Skip to main content

Bioluminescence: Imaging Modality for In Vitro and In Vivo Gene Expression

  • Protocol
Advanced Protocols in Oxidative Stress I

Part of the book series: Methods In Molecular Biology ((MIMB,volume 477))

Abstract

Molecular imaging offers many unique opportunities to study biological processes in intact organisms. Bioluminescence is the emission of light from biochemical reactions that occur within a living organism. Luciferase has been used as a reporter gene in transgenic mice but, until bioluminescence imaging was described, the detection of luciferase activity required either sectioning of the animal or excision of tissue and homogenization to measure enzyme activities in a conventional luminometer. Bioluminescence imaging (BLI) is based on the idea that biological light sources can be incorporated into cells and animal models artificially that does not naturally express the luminescent genes. This imaging modality has proven to be a very powerful methodology to detect luciferase reporter activity in intact animal models. This form of optical imaging is low cost and noninvasive and facilitates real-time analysis of disease processes at the molecular level in living organisms. Bioluminescence provides a noninvasive method to monitor gene expression in vivo and has enormous potential to elucidate the pathobiology of lung diseases in intact mouse models, including models of inflammation/injury, infection, and cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tjuvajev JG, Stockhammer G, Desai R, Uehara H, Watanabe K, Gansbacher B, Blasberg RG (1995). Imaging the expression of transfected genes in vivo. Cancer Res. 55:6126–6132.

    CAS  PubMed  Google Scholar 

  2. Tjuvajev JG, Finn R, Watanabe K, Joshi R, Oku T, Kennedy J, Beattie B, Koutcher J, Larson S, Blasberg RG (1996). Noninvasive imaging of herpes virus thymidine kinase gene transfer and expression: a potential method for monitoring clinical gene therapy. Cancer Res. 56:4087–4092.

    CAS  PubMed  Google Scholar 

  3. Gambhir SS, Barrio JR, Phelps ME, Iyer M, Namavari M, Satyamurthy N, Wu L, Green LA, Bauer E, MacLaren DC (1999). Imaging adenoviral-directed reporter gene expression in living animals with positron emission tomography. Proc. Natl. Acad. Sci. USA 96:2333–2339.

    Article  CAS  PubMed  Google Scholar 

  4. Yang M, Baranov E, Moossa AR, Penman S, Hoffman RM (2000). Visualizing gene expression by whole-body fluorescence imaging. Proc. Natl. Acad. Sci. USA 97:12278.

    Article  CAS  PubMed  Google Scholar 

  5. Yang M, Baranov E, Jiang P, Sun FX, Li XM., Li L, Hasegawa S, Bouvet M, Al-Tuwaijri M, Chishima T (2000). Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases. Proc. Natl. Acad. Sci. USA 97:1206–1213.

    Article  CAS  PubMed  Google Scholar 

  6. Weissleder R, Moore A, Mahmood U, Bhorade R, Benveniste H, Chiocca EA, Basilion JP (2000). In vivo magnetic resonance imaging of transgene expression. Nat. Med. 6:351–359.

    Article  CAS  PubMed  Google Scholar 

  7. Blackwell TS, Yull FE, Chen CL, Venkatakrishnan A, Blackwell TR, Hicks DJ, Lancaster LH, Christman JW, Kerr LD (2000). Multiorgan nuclear factor kappa B activation in a transgenic mouse model of systemic inflammation. Am. J. Respir. Crit. Care Med. 162:1095–1101.

    CAS  PubMed  Google Scholar 

  8. Everhart MB, Han W, Sherrill TP, Arutiunov M, Polosukhin VV, Burke JR, Sadikot RT, Christman JW, Yull FE, Blackwell TS (2006) Duration and intensity of NF-kappaB activity determine the severity of endotoxin-induced acute lung injury. J. Immunol. 176:4995–5005.

    CAS  PubMed  Google Scholar 

  9. Christman JW, Sadikot RT, Blackwell TS (2000) The role of nuclear factor-kappa B in pulmonary diseases. Chest 117:1482–1487.

    Article  CAS  PubMed  Google Scholar 

  10. Sadikot RT, Wudel LJ, Jansen DE, Debelak JP, Yull FE, Christman JW, Blackwell TS, Chapman WC (2002). Hepatic cryoablation-induced multisystem injury: bioluminescent detection of NF-kappaB activation in a transgenic mouse model. J. Gastrointest. Surg. 6:264–270.

    Article  PubMed  Google Scholar 

  11. Sadikot RT, Zeng H, Yull FE, Li B, Cheng DS, Kernodle DS, Jansen ED, Contag CH, Segal BH, Holland SM, Blackwell TS, Christman JW (2004). p47phox deficiency impairs NF-kappa B activation and host defense in Pseudomonas pneumonia. J. Immunol. 172:1801–1808.

    CAS  PubMed  Google Scholar 

  12. Gray KD, Simovic MO, Chapman WC, Blackwell TS, Christman JW, Washington MK, Yull FE, Jaffal N, Jansen ED, Gautman S, Stain SC (2003). Systemic nf-kappaB activation in a transgenic mouse model of acute pancreatitis. J. Surg. Res. 110:310–314.

    Article  CAS  PubMed  Google Scholar 

  13. Sadikot RT, Blackwell TS (2005). Bioluminescence imaging. Proc. Am. Thorac. Soc. 2:537–540.

    Article  CAS  PubMed  Google Scholar 

  14. Sadikot RT, Jansen ED, Blackwell TR, Zoia O, Yull F, Christman JW, Blackwell TS (2001). High-dose dexamethasone accentuates nuclear factor-kappa b activation in endotoxin-treated mice. Am. J. Respir. Crit. Care Med. 164:873–878.

    CAS  PubMed  Google Scholar 

  15. Sadikot RT, Han W, Everhart MB, Zoia O, Peebles RS, Jansen ED, Yull FE, Christman JW, Blackwell TS (2003). Selective I kappa B kinase expression in airway epithelium generates neutrophilic lung inflammation. J. Immunol. 170:1091–1098.

    CAS  PubMed  Google Scholar 

  16. Sadikot RT, Zeng H, Joo M, Yull F, Li B, Christman, JW, Blackwell TS (2006). Targeted immunomodulation of the NF-κB pathway in airway epithelium impacts host defense against P. aeruginosa. J. Immunol. 176:4923–4930.

    CAS  Google Scholar 

  17. Contag PR, Olomu IN, Stevenson DK, Contag CH (1998). Bioluminescent indicators in living mammals. Nat. Med. 4:245–247.

    Article  CAS  PubMed  Google Scholar 

  18. Carlsen H, Moskaug JO, Fromm SH, Blomhoff R (2002). In vivo imaging of NF-kappa B activity. J. Immunol. 168:1441–1446.

    CAS  PubMed  Google Scholar 

  19. Hubbard AK, Timblin CR, Shukla A, Rincon M, Mossman BT (2002). Activation of NF-kappaB-dependent gene expression by silica in lungs of luciferase reporter mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 282:L968–L975.

    CAS  PubMed  Google Scholar 

  20. Dohlen G, Odland HH, Carlsen H, Blomhoff R, Thaulow E, Saugstad OD (2002). Antioxidant activity in the newborn brain: a luciferase mouse model. Neonatology 93:125–131.

    Article  Google Scholar 

  21. Ho TY, Chen YS, Hsiang CY (2007). Noninvasive nuclear factor-kappaB bioluminescence imaging for the assessment of host-biomaterial interaction in transgenic mice. Biomaterials 28:4370–4377.

    Article  CAS  PubMed  Google Scholar 

  22. Lin AH, Luo J, Mondshein LH, ten Dijke P, Vivien D, Contag CH, Wyss-Coray T (2005). Global analysis of Smad2/3-dependent TGF-beta signaling in living mice reveals prominent tissue-specific responses to injury. J. Immunol. 175:547–554.

    CAS  PubMed  Google Scholar 

  23. Chong AK, Satterwhite T, Pham HM, Costa MA, Luo J, Longaker MT, Wyss-Coray T, Chang J (2007). Live imaging of Smad2/3 signaling in mouse skin wound healing. Wound Repair Regen. 15:762–766.

    Article  PubMed  Google Scholar 

  24. Costa GL, Sandora MR, Nakajima A, Nguyen EV, Taylor-Edwards C, Slavin AJ, Contag CH, Fathman CG, Benson JM (2001). Adoptive immunotherapy of experimental autoimmune encephalomyelitis via T cell delivery of the IL-12 p40 subunit. J. Immunol. 167:2379–2387.

    CAS  PubMed  Google Scholar 

  25. Azadniv M, Dugger K, Bowers WJ, Weaver C, Crispe IN (2007). Imaging CD81 T cell dynamics in vivo using a transgenic luciferase reporter. Int. Immunol. 10:1165–1173.

    Article  Google Scholar 

  26. Francis K, Joh D, Bellinger-Kawahara C, Hawkinson M, Purchio T, Contag P (2000). Monitoring bioluminescent Staphylococcus aureus infections in living mice using a novel luxABCDE construct. Infect. Immun. 68:3594–3600.

    Article  CAS  PubMed  Google Scholar 

  27. Francis KP, Yu J, Bellinger-Kawahara C, Joh D, Hawkinson MJ, Xiao G, Purchio TF, Caparon MG, Lipsitch M, Contag PR (2001). Visualizing pneumococcal infections in the lungs of live mice using bioluminescent Streptococcus pneumoniae transformed with a novel Gram-positive lux transposon. Infect. Immun. 69 (5):3350–3358.

    Article  CAS  PubMed  Google Scholar 

  28. Dellacasa-Lindberg I, Hitziger N, Barragan A (2007). Localized recrudescence of Toxoplasma infections in the central nervous system of immunocompromised mice assessed by in vivo bioluminescence imaging. Microbes Infect. 9:1291–1298.

    Article  CAS  PubMed  Google Scholar 

  29. Franke-Fayard B, Waters AP, Janse CJ (2006). Real-time in vivo imaging of transgenic bioluminescent blood stages of rodent malaria parasites in mice. Nat. Protoc. 1:476–485.

    Article  CAS  PubMed  Google Scholar 

  30. Franke-Fayard B, Janse CJ, Cunha-Rodrigues M, Ramesar J, Büscher P, Que I (2005). Murine malaria parasite sequestration: CD36 is the major receptor, but cerebral pathology is unlinked to sequestration. Proc. Natl. Acad. Sci. USA 102:11468–11473.

    Article  CAS  PubMed  Google Scholar 

  31. Cook S, Griffin D (2003). Luciferase imaging of a neurotropic viral infection in intact animals. J. Virol. 77:5333–5338.

    Article  CAS  PubMed  Google Scholar 

  32. Burgos JS, Guzman-Sanchez F, Sastre I, Fillat C, Valdivieso F (2006). Non-invasive bioluminescence imaging for monitoring herpes simplex virus type 1 hematogenous infection. Microbes Infect. 8:1330–1338.

    Article  CAS  PubMed  Google Scholar 

  33. Doyle TC, Nawotka KA, Kawahara CB, Francis KP, Contag PR (2006). Visualizing fungal infections in living mice using bioluminescent pathogenic Candida albicans strains transformed with the firefly luciferase gene. Microb. Pathog. 40:82–90.

    Article  CAS  PubMed  Google Scholar 

  34. Jurcisek JA, Bookwalter JE, Baker BD, Fernandez S, Novotny LA, Munson RS Jr, Bakaletz LO (2007). The PilA protein of non-typeable Haemophilus influenzae plays a role in biofilm formation, adherence to epithelial cells and colonization of the mammalian upper respiratory tract. Mol. Microbiol. 65:1288–1299.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Sadikot, R.T., Blackwell, T.S. (2008). Bioluminescence: Imaging Modality for In Vitro and In Vivo Gene Expression. In: Armstrong, D. (eds) Advanced Protocols in Oxidative Stress I. Methods In Molecular Biology, vol 477. Humana Press. https://doi.org/10.1007/978-1-60327-517-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-517-0_29

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-218-6

  • Online ISBN: 978-1-60327-517-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics