Skip to main content

The Renin Angiotensin System

  • Chapter
  • First Online:
Studies on Renal Disorders

Abstract

The renin angiotensin system (RAS) is a hormonal cascade that is thought to act as a master controller of blood pressure and fluid balance within the body. In addition to the systemic RAS, there is a fully functional intrarenal RAS, which is postulated to play a central role in the development of chronic kidney disease. Indeed there is unprecedented diversity in the pathways affected by the RAS, which include generation of a number of reactive oxygen species (ROS) and effects on antioxidant enzymes. There are many therapeutics, which interrupt different steps in the RAS to primarily lower blood pressure, although these compounds also have numerous beneficial nonhemodynamic effects on both structural and functional parameters in progressive kidney disease. In this chapter we will discuss the effects of the RAS and therapies that interrupt various components of the RAS and on renal redox imbalances that may affect the development and progression of chronic kidney disease, particularly in the context of diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burrell LM, Johnston CI, Tikellis C, Cooper ME: ACE2, a new regulator of the renin-angiotensin system. Trends Endocrinol Metab 15:166–169, 2004

    Article  CAS  PubMed  Google Scholar 

  2. Nangaku M, Fujita T: Activation of the renin-angiotensin system and chronic hypoxia of the kidney. Hypertens Res 31:175–184, 2008

    Article  PubMed  Google Scholar 

  3. de Cavanagh EM, Ferder L, Toblli JE, Piotrkowski B, Stella I, Fraga CG, Inserra F: Renal mitochondrial impairment is attenuated by AT1 blockade in experimental type I diabetes. Am J Physiol Heart Circ Physiol 294:H456–H465, 2008

    Article  PubMed  Google Scholar 

  4. Coughlan MT, Thallas-Bonke V, Pete J, Long DM, Gasser A, Tong DC, Arnstein M, Thorpe SR, Cooper ME, Forbes JM: Combination therapy with the advanced glycation end product cross-link breaker, alagebrium, and angiotensin converting enzyme inhibitors in diabetes: synergy or redundancy? Endocrinology 148:886–895, 2007

    Article  CAS  PubMed  Google Scholar 

  5. Coughlan MT, Thorburn DR, Penfold SA, Laskowski A, Harcourt BE, Sourris KC, Tan AL, Fukami K, Thallas-Bonke V, Nawroth PP, Brownlee M, Bierhaus A, Cooper ME, Forbes JM: RAGE-induced cytosolic ROS promote mitochondrial superoxide generation in diabetes. J Am Soc Nephrol 20(4):742–752, 2009

    Article  CAS  PubMed  Google Scholar 

  6. Parving HH, Persson F, Lewis JB, Lewis EJ, Hollenberg NK: Aliskiren combined with losartan in type 2 diabetes and nephropathy. N Engl J Med 358:2433–2446, 2008

    Article  CAS  PubMed  Google Scholar 

  7. Lee HY, Oh BH: Cardio-renal protection with aliskiren, a direct renin inhibitor, in the ASPIRE HIGHER program. Expert Rev Cardiovasc Ther 7:251–257, 2009

    Article  CAS  PubMed  Google Scholar 

  8. Parving HH, Brenner BM, McMurray JJ, de Zeeuw D, Haffner SM, Solomon SD, Chaturvedi N, Ghadanfar M, Weissbach N, Xiang Z, Armbrecht J, Pfeffer MA: Aliskiren trial in type 2 diabetes using cardio-renal endpoints (ALTITUDE): rationale and study design. Nephrol Dial Transplant 24:1663–1671, 2009

    Article  CAS  PubMed  Google Scholar 

  9. Fukamizu A, Takahashi S, Seo MS, Tada M, Tanimoto K, Uehara S, Murakami K: Structure and expression of the human angiotensinogen gene. Identification of a unique and highly active promoter. J Biol Chem 265:7576–7582, 1990

    CAS  PubMed  Google Scholar 

  10. Ingelfinger JR, Zuo WM, Fon EA, Ellison KE, Dzau VJ: In situ hybridization evidence for angiotensinogen messenger RNA in the rat proximal tubule. An hypothesis for the intrarenal renin angiotensin system. J Clin Invest 85:417–423, 1990

    Article  CAS  PubMed  Google Scholar 

  11. Terada Y, Tomita K, Nonoguchi H, Marumo F: PCR localization of angiotensin II receptor and angiotensinogen mRNAs in rat kidney. Kidney Int 43:1251–1259, 1993

    Article  CAS  PubMed  Google Scholar 

  12. Kobori H, Ohashi N, Katsurada A, Miyata K, Satou R, Saito T, Yamamoto T: Urinary angiotensinogen as a potential biomarker of severity of chronic kidney diseases. J Am Soc Hypertens 2:349–354, 2008

    Article  PubMed  Google Scholar 

  13. Kobori H, Harrison-Bernard LM, Navar LG: Urinary excretion of angiotensinogen reflects intrarenal angiotensinogen production. Kidney Int 61:579–585, 2002

    Article  CAS  PubMed  Google Scholar 

  14. Saito T, Urushihara M, Kotani Y, Kagami S, Kobori H: Increased urinary angiotensinogen is precedent to increased urinary albumin in patients with type 1 diabetes. Am J Med Sci 338:478–480, 2009

    Article  PubMed  Google Scholar 

  15. Kobori H, Alper AB, Jr., Shenava R, Katsurada A, Saito T, Ohashi N, Urushihara M, Miyata K, Satou R, Hamm LL, Navar LG: Urinary angiotensinogen as a novel biomarker of the intrarenal renin-angiotensin system status in hypertensive patients. Hypertension 53:344–350, 2009

    Article  CAS  PubMed  Google Scholar 

  16. Didion SP, Ryan MJ, Baumbach GL, Sigmund CD, Faraci FM: Superoxide contributes to vascular dysfunction in mice that express human renin and angiotensinogen. Am J Physiol Heart Circ Physiol 283:H1569–H1576, 2002

    CAS  PubMed  Google Scholar 

  17. Griendling KK, Murphy TJ, Alexander RW: Molecular biology of the renin-angiotensin system. Circulation 87:1816–1828, 1993

    CAS  PubMed  Google Scholar 

  18. Hackenthal E, Paul M, Ganten D, Taugner R: Morphology, physiology, and molecular biology of renin secretion. Physiol Rev 70:1067–1116, 1990

    CAS  PubMed  Google Scholar 

  19. Burns KD, Homma T, Harris RC: The intrarenal renin-angiotensin system. Semin Nephrol 13:13–30, 1993

    CAS  PubMed  Google Scholar 

  20. Gruden G, Setti G, Hayward A, Sugden D, Duggan S, Burt D, Buckingham RE, Gnudi L, Viberti G: Mechanical stretch induces monocyte chemoattractant activity via an NF-kappaB-dependent monocyte chemoattractant protein-1-mediated pathway in human mesangial cells: inhibition by rosiglitazone. J Am Soc Nephrol 16:688–696, 2005

    Article  CAS  PubMed  Google Scholar 

  21. Gruden G, Thomas S, Burt D, Lane S, Chusney G, Sacks S, Viberti G: Mechanical stretch induces vascular permeability factor in human mesangial cells: mechanisms of signal transduction. Proc Natl Acad Sci U S A 94:12112–12116, 1997

    Article  CAS  PubMed  Google Scholar 

  22. Whaley-Connell AT, Nistala R, Habibi J, Hayden MR, Schneider RI, Johnson MS, Tilmon R, Rehmer N, Ferrario CM, Sowers JR: Comparative effect of direct renin inhibition and AT1R blockade on glomerular filtration barrier injury in the transgenic Ren2 rat. Am J Physiol Renal Physiol 298(3):F655–F661, 2009

    Article  PubMed  Google Scholar 

  23. Pinto R, Gradman AH: Direct renin inhibition: an update. Curr Hypertens Rep 11:456–462, 2009

    Article  CAS  PubMed  Google Scholar 

  24. Nguyen G, Delarue F, Burckle C, Bouzhir L, Giller T, Sraer JD: Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin. J Clin Invest 109:1417–1427, 2002

    CAS  PubMed  Google Scholar 

  25. Ichihara A, Hayashi M, Kaneshiro Y, Suzuki F, Nakagawa T, Tada Y, Koura Y, Nishiyama A, Okada H, Uddin MN, Nabi AH, Ishida Y, Inagami T, Saruta T: Inhibition of diabetic nephropathy by a decoy peptide corresponding to the “handle” region for nonproteolytic activation of prorenin. J Clin Invest 114:1128–1135, 2004

    CAS  PubMed  Google Scholar 

  26. Imanishi T, Tsujioka H, Ikejima H, Kuroi A, Takarada S, Kitabata H, Tanimoto T, Muragaki Y, Mochizuki S, Goto M, Yoshida K, Akasaka T: Renin inhibitor aliskiren improves impaired nitric oxide bioavailability and protects against atherosclerotic changes. Hypertension 52:563–572, 2008

    Article  CAS  PubMed  Google Scholar 

  27. Lorenz JN, Greenberg SG, Briggs JP: The macula densa mechanism for control of renin secretion. Semin Nephrol 13:531–542, 1993

    CAS  PubMed  Google Scholar 

  28. Suematsu N, Ojaimi C, Recchia FA, Wang Z, Skayian Y, Xu X, Zhang S, Kaminski P, Sun D, Wolin MS, Kaley G, Hintze TH: Potential mechanisms of low sodium diet-induced cardiac disease. superoxide-NO in the heart. Circ Res 106(3):593–600, 2009

    Article  PubMed  Google Scholar 

  29. Sousa T, Pinho D, Morato M, Marques-Lopes J, Fernandes E, Afonso J, Oliveira S, Carvalho F, Albino-Teixeira A: Role of superoxide and hydrogen peroxide in hypertension induced by an antagonist of adenosine receptors. Eur J Pharmacol 588:267–276, 2008

    Article  CAS  PubMed  Google Scholar 

  30. Kamp O, Sieswerda GT, Visser CA: Comparison of effects on systolic and diastolic left ventricular function of nebivolol versus atenolol in patients with uncomplicated essential hypertension. Am J Cardiol 92:344–348, 2003

    Article  CAS  PubMed  Google Scholar 

  31. Whaley-Connell A, Habibi J, Johnson M, Tilmon R, Rehmer N, Rehmer J, Wiedmeyer C, Ferrario CM, Sowers JR: Nebivolol reduces proteinuria and renal NADPH oxidase-generated reactive oxygen species in the transgenic Ren2 rat. Am J Nephrol 30:354–360, 2009

    Article  CAS  PubMed  Google Scholar 

  32. Lai EY, Fahling M, Ma Z, Kallskog O, Persson PB, Patzak A, Persson AE, Hultstrom M: Norepinephrine increases calcium sensitivity of mouse afferent arteriole, thereby enhancing angiotensin II-mediated vasoconstriction. Kidney Int 76:953–959, 2009

    Article  CAS  PubMed  Google Scholar 

  33. Campese VM, Shaohua Y, Huiquin Z: Oxidative stress mediates angiotensin II-dependent stimulation of sympathetic nerve activity. Hypertension 46:533–539, 2005

    Article  CAS  PubMed  Google Scholar 

  34. Ye S, Zhong H, Yanamadala S, Campese VM: Oxidative stress mediates the stimulation of sympathetic nerve activity in the phenol renal injury model of hypertension. Hypertension 48:309–315, 2006

    Article  CAS  PubMed  Google Scholar 

  35. Yusuf S, Teo KK, Pogue J, Dyal L, Copland I, Schumacher H, Dagenais G, Sleight P, Anderson C: Telmisartan, ramipril, or both in patients at high risk for vascular events. N Engl J Med 358:1547–1559, 2008

    Article  CAS  PubMed  Google Scholar 

  36. Hobo A, Yuzawa Y, Kosugi T, Kato N, Asai N, Sato W, Maruyama S, Ito Y, Kobori H, Ikematsu S, Nishiyama A, Matsuo S, Kadomatsu K: The growth factor midkine regulates the renin-angiotensin system in mice. J Clin Invest 119:1616–1625, 2009

    Article  CAS  PubMed  Google Scholar 

  37. Oudit GY, Liu GC, Zhong J, Basu R, Chow FL, Zhou J, Loibner H, Janzek E, Schuster M, Penninger JM, Herzenberg AM, Kassiri Z, Scholey JW: Human recombinant angiotensin converting enzyme 2 reduces the progression of diabetic nephropathy. Diabetes 59(2):529–538, 2009

    Article  PubMed  Google Scholar 

  38. Gwathmey TM, Pendergrass KD, Reid SD, Rose JC, Diz DI, Chappell MC: Angiotensin-(1-7)-angiotensin-converting enzyme 2 attenuates reactive oxygen species formation to angiotensin II within the cell nucleus. Hypertension 55:166–171

    Article  PubMed  Google Scholar 

  39. Lorenzo O, Ruiz-Ortega M, Suzuki Y, Ruperez M, Esteban V, Sugaya T, Egido J: Angiotensin III activates nuclear transcription factor-kappaB in cultured mesangial cells mainly via AT(2) receptors: studies with AT(1) receptor-knockout mice. J Am Soc Nephrol 13:1162–1171, 2002

    Article  CAS  PubMed  Google Scholar 

  40. Ruiz-Ortega M, Lorenzo O, Egido J: Angiotensin III increases MCP-1 and activates NF-kappaB and AP-1 in cultured mesangial and mononuclear cells. Kidney Int 57:2285–2298, 2000

    Article  CAS  PubMed  Google Scholar 

  41. Kerins DM, Hao Q, Vaughan DE: Angiotensin induction of PAI-1 expression in endothelial cells is mediated by the hexapeptide angiotensin IV. J Clin Invest 96:2515–2520, 1995

    Article  CAS  PubMed  Google Scholar 

  42. Ruiz-Ortega M, Esteban V, Egido J: The regulation of the inflammatory response through nuclear factor-kappaB pathway by angiotensin IV extends the role of the renin angiotensin system in cardiovascular diseases. Trends Cardiovasc Med 17:19–25, 2007

    Article  CAS  PubMed  Google Scholar 

  43. Lee EA, Seo JY, Jiang Z, Yu MR, Kwon MK, Ha H, Lee HB: Reactive oxygen species mediate high glucose-induced plasminogen activator inhibitor-1 up-regulation in mesangial cells and in diabetic kidney. Kidney Int 67:1762–1771, 2005

    Article  CAS  PubMed  Google Scholar 

  44. Benter IF, Yousif MH, Dhaunsi GS, Kaur J, Chappell MC, Diz DI: Angiotensin-(1-7) prevents activation of NADPH oxidase and renal vascular dysfunction in diabetic hypertensive rats. Am J Nephrol 28:25–33, 2008

    Article  CAS  PubMed  Google Scholar 

  45. Esteban V, Heringer-Walther S, Sterner-Kock A, de Bruin R, van den Engel S, Wang Y, Mezzano S, Egido J, Schultheiss HP, Ruiz-Ortega M, Walther T: Angiotensin-(1-7) and the g protein-coupled receptor MAS are key players in renal inflammation. PLoS One 4:e5406, 2009

    Article  PubMed  Google Scholar 

  46. Shao Y, He M, Zhou L, Yao T, Huang Y, Lu LM: Chronic angiotensin (1-7) injection accelerates STZ-induced diabetic renal injury. Acta Pharmacol Sin 29:829–837, 2008

    Article  CAS  PubMed  Google Scholar 

  47. de Gasparo M, Husain A, Alexander W, Catt KJ, Chiu AT, Drew M, Goodfriend T, Harding JW, Inagami T, Timmermans PB: Proposed update of angiotensin receptor nomenclature. Hypertension 25:924–927, 1995

    CAS  PubMed  Google Scholar 

  48. Chabrashvili T, Kitiyakara C, Blau J, Karber A, Aslam S, Welch WJ, Wilcox CS: Effects of Ang II type 1 and 2 receptors on oxidative stress, renal NADPH oxidase, and SOD expression. Am J Physiol Regul Integr Comp Physiol 285:R117–R124, 2003

    CAS  PubMed  Google Scholar 

  49. Vaziri ND, Bai Y, Ni Z, Quiroz Y, Pandian R, Rodriguez-Iturbe B: Intra-renal angiotensin II/AT1 receptor, oxidative stress, inflammation, and progressive injury in renal mass reduction. J Pharmacol Exp Ther 323:85–93, 2007

    Article  CAS  PubMed  Google Scholar 

  50. Manucha W, Carrizo L, Ruete C, Molina H, Valles P: Angiotensin II type I antagonist on oxidative stress and heat shock protein 70 (HSP 70) expression in obstructive nephropathy. Cell Mol Biol (Noisy-le-grand) 51:547–555, 2005

    CAS  Google Scholar 

  51. Sugiyama H, Kobayashi M, Wang DH, Sunami R, Maeshima Y, Yamasaki Y, Masuoka N, Kira S, Makino H: Telmisartan inhibits both oxidative stress and renal fibrosis after unilateral ureteral obstruction in acatalasemic mice. Nephrol Dial Transplant 20:2670–2680, 2005

    Article  CAS  PubMed  Google Scholar 

  52. Forbes JM, Coughlan MT, Cooper ME: Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes 57:1446–1454, 2008

    Article  CAS  PubMed  Google Scholar 

  53. Cooper ME: Interaction of metabolic and haemodynamic factors in mediating experimental diabetic nephropathy. Diabetologia 44:1957–1972, 2001

    Article  CAS  PubMed  Google Scholar 

  54. Kuo HT, Kuo MC, Chiu YW, Chang JM, Guh JY, Chen HC: Increased glomerular and extracellular malondialdehyde levels in patients and rats with focal segmental glomerulosclerosis. Eur J Clin Invest 35:245–250, 2005

    Article  CAS  PubMed  Google Scholar 

  55. Agarwal R: Proinflammatory effects of oxidative stress in chronic kidney disease: role of additional angiotensin II blockade. Am J Physiol Renal Physiol 284:F863–F869, 2003

    CAS  PubMed  Google Scholar 

  56. Endo S, Mori T, Yoneki Y, Nakamichi T, Hosoya T, Ogawa S, Tokudome G, Hosoya T, Miyata T, Ito S: Blockade of angiotensin II type-1 receptor increases salt sensitivity in Sprague-Dawley rats. Hypertens Res 32:513–519, 2009

    Article  CAS  PubMed  Google Scholar 

  57. Portero-Otin M, Pamplona R, Boada J, Jove M, Gonzalo H, Buleon M, Linz W, Schafer S, Tack I, Girolami JP: Inhibition of renin angiotensin system decreases renal protein oxidative damage in diabetic rats. Biochem Biophys Res Commun 368:528–535, 2008

    Article  CAS  PubMed  Google Scholar 

  58. Welch WJ, Baumgartl H, Lubbers D, Wilcox CS: Renal oxygenation defects in the spontaneously hypertensive rat: role of AT1 receptors. Kidney Int 63:202–208, 2003

    Article  CAS  PubMed  Google Scholar 

  59. Ozono R, Wang ZQ, Moore AF, Inagami T, Siragy HM, Carey RM: Expression of the subtype 2 angiotensin (AT2) receptor protein in rat kidney. Hypertension 30:1238–1246, 1997

    CAS  PubMed  Google Scholar 

  60. Pope JCt, Brock JW, 3rd, Adams MC, Stephens FD, Ichikawa I: How they begin and how they end: classic and new theories for the development and deterioration of congenital anomalies of the kidney and urinary tract, CAKUT. J Am Soc Nephrol 10:2018–2028, 1999

    Google Scholar 

  61. Pope JCt, Nishimura H, Ichikawa I: Role of angiotensin in the development of the kidney and urinary tract. Nephrologie 19:433–436, 1998

    Google Scholar 

  62. Ichiki T, Labosky PA, Shiota C, Okuyama S, Imagawa Y, Fogo A, Niimura F, Ichikawa I, Hogan BL, Inagami T: Effects on blood pressure and exploratory behaviour of mice lacking angiotensin II type-2 receptor. Nature 377:748–750, 1995

    Article  CAS  PubMed  Google Scholar 

  63. Siragy HM, Carey RM: The subtype 2 (AT2) angiotensin receptor mediates renal production of nitric oxide in conscious rats. J Clin Invest 100:264–269, 1997

    Article  CAS  PubMed  Google Scholar 

  64. Siragy HM, Inagami T, Ichiki T, Carey RM: Sustained hypersensitivity to angiotensin II and its mechanism in mice lacking the subtype-2 (AT2) angiotensin receptor. Proc Natl Acad Sci U S A 96:6506–6510, 1999

    Article  CAS  PubMed  Google Scholar 

  65. Iwai M, Chen R, Li Z, Shiuchi T, Suzuki J, Ide A, Tsuda M, Okumura M, Min LJ, Mogi M, Horiuchi M: Deletion of angiotensin II type 2 receptor exaggerated atherosclerosis in apolipoprotein E-null mice. Circulation 112:1636–1643, 2005

    Article  CAS  PubMed  Google Scholar 

  66. Sourris KC, Morley AL, Koitka A, Samuel P, Coughlan MT, Penfold SA, Thomas MC, Bierhaus A, Nawroth PP, Yamamoto H, Allen TJ, Walther T, Hussain T, Cooper ME, Forbes JM. Receptor for AGEs (RAGE) blockade may exert its renoprotective effects in patients with diabetic nephropathy via induction of the angiotensin II type 2 (AT2) receptor. Diabetologia. 2010 Jul 15. [Epub ahead of print]

    Google Scholar 

  67. Koitka A, Cao Z, Koh P, Watson AM, Sourris KC, Loufrani L, Soro-Paavonen A, Walther T, Woollard KJ, Jandeleit-Dahm KA, Cooper ME, Allen TJ: Angiotensin II subtype 2 receptor blockade and deficiency attenuate the development of atherosclerosis in an apolipoprotein E-deficient mouse model of diabetes. Diabetologia 53(3):584–592, 2009

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josephine M. Forbes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Forbes, J.M., Cooper, M.E. (2011). The Renin Angiotensin System. In: Miyata, T., Eckardt, KU., Nangaku, M. (eds) Studies on Renal Disorders. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press. https://doi.org/10.1007/978-1-60761-857-7_16

Download citation

Publish with us

Policies and ethics