Skip to main content

Design and Data Analysis in Drug Interaction Studies

  • Chapter
  • First Online:
Drug Interactions in Infectious Diseases

Part of the book series: Infectious Disease ((ID))

  • 1687 Accesses

Abstract

This chapter covers basic concepts pertaining to designing drug-drug interaction studies and interpreting results. Planning a drug-drug interaction study should encompass a statement of the rationale for doing the study. The basic design involves a 2 period randomized cross-over study with two treatment sequences; however, more complex and alternative study designs are discussed. Considerations include dose and duration of precipitant drug, washout period between treatments, and whether the potential interaction that results will affect the pharmacokinetic assessment plan. Existing information available for the test agents should be reviewed to formulate expected outcomes. The expected outcomes should be considered to ensure that the proper pharmacokinetic and sometimes pharmacodynamic information is collected for all treatments. All drug-drug interaction studies should be planned to incorporate bioequivalence testing and to present mean ratio of Treatment/Reference and corresponding 90% confidence intervals. The “no-effect” bounds, typically 80.00–125.0%, should be stated in the plan and based on consideration of the therapeutic index and pharmacokinetic variability of the object drug.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ekins S. Past, present, and future applications of precision-cut liver slices for in vitro xenobiotic metabolism. Drug Metabol Rev 1996;28:591–623.

    Article  CAS  Google Scholar 

  2. Decker CJ, Laitinen LM, Bridson GW, Raybuck SA, Tung RD, Chaturvedi PR. Metabolism of amprenavir in liver microsomes: role of CYP3A4 inhibition for drug interactions. J Pharm Sci 1998;87:803–807.

    Article  PubMed  CAS  Google Scholar 

  3. Bonnabry P, Sievering J, Leemann T, Dayer P. Quantitative drug interactions prediction system (Q-DIPS): a computer-based prediction and management support system for drug metabolism interactions. Eur J Clin Pharmacol 1999;55:341–347.

    Article  PubMed  CAS  Google Scholar 

  4. Rodrigues AD, Wong SL. Application of human liver microsomes in metabolism-based drug-drug interactions: in vitro-in vivo correlations and the Abbott Laboratories experience. Adv Pharmacol 1997;43:65–101.

    Article  PubMed  CAS  Google Scholar 

  5. Koudriakova T, Iatsimirskaia E, Utkin I, et al. Metabolism of the human immunodeficiency virus protease inhibitors indinavir and ritonavir by human intestinal microsomes and expressed cytochrome P4503A4/3A5: mechanism-based inactivation of cytochrome P4503A by ritonavir. Drug Metab Dispos 1998;26:552–561.

    PubMed  CAS  Google Scholar 

  6. Hochman JH, Yamazaki M, Ohe T, Lin JH. Evaluation of drug interactions with P-glycoprotein in drug discovery: in vitro assessment of the potential for drug-drug interactions with P-glycoprotein. Curr Drug Metab 2002;3:257–273.

    Article  PubMed  CAS  Google Scholar 

  7. Benet LZ, Cummins CL, Wu CY. Transporter-enzyme interactions: implications for predicting drug-drug interactions from in vitro data. Curr Drug Metab 2003;4:393–398.

    Article  PubMed  CAS  Google Scholar 

  8. Rolan PE. Plasma protein binding displacement interactions--why are they still regarded as clinically important? Br J Clin Pharmacol 1994;37:125–128.

    PubMed  CAS  Google Scholar 

  9. Sansom LN, Evans AM. What is the true clinical significance of plasma protein binding displacement interactions? Drug Safety 1995;12:227–233.

    Article  PubMed  CAS  Google Scholar 

  10. Draft Guidance for Industry. In vivo drug metabolism/drug interaction studies - study design, data analysis, and recommendations for dosing and labeling. September 2006. U.S. Department of Health and Human Services, Food and Drug Administration. Center for Drug Evaluation and Research, Center for Biologics Evaluation and Research.

    Google Scholar 

  11. Therapeutic Products Programme Guidance Document. Drug-drug interactions: studies in vitro and in vivo. September 21, 2000. Therapeutic Products Directorate, Health Canada.

    Google Scholar 

  12. Bjornsson TD, Callaghan JT, Einolf HJ, et al. The conduct of in vitro and in vivo drug-drug interaction studies: a Pharmaceutical Research and Manufacturers of America (PhRMA) perspective. Drug Metab Dispos 2003;31:815–832.

    Article  PubMed  CAS  Google Scholar 

  13. Gallicano KD, Sahai J, Shukla VK, et al. Induction of zidovudine glucuronidation and amination pathways by rifampicin in HIV-infected patients. Br J Clin Pharmacol 1999;48:168–179.

    Article  PubMed  CAS  Google Scholar 

  14. Ormsby E. Statistical methods in bioequivalence. In: Jackson AJ (ed). Generics and Bioequivalence, Boca Raton, FL: CRC Press, 1994, pp. 1–27.

    Google Scholar 

  15. Fleiss JL. A critique of recent research on the two-treatment crossover design. Controlled Clin Trials 1989;10:237–243.

    Article  PubMed  CAS  Google Scholar 

  16. Vuorinen J. A practical approach for the assessment of bioequivalence under selected higher-order cross-over design. Statist Med 1997;16:2229–2243.

    Article  CAS  Google Scholar 

  17. Chow SC, Liu JP. On assessment of bioequivalence under a higher-order crossover design. J Biopharm Stat 1992;2:239–256.

    Article  PubMed  CAS  Google Scholar 

  18. Nix DE, Di Cicco RA, Miller AK, et al. The effect of low-dose cimetidine (200 mg twice daily) on the pharmacokinetics of theophylline. J. Clin Pharmacol 1999;39:855–865.

    Article  PubMed  CAS  Google Scholar 

  19. Grasela TH Jr., Antal EJ, Ereshefsky L, Wells BG, Evans RL, Smith RB. An evaluation of population pharmacokinetics in therapeutic trials. Part II. Detection of a drug–drug interaction. Clin Pharmacol Ther 1987; 42:433–441.

    Article  PubMed  Google Scholar 

  20. Purkins L, Wood N, Kleinermans D, Love ER. No clinically significant pharmacokinetic interactions between voriconazole and indinavir in healthy volunteers. Br J Clin Pharmacol 2003;56:62–68.

    Article  PubMed  CAS  Google Scholar 

  21. Cato A, Cavanaugh J, Shi H, Hsu A, Leonard J, Granneman R. The effect of multiple doses of ritonavir on the pharmacokinetics of rifabutin. Clin Pharmacol Ther 1998;63:414–421.

    Article  PubMed  CAS  Google Scholar 

  22. Romero AJ, Pogamp PL, Nilsson LG, Wood N. Effect of voriconazole on the pharmacokinetics of cyclosporine in renal transplant patients. Clin Pharmacol Ther 2002;71:226–234.

    Article  PubMed  CAS  Google Scholar 

  23. Cadieux RJ. Drug interactions in the elderly. How multiple drug use increases risk exponentially. Postgrad Med 1989;86:179–186.

    PubMed  CAS  Google Scholar 

  24. Ragueneau I, Poirier JM, Radembino N, Sao AB, Funck-Brentano C, Jaillon P. Pharmacokinetic and pharmacodynamic drug interactions between digoxin and macrogol 4000, a laxative polymer, in healthy volunteers. Br J Clin Pharmacol 1999;48:453–456.

    Article  PubMed  CAS  Google Scholar 

  25. Piscitelli SC, Goss TF, Wilton JH, D’Andrea DT, Goldstein H, Schentag JJ. Effects of ranitidine and sucralfate on ketoconazole bioavailability. Antimicrob Agents Chemother 1991;35:1765–1771.

    PubMed  CAS  Google Scholar 

  26. Blum RA, D’Andrea DT, Florentino BM, et al. Increased gastric pH and the bioavailability of fluconazole and ketoconazole. Ann Intern Med 1991;114:755–757.

    PubMed  CAS  Google Scholar 

  27. Lebsack ME, Nix D, Ryerson B, et al. Effect of gastric acidity on enoxacin absorption. Clin Pharmacol Ther 1992;52:252–256.

    Article  PubMed  CAS  Google Scholar 

  28. Lehto P, Kivisto KT, Neuvonen PJ. The effect of ferrous sulphate on the absorption of norfloxacin, ciprofloxacin and ofloxacin. Br J Clin Pharmacol 1994;37:82–85.

    PubMed  CAS  Google Scholar 

  29. Nix DE, Watson WA, Lener ME, et al. Effects of aluminum and magnesium antacids and ranitidine on the absorption of ciprofloxacin. Clin Pharmacol Ther 1989;46:700–705.

    Article  PubMed  CAS  Google Scholar 

  30. Parpia SH, Nix DE, Hejmanowski LG, Goldstein HR, Wilton JH, Schentag JJ. Sucralfate reduces the gastrointestinal absorption of norfloxacin. Antimicrob Agents Chemother 1989;33:99–102.

    PubMed  CAS  Google Scholar 

  31. Jungbluth GL, Pasko MT, Beam TR, Jusko WJ. Ceftriaxone disposition in open-heart surgery patients. Antimicrob Agents Chemother 1989;33:850–856.

    PubMed  CAS  Google Scholar 

  32. Megran DW, Lefebvre K, Willetts V, Bowie WR. Single-dose oral cefixime versus amoxicillin plus probenecid for the treatment of uncomplicated gonorrhea in men. Antimicrob Agents Chemother 1990;34:355–357.

    PubMed  CAS  Google Scholar 

  33. Gaspari F, Perico N, Remuzzi G. Measurement of glomerular filtration rate. Kidney Internat 1997;63 (suppl.):S151–154.

    CAS  Google Scholar 

  34. Brochner-Mortensen J. Current status on assessment and measurement of glomerular filtration rate. Clin Physiol 1985;5:1–17.

    Article  PubMed  CAS  Google Scholar 

  35. Hellerstein S, Berenbom M, Alon US, Warady BA. Creatinine clearance following cimetidine for estimation of glomerular filtration rate. Pediatr Nephrol 1998;12:49–54.

    Article  PubMed  CAS  Google Scholar 

  36. Levey AS, Bosch JP, Breyer-Lewis J, Greene T, Rogers N, Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Ann Intern Med 1999;130:461–470.

    PubMed  CAS  Google Scholar 

  37. Baciewicz AM, Self TH. Rifampin drug interactions. Arch Intern Med 1984;144:1667–1671.

    Article  PubMed  CAS  Google Scholar 

  38. Wandel C, Bocker R, Bohrer H, Browne A, Rugheimer E, Martin E. Midazolam is metabolized by at least three different cytochrome P450 enzymes. Br J Anaest 1994;73:658–661.

    Article  CAS  Google Scholar 

  39. Thummel KE, Shen DD, Podoll TD, et al. Use of midazolam as a human cytochrome P450 3A probe: II. Characterization of inter- and intraindividual hepatic CYP3A variability after liver transplantation. J Pharmacol Exper Ther 1994;271:557–566.

    CAS  Google Scholar 

  40. Lown KS, Thummel KE, Benedict PE, et al. The erythromycin breath test predicts the clearance of midazolam. Clin Pharmacol Ther 1995;57:16–24.

    Article  PubMed  CAS  Google Scholar 

  41. Watkins PB, Turgeon DK, Saenger P, et al. Comparison of urinary 6-beta-cortisol and the erythromycin breath test as measures of hepatic P450IIIA (CYP3A) activity. Clin Pharmacol Ther 1992;52:265–273.

    Article  PubMed  CAS  Google Scholar 

  42. Hunt, CM, Watkins, PB, Saenger P, et al. Heterogeneity of CYP3A isoforms metabolizing erythromycin and cortisol. Clin Pharmacol Ther 1992;51:18–23.

    Article  PubMed  CAS  Google Scholar 

  43. Chiou WL, Jeong HY, Wu TC, Ma C. Use of the erthromycin breath test for in vivo assessments of cytochrome P4503A activity. Clin Pharmacol Ther 2001;70:305–310.

    PubMed  CAS  Google Scholar 

  44. Sarkar MA, Jackson BJ. Theophylline N-demethylations as probes for P4501A1 and P4501A2. Drug Metab Dispos 1994;22:827–834.

    PubMed  CAS  Google Scholar 

  45. Ziebell J, Shaw-Stiffel T. Update on the use of metabolic probes to quantify liver function: caffeine versus lidocaine. Digest Dis 1995;13:239–250.

    Article  CAS  Google Scholar 

  46. Anthony LB, Boeve TJ, Hande KR. Cytochrome P-450IID6 phenotyping in cancer patients: debrisoquin and dextromethorphan as probes. Cancer Chemother Pharmacol 1995;36:125–128.

    Article  PubMed  CAS  Google Scholar 

  47. Flockhart DA. Drug interactions and the cytochrome P450 system. The role of cytochrome P450 2C19. Clin Pharmacokin 1995;29(Suppl. 1):45–52.

    Article  CAS  Google Scholar 

  48. Fuhr U, Rost KL, Engelhardt R, et al. Evaluation of caffeine as a test drug for CYP1A2, NAT2 and CYP2E1 phenotyping in man by in vivo versus in vitro correlations. Pharmacogenetics 1996;6:159–176.

    Article  PubMed  CAS  Google Scholar 

  49. Brockmoller J, Rost KL, Gross D, Schenkel A, Roots I. Phenotyping of CYP2C19 with enantiospecific HPLC-quantification of R- and S-mephenytoin and comparison with the intron4/exon5 G--  >  A-splice site mutation. Pharmacogenetics 1995;5:80–88.

    Article  PubMed  CAS  Google Scholar 

  50. Tanaka E. Clinically important pharmacokinetic drug-drug interactions: role of cytochrome P450 enzymes. J Clin Pharm Ther 1998;23:403–416.

    Article  PubMed  CAS  Google Scholar 

  51. Lomaestro BM, Piatek MA. Update on drug interactions with azole antifungal agents. Ann Pharmacother 1998;32:915–928.

    Article  PubMed  CAS  Google Scholar 

  52. Caraco Y. Genetic determinants of drug responsiveness and drug interactions. Ther Drug Monitor 1998;20:517–524.

    Article  CAS  Google Scholar 

  53. Shannon M. Drug-drug interactions and the cytochrome P450 system: an update. Pediatr Emerg Care 1997;13:350–353.

    Article  PubMed  CAS  Google Scholar 

  54. Guengerich FP. Role of cytochrome P450 enzymes in drug-drug interactions. Adv Pharmacol 1997;43:7–35.

    Article  PubMed  CAS  Google Scholar 

  55. Mikus G, Schöwel V, Drzewinska M, et al. Potent cytochrome P4502C19 genotype-related interaction between voriconazole and the cytochrome P450 3A4 inhibitor ritonavir. Clin Pharmacol Ther 2006;80:126–135.

    Article  PubMed  CAS  Google Scholar 

  56. Isoherranen N, Ludington SR, Givens RC, et al. The influence of CYP3A5 expression on the extent of hepatic CYP3A inhibition is substrate-dependent: An in vitro-in vivo evaluation. Drug Metabol Disposit 2008;36:146–154.

    Article  CAS  Google Scholar 

  57. Li D, Abudula A, Abulahake M, Zhu AP, Lou YQ, Zhang GL. Influence of CYP3A5 and MDR1 genetic polymorphisms on urinary 6β-hydroxycortisol/cortisol ratio after grapefruit juice intake in health Chinese. J Clin Pharmacol 2010;50:775–784.

    Article  PubMed  CAS  Google Scholar 

  58. Cho JY,Yu KS, Jang IJ, Yang BH, Shin SG, Yim DS. Omeprazole is inhibited by a single dose of moclobemide in homozygotic EM genotype for CYP2C19. Br J Clin Pharmacol 2001;53:393–397.

    Article  Google Scholar 

  59. Miura M, Inoue K, Kagaya H, Satoh S, Tada H, Sagae Y, Habuchi T, and Suzuki T. Influence of rabeprazole and lansoprazole in the pharmacokinetics of tacrolimus in relation to CYP2C19, CYP3A5 and MDR1 polymorphisms in renal transplant recipients. Biopharm Drug Disposit 2007;28:167–175.

    Article  CAS  Google Scholar 

  60. Furuta T, Ohashi K, Kobayashi K, et al. Effects of clarithromycin on the metabolism of omeprazole in relation to CYP2C19 genotype status in humans. Clin Pharmacol Ther 1999;66:265–274.

    Article  PubMed  CAS  Google Scholar 

  61. Bramness JG, Skurtveit S, Gulliksen M, Breilid H, Steen VM, Morland J. The CYP2C19 genotype and the use of oral contraceptives influence the pharmacokinetics of carisoprodol in healthy human subjects. Eur J Clin Pharmacol 2005;61:499–506.

    Article  PubMed  CAS  Google Scholar 

  62. Dumond JB, Vourvahis M, Rezk NL, et al. A phenotype-genotype approach to predicting CYP450 and P-glycoprotein drug interactions with the mixed inhibitor/inducer tipranavir/ritonavir. Clin Pharmcol Ther 2010;87:735–742.

    Article  CAS  Google Scholar 

  63. Bradford PA, Sanders CC. Use of a predictor panel to evaluate susceptibility test methods proposed for piperacillin-tazobactam. Antimicrob Agents Chemother 1993;37:2578–2585.

    PubMed  CAS  Google Scholar 

  64. Zachariasen RD. Loss of oral contraceptive efficacy by concurrent antibiotic administration. Women Health 1994;22:17–26.

    Article  PubMed  CAS  Google Scholar 

  65. Nguyen VX, Nix DE, Gillikin S, Schentag JJ. Effect of oral antacid administration on the pharmacokinetics of intravenous doxycycline. Antimicrob Agents Chemother 1989;33:434–436.

    PubMed  CAS  Google Scholar 

  66. Neuvonen PJ, Penttila O. Effect of oral ferrous sulphate on the half-life of doxycycline in man. Eur J Clin Pharmacol 1974;7:361–363.

    Article  PubMed  CAS  Google Scholar 

  67. Note for Guidance on the investigation of drug interactions. December 1997. Committee for Proprietary Medicinal Products (CPMP), The European Agency for the Evaluation of Medicinal Products Human Medicines Evaluation Unit.

    Google Scholar 

  68. Müller HJ, Gundert-Remy U. The regulatory view on drug-drug interactions. Int J Clin Pharmacol Ther 1994;32: 269–273.

    PubMed  Google Scholar 

  69. Hitzenberger G, Steinijans VW. To reject or not to reject recent experience with bioequivalence papers. Int J Clin Pharmacol Ther 1994;32: 161–164.

    Google Scholar 

  70. Waller PC, Jackson PR, Tucker GT, Ramsay LE. Clinical pharmacology with confidence. Br J Clin Pharmacol 1994;37:309,310.

    PubMed  CAS  Google Scholar 

  71. Fuhr U, Weiss M, Kroemer HK, et al. Systematic screening for pharmacokinetic interactions during drug development. Int J Clin Pharmacol Ther 1996;34:139–151.

    PubMed  CAS  Google Scholar 

  72. Kuhlmann J. Drug interaction studies during drug development: which, when, how? Int J Clin Pharmacol Ther 1994;32:305–311.

    PubMed  CAS  Google Scholar 

  73. Pidgen AW. Statistical aspects of bioequivalence - a review. Xenobiotica 1992;22:881–893.

    Article  PubMed  CAS  Google Scholar 

  74. Steinijans VW, Hartmanns M, Huber R, Radtke HW. Lack of pharmacokinetic interaction as an equivalence problem. Int J Clin Pharmacol Ther Toxicol 1991;29:323–328.

    PubMed  CAS  Google Scholar 

  75. Gallicano KD, Sahai J, Swick L, Seguin I, Pakuts A, Cameron DW. Effect of rifabutin on the pharmacokinetics of zidovudine in patients infected with human immunodeficiency virus. Clin Infect Dis 1995;21:1008–1011.

    Article  PubMed  CAS  Google Scholar 

  76. De Wit S, Debier M, De Smet M, et al. Effect of fluconazole on indinavir pharmacokinetics in human immunodeficiency virus-infected patients. Antimicrob Agents Chemother 1998;42:223–227.

    PubMed  Google Scholar 

  77. Huang S-M, Lesko LJ, Williams RL. Assessment of the quality and quantity of drug-drug interaction studies in recent NDA submissions: study design and data analysis issues. J Clin Pharmacol 1999;39:1006–1014.

    Article  PubMed  CAS  Google Scholar 

  78. Hauschke D, Kieser M, Diletti E, Burke M. Sample size determination for proving equivalence based on the ratio of two means for normally distributed data. Statist Med 1999;18:93–105.

    Article  CAS  Google Scholar 

  79. Chow S-C, Liu J-P(eds). Design and analysis of bioavailability and bioequivalence studies, second edition, revised and expanded. New York, NY: Marcel Dekker, 2000.

    Google Scholar 

  80. Wijnand H.P. Some nonparametric confidence intervals are non-informative, notably in bioequivalence studies. Clin Research Reg Affairs 1996;13:65–75.

    Article  Google Scholar 

  81. Midha KK, Ormsby ED, Hubbard JW, et al. Logarithmic transformation in bioequivalence: application with two formulations of perphenazine. J Pharm Sci 1993;82:138–144.

    Article  PubMed  CAS  Google Scholar 

  82. Roe DJ, Karol MD. Averaging pharmacokinetic parameter estimates from experimental studies: statistical theory and application. J Pharmaceut Sci 1997;86:621–624.

    Article  CAS  Google Scholar 

  83. Hauschke D, Steinijans VW, Diletti E, et al. Presentation of the intrasubject coefficient of variation for sample size planning in bioequivalence studies. Int J Clin Pharmacol Ther 1994;32:376–378.

    PubMed  CAS  Google Scholar 

  84. Steinijans VW, Sauter R, Hauschke D, et al. Reference tables for the intrasubject coefficient of variation in bioequivalence studies. Int J Clin Pharmacol Ther 1995;33:427–430.

    PubMed  CAS  Google Scholar 

  85. Diletti E, Hauschke D, Steinijans VW. Sample size determination: extended tables for the multiplicative model and bioequivalence ranges of 0.9 to 1.11 and 0.7 to 1.43. Int J Clin Pharmacol Ther Tox 1992;8:287–290.

    Google Scholar 

  86. Hauschke D, Steinijans VW, Diletti E, Burke M. Sample size determination for bioequivalence assessment using a multiplicative model. J Pharmacokin Biopharm 1992;20:557–561.

    Article  CAS  Google Scholar 

  87. Lui, J-P, Chow S-C. Sample size determination for the two one-sided tests procedure in bioequivalence. J Pharmacokin Biopharm 1992;20:101–104.

    Article  Google Scholar 

  88. Chow SC, Wang H. On sample size calculation in bioequivalence studies. J Pharmacokin Pharmacodyn 2001;28:155–169.

    Article  CAS  Google Scholar 

  89. Gallicano K, Sahai J, Zaror-Behrens G, Pakuts A. Effect of antacids in didanosine tablet on bioavailability of isoniazid. Antimicrob Agents Chemother 1994;38:894–897.

    PubMed  CAS  Google Scholar 

  90. Schall R, Hundt HKL, Luus HG. Pharmacokinetic characteristics for extent of absorption and clearance in drug/drug interaction studies. Int J Clin Pharmacol Ther 1994;32:633–637.

    PubMed  CAS  Google Scholar 

  91. Tozer TN, Bois FY, Hauck WW, Chen M-L, Williams RL. Absorption rate vs. exposure: which is more useful for bioequivalence testing? Pharm Res 1996;13:453–456.

    Article  PubMed  CAS  Google Scholar 

  92. van Giersbergen PL, Halabi A, Dingemanse J. Single and multiple dose pharmacokinetics of bosentan and its interaction with ketoconazole. Br J Clin Pharmacol 2002;53:589–595.

    Article  PubMed  Google Scholar 

  93. Sanchez Garca P, Paty I, Leister CA, et al. Effect of zaleplon on digoxin pharmacokinetics and pharmacodynamics. Am J Health-Syst Pharm 2000;57:2267–2270.

    Google Scholar 

  94. Depr M, Van Hecken A, Verbesselt R, et al. Effect of multiple doses of montelukast, a CysLT1 receptor antagonist, on digoxin pharmacokinetics in healthy volunteers. J Clin Pharmacol 1999;39:941–944.

    Article  Google Scholar 

  95. Dilger K, Zheng Z, Klotz U. Lack of drug interaction between omeprazole, lansoprazole, pantoprazole and theophylline. Br J Clin Pharmacol 1999;48:438–444.

    Article  PubMed  CAS  Google Scholar 

  96. Auclair B, Nix DE, Adam RD, James GT, Peloquin CA. Pharmacokinetics of ethionamide administered under fasting conditions or with orange juice, food, or antacids. Antimicrob Agents Chemother 2001;45:810–814.

    Article  PubMed  CAS  Google Scholar 

  97. Damle BD, Mammaneni V, Kaul S, Knupp C. Lack of effect of simultaneously administered didanosine encapsulated enteric bead formulation (Videx EC) on oral absorption of indinavir, ketoconazole, or ciprofloxacin. Antimicrob Agents Chemother 2002;46:385–391.

    Article  PubMed  CAS  Google Scholar 

  98. Banfield C, Herron J, Keung A, Padhi D, Affrime M. Desloratadine has no clinically relevant electrocardiographic or pharmacodynamic interactions with ketoconazole. Clin Pharma­cokinetics 2002;41(Suppl. 1):37–44.

    Article  CAS  Google Scholar 

  99. Hsu A, Granneman GR, Cao G, et al. Pharmacokinetic interaction between ritonavir and indinavir in healthy volunteers. Antimicrob Agents Chemother 1998;42:2784–2791.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David E. Nix .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Nix, D.E., Gallicano, K. (2011). Design and Data Analysis in Drug Interaction Studies. In: Piscitelli, S., Rodvold, K., Pai, M. (eds) Drug Interactions in Infectious Diseases. Infectious Disease. Humana Press. https://doi.org/10.1007/978-1-61779-213-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-213-7_20

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-212-0

  • Online ISBN: 978-1-61779-213-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics