  15. Hong H, Yang Y, Zhang Y, Cai W (2010) Non-invasive cell tracking in cancer and cancer therapy. Curr Top Med Chem 10(12):1237–1248.

    Article  PubMed  CAS  Google Scholar 

  16. Bading JR, Shields AF (2008) Imaging of cell proliferation: status and prospects. J Nucl Med 49 Suppl 2:64S-80S.

    Article  PubMed  CAS  Google Scholar 

  17. Wang H, Liu B, Tian JH, Xu BX, Guan ZW, Qu BL, Liu CB, Wang RM, Chen YM, Zhang JM. (2010) Monitoring early responses to irradiation with dual-tracer micro-PET in dual-tumor bearing mice. World J Gastroenterol 16(43):5416–5423.

    Article  PubMed  Google Scholar 

  18. Capala J, Bouchelouche K (2010) Molecular imaging of HER2-positive breast cancer: a step toward an individualized ‘image and treat’ strategy. Curr Opin Oncol 22(6):559–66.

    Article  PubMed  CAS  Google Scholar 

  19. Kienast Y, von Baumgarten L, Fuhrmann M, Klinkert WE, Goldbrunner R, Herms J, Winkler F (2010) Real-time imaging reveals the single steps of brain metastasis formation. Nat Med 16(1):116–122.

    Article  PubMed  CAS  Google Scholar 

  20. Nogawa M, Yuasa T, Kimura S, Kuroda J, Sato K, Segawa H, Yokota A, Maekawa T (2005) Monitoring luciferase-labeled cancer cell growth and metastasis in different in vivo models. Cancer Lett 217(2):243–253.

    Article  PubMed  CAS  Google Scholar 

  21. Ntziachristos V (2010) Going deeper than microscopy: the optical imaging frontier in biology. Nat Methods 7(8):603–614.

    Article  PubMed  CAS  Google Scholar 

  22. Klerk CP, Overmeer RM, Niers TM, Versteeg HH, Richel DJ, Buckle T, Van Noorden CJ, van Tellingen O (2007) Validity of bioluminescence measurements for noninvasive in vivo imaging of tumor load in small animals. Biotechniques 43(1 Suppl):7–13.

    Article  PubMed  Google Scholar 

  23. Dothager RS, Flentie K, Moss B, Pan MH, Kesarwala A, Piwnica-Worms D (2009) Advances in bioluminescence imaging of live animal models. Curr Opin Biotechnol 20(1):45–53.

    Article  PubMed  CAS  Google Scholar 

  24. Sadikot RT, Blackwell TS (2008) Bioluminescence: imaging modality for in vitro and in vivo gene expression. Methods Mol Biol 477:383–394.

    Article  PubMed  CAS  Google Scholar 

  25. Zhou L, El-Deiry WS (2009) Multispectral fluorescence imaging. J Nucl Med 50(10):1563–1566.

    Article  PubMed  Google Scholar 

  26. Shin D, Vigneswaran N, Gillenwater A, Richards-Kortum R (2010) Advances in fluorescence imaging techniques to detect oral cancer and its precursors. Future Oncol 6(7):1143–1154.

    Article  PubMed  Google Scholar 

  27. Suetsugu A, Osawa Y, Nagaki M, Moriwaki H, Saji S, Bouvet M, Hoffman RM (2010) Simultaneous color-coded imaging to distinguish cancer “stem-like” and non-stem cells in the same tumor. J Cell Biochem 111(4):1035–1041.

    Article  PubMed  CAS  Google Scholar 

  28. Vlashi E, Kim K, Lagadec C, Donna LD, McDonald JT, Eghbali M, Sayre JW, Stefani E, McBride W, Pajonk F (2009) In vivo imaging, tracking, and targeting of cancer stem cells. J Natl Cancer Inst 101(5):350–359.

    Article  PubMed  CAS  Google Scholar 

  29. Liu H, Patel MR, Prescher JA, Patsialou A, Qian D, Lin J, Wen S, Chang YF, Bachmann MH, Shimono Y, Dalerba P, Adorno M, Lobo N, Bueno J, Dirbas FM, Goswami S, Somlo G, Condeelis J, Contag CH, Gambhir SS, Clarke MF (2010) Cancer stem cells from human breast tumors are involved in spontaneous metastases in orthotopic mouse models. Proc Natl Acad Sci USA 107(42):18115–18120.

    Article  PubMed  CAS  Google Scholar 

  30. Rowland DJ, Cherry SR (2008) Small-animal preclinical nuclear medicine instrumentation and methodology. Semin Nucl Med 38(3):209–222.

    Article  PubMed  Google Scholar 

  31. Acton PD, Zhou R (2005) Imaging reporter genes for cell tracking with PET and SPECT. Q J Nucl Med Mol Imaging 49(4):349–360.

    PubMed  CAS  Google Scholar 

  32. Thompson M, Wall DM, Hicks RJ, Prince HM (2005) In vivo tracking for cell therapies. Q J Nucl Med Mol Imaging 49(4):339–348.

    PubMed  CAS  Google Scholar 

  33. Hsieh CH, Chen FD, Wang HE, Hwang JJ, Chang CW, Lee YJ, Gelovani JG, Liu RS (2008) Generation of destabilized herpes simplex virus type 1 thymidine kinase as transcription reporter for PET reporter systems in molecular genetic imaging. J Nucl Med 49(1):142–150.

    Article  PubMed  CAS  Google Scholar 

  34. Patel D, Kell A, Simard B, Xiang B, Lin HY, Tian G (2011) The cell labeling efficacy, cytotoxicity and relaxivity of copper-activated MRI/PET imaging contrast agents. Biomaterials 32(4):1167–76.

    Article  PubMed  CAS  Google Scholar 

  35. Cai H, Li Z, Huang CW, Shahinian AH, Wang H, Park R, Conti PS (2010) Evaluation of copper-64 labeled AmBaSar conjugated cyclic RGD peptide for improved MicroPET imaging of integrin alphavbeta3 expression. Bioconjug Chem 21(8):1417–1424.

    Article  PubMed  CAS  Google Scholar 

  36. Yoshii Y, Furukawa T, Kiyono Y, Watanabe R, Waki A, Mori T, Yoshii H, Oh M, Asai T, Okazawa H, Welch MJ, Fujibayashi Y (2010) Copper-64-diacetyl-bis (N4-methylthiosemicarbazone) accumulates in rich regions of CD133+ highly tumorigenic cells in mouse colon carcinoma. Nucl Med Biol 37(4):395–404.

    Article  PubMed  CAS  Google Scholar 

  37. Degen CL, Poggio M, Mamin HJ, Rettner CT, Rugar D (2009) Nanoscale magnetic resonance imaging. Proc Natl Acad Sci USA 106(5):1313–1317.

    Article  PubMed  CAS  Google Scholar 

  38. Modo M, Hoehn M, and Bulte JW (2005) Cellular MR imaging. Mol Imaging 4: 143–164.

    PubMed  Google Scholar 

  39. Corot C, Robert P, Idee JM, Port M (2006) Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 58: 1471–1504.

    Article  PubMed  CAS  Google Scholar 

  40. Wang YX, Hussain SM, Krestin GP (2001) Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol 11(11):2319–2331.

    Article  PubMed  CAS  Google Scholar 

  41. Thorek DL, Chen AK, Czupryna J, Tsourkas A (2006) Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann Biomed Eng 34:23–38.

    Article  PubMed  Google Scholar 

  42. Frank JA, Anderson SA, Kalsih H, Jordan EK, Lewis BK, Yocum GT, Arbab AS (2004) Methods for magnetically labeling stem and other cells for detection by in vivo magnetic resonance imaging. Cytotherapy 6: 621–625.

    Article  PubMed  CAS  Google Scholar 

  43. Bulte JW, Kraitchman DL (2004) Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 17(7):484–499.

    Article  PubMed  CAS  Google Scholar 

  44. Shapiro, EM, Medford-Davis LN, Fahny TM, Dunbar CE, Koretsky AP (2007) Antibody-mediated cell labeling of peripheral T cells with micron-sized iron oxide particles (MPIOs) allows single cell detection by MRI. Contrast Media Mol Imaging 2:147–153.

    Article  PubMed  CAS  Google Scholar 

  45. Medarova Z, Tsai S, Evgenov N, Santamaria P, Moore A (2008) In vivo imaging of a diabetogenic CD8+ T cell response during type 1 diabetes progression. Magn Reson Med 59(4):712–720.

    Article  PubMed  Google Scholar 

  46. Mun HS, Kang HJ, Lim KH, Sohn JY, Chang H, Lee KG, Lee JS (2008) Graft rejection in the xenogeneic transplantation of mice: diagnosis with in vivo MR imaging using the homing trait of macrophages. Xenotransplantation 15(4):218–224.

    Article  PubMed  Google Scholar 

  47. Oweida AJ, Dunn EA, Karlik SJ, Dekaban GA, Foster PJ (2007) Iron-oxide labeling of hematogenous macrophages in a model of experimental autoimmune encephalomyelitis and the contribution to signal loss in fast imaging employing steady state acquisition (FIESTA) images. J Magn Reson Imaging 26(1):144–151.

    Article  PubMed  Google Scholar 

  48. Evgenov NV, Medarova Z, Pratt J, Pantazopoulos P, Leyting S, Bonner-Weir S, Moore A (2006) In vivo imaging of immune rejection in transplanted pancreatic islets. Diabetes 55(9):2419–2428.

    Article  PubMed  CAS  Google Scholar 

  49. Tai JH, Foster P, Rosales A, Feng B, Hasilo C, Martinez V, Ramadan S, Snir J, Melling CW, Dhanvantari S, Rutt B, White DJ (2006) Imaging islets labeled with magnetic nanoparticles at 1.5 Tesla. Diabetes 55(11):2931–2938.

    Article  PubMed  CAS  Google Scholar 

  50. Heyn C, Ronald JA, Ramadan SS, Snir JA, Barry AM, MacKenzie LT, Mikulis DJ, Palmieri D, Bronder JL, Steeg PS (2006) In vivo MRI of cancer cell fate at the single-cell level in a mouse model of breast cancer metastasis to the brain. Magn Reson Med 56: 1001–1010.

    Article  PubMed  Google Scholar 

  51. Foster PJ, Dunn EA, Karl KE, Snir JA, Nycz CM, Harvey AJ, Pettis RJ (2008) Cellular magnetic resonance imaging: in vivo imaging of melanoma cells in lymph nodes of mice. Neoplasia 10(3):207–216.

    PubMed  CAS  Google Scholar 

  52. Niemeyer M, Oostendorp RA, Kremer M, Hippauf S, Jacobs VR, Baurecht H, Ludwig G, Piontek G, Bekker-Ruz V, Timmer S, Rummeny EJ, Kiechle M, Beer AJ (2010) Non-invasive tracking of human haemopoietic CD34(+) stem cells in vivo in immunodeficient mice by using magnetic resonance imaging. Eur Radiol 20(9):2184–2193.

    Article  PubMed  Google Scholar 

  53. Heyn C, Ronald JA, Mackenzie LT, MacDonald IC, Chambers AF, Rutt BK, and Foster PJ (2006) In vivo magnetic resonance imaging of single cells in mouse brain with optical validation. Magn Reson Med 55: 23–29.

    Article  PubMed  Google Scholar 

  54. Nahrendorf M, Zhang H, Hembrador S, Panizzi P, Sosnovik DE, Aikawa E, Libby P, Swirski FK, Weissleder R (2008) Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis. Circulation 117(3):379–387.

    Article  PubMed  CAS  Google Scholar 

  55. Sosnovik DE, Nahrendorf M, Deliolanis N, Novikov M, Aikawa E, Josephson L, Rosenzweig A, Weissleder R, Ntziachristos V (2007) Fluorescence tomography and magnetic resonance imaging of myocardial macrophage infiltration in infarcted myocardium in vivo. Circulation 115(11):1384–1391.

    Article  PubMed  Google Scholar 

  56. Chen R, Parry JJ, Akers WJ, Berezin MY, El Naqa IM, Achilefu S, Edwards WB, Rogers BE (2010) Multimodality imaging of gene transfer with a receptor-based reporter gene. J Nucl Med 51(9):1456–1463.

    Article  PubMed  CAS  Google Scholar 

  57. Liang M, Liu X, Cheng D, Liu G, Dou S, Wang Y, Rusckowski M, Hnatowich DJ (2010) Multimodality nuclear and fluorescence tumor imaging in mice using a streptavidin nanoparticle. Bioconjug Chem 21(7):1385–1388.

    Article  PubMed  Google Scholar 

  58. Tu C, Ma X, Pantazis P, Kauzlarich SM, Louie AY (2010) Paramagnetic, silicon quantum dots for magnetic resonance and two-photon imaging of macrophages. J Am Chem Soc 132(6):2016–2023.

    Article  PubMed  CAS  Google Scholar 

  59. Higuchi T, Anton M, Dumler K, Seidl S, Pelisek J, Saraste A, Welling A, Hofmann F, Oostendorp RA, Gansbacher B, Nekolla SG, Bengel FM, Botnar RM, Schwaiger M (2009) Combined reporter gene PET and iron oxide MRI for monitoring survival and localization of transplanted cells in the rat heart. J Nucl Med 50(7):1088–1094.

    Article  PubMed  CAS  Google Scholar 

  60. Kim HS, Cho HR, Choi SH, Woo JS, Moon WK (2010) In vivo imaging of tumor transduced with bimodal lentiviral vector encoding human ferritin and green fluorescent protein on a 1.5T clinical magnetic resonance scanner. Cancer Res 70(18):7315–7324.

    Article  PubMed  CAS  Google Scholar 

  61. Ogawa M, Regino CA, Seidel J, Green MV, Xi W, Williams M, Kosaka N, Choyke PL, Kobayashi H (2009) Dual-modality molecular imaging using antibodies labeled with activatable fluorescence and a radionuclide for specific and quantitative targeted cancer detection. Bioconjug Chem 20(11):2177–2184.

    Article  PubMed  CAS  Google Scholar 

  62. Veiseh O, Sun C, Fang C, Bhattarai N, Gunn J, Kievit F, Du K, Pullar B, Lee D, Ellenbogen RG, Olson J, Zhang M (2009) Specific targeting of brain tumors with an optical/magnetic resonance imaging nanoprobe across the blood-brain barrier. Cancer Res 69(15):6200–6207.

    Article  PubMed  CAS  Google Scholar 

  63. Gindy ME, Prud’homme RK (2009) Multifunctional nanoparticles for imaging, delivery and targeting in cancer therapy. Expert Opin Drug Deliv 6(8):865–878.

    Article  PubMed  CAS  Google Scholar 

  64. Garzia L, Andolfo I, Cusanelli E, Marino N, Petrosino G, De Martino D, Esposito V, Galeone A, Navas L, Esposito S, Gargiulo S, Fattet S, Donofrio V, Cinalli G, Brunetti A, Vecchio LD, Northcott PA, Delattre O, Taylor MD, Iolascon A, Zollo M (2009) MicroRNA-199b-5p impairs cancer stem cells through negative regulation of HES1 in medulloblastoma. PLoS One 4(3):e4998.

    Article  PubMed  Google Scholar 

  65. Wehrl HF, Sauter AW, Judenhofer MS, Pichler BJ (2010) Combined PET/MR imaging–technology and applications. Technol Cancer Res Treat 9(1):5–20.

    PubMed  CAS  Google Scholar 

  66. Hawkes RC, Fryer TD, Siegel S, Ansorge RE, Carpenter TA (2010) Preliminary evaluation of a combined microPET-MR system. Technol Cancer Res Treat 9(1):53–60.

    PubMed  CAS  Google Scholar 

  67. Ray P, De A, Min JJ, Tsien RY, Gambhir SS (2004) Imaging tri-fusion multimodality reporter gene expression in living subjects. Cancer Res 64(4):1323–1330.

    Article  PubMed  CAS  Google Scholar 

  68. Ponomarev V, Doubrovin M, Serganova I, Vider J, Shavrin A, Beresten T, Ivanova A, Ageyeva L, Tourkova V, Balatoni J, Bornmann W, Blasberg R, Gelovani Tjuvajev J (2004) A novel triple-modality reporter gene for whole-body fluorescent, bioluminescent, and nuclear noninvasive imaging. Eur J Nucl Med Mol Imaging 31(5):740–751.

    Article  PubMed  CAS  Google Scholar 

  69. Phelps ME (1991) PET: a biological imaging technique. Neurochem Res 16:929–940.

    Article  PubMed  CAS  Google Scholar 

  70. Heyn C, Bowen CV, Rutt BK, Foster PJ (2005) Detection threshold of single SPIO-labeled cells with FIESTA. Magn Reson Med 53(2):312–320.

    Article  PubMed  Google Scholar 

  71. Adonai N, Nguyen KN, Walsh J, Iyer M, Toyokuni T, Phelps ME, McCarthy T, McCarthy DW, Gambhir SS (2002) Ex vivo cell labeling with 64Cu-pyruvaldehyde-bis(N4-methylthiosemi-carbazone) for imaging cell trafficking in mice with positron-emission tomography. Proc Natl Acad Sci USA 99:3030–3035.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Foster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Foster, P. (2011). Imaging Cancer Stem Cells. In: Allan, A. (eds) Cancer Stem Cells in Solid Tumors. Stem Cell Biology and Regenerative Medicine. Humana Press. https://doi.org/10.1007/978-1-61779-246-5_17

Download citation

Publish with us

Policies and ethics