Dyslipidemias pp 221-233 | Cite as

Genetic Disorders of HDL Metabolism

  • Jessica Sparks LilleyEmail author
  • MacRae F. Linton
  • Sergio Fazio
Part of the Contemporary Endocrinology book series (COE)


Metabolism, function, and plasma levels of high-density lipoprotein (HDL) are influenced by genetic factors. Monogenic disorders causing very low and very high HDL levels, such as Tangier and fish-eye disease on one side, cholesteryl ester transfer protein (CETP) and hepatic lipase (HL) deficiency on the other, are rare but important for the clinician to recognize. More common is an interaction between environment and heredity causing less drastic but clinically significant phenotypes. Recent development in our understanding of HDL biosynthesis, catabolism, and action, combined with the failure of trials with HDL-raising drugs, challenges the dogma that high HDL levels protect the vessel wall and low HDL syndromes lead to increased atherosclerosis. The novel concept of HDL functionality may take the place of HDL concentrations as predictor of coronary disease rates. It is not currently known whether HDL functionality is an inherited trait. This chapter reviews HDL metabolism, outlines known inherited aberrations, and considers the potential implications of current research.


HDL ABCA-1 LCAT CETP Hepatic lipase HDL function Hyperalphalipoproteinemia Hypoalphalipoproteinemia 


  1. 1.
    Olson RE. Discovery of the lipoproteins, their role in fat transport and their significance as risk factors. J Nutr. 1998;128:439S–43S.PubMedGoogle Scholar
  2. 2.
    Teslovich TM, Musunuru K, Smith AV, et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature. 2010;466:707–13.CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Gordon DJ, Rifkind BM. High-density lipoprotein- the clinical implications of recent studies. N Engl J Med. 1989;321:1311–6.CrossRefPubMedGoogle Scholar
  4. 4.
    Gordon T, Castelli WP, Hjortland MC, Kannel WB, Dawber TR. High density lipoprotein as a protective factor against coronary heart disease. The Framingham Study. Am J Med. 1977;62:707–14.CrossRefPubMedGoogle Scholar
  5. 5.
    Assmann G, Gotto AM Jr. HDL cholesterol and protective factors in atherosclerosis. Circulation. 2004;109:III8–14.CrossRefPubMedGoogle Scholar
  6. 6.
    Di Angelantonio E, Sarwar N, Perry P, et al. Major lipids, apolipoproteins, and risk of vascular disease. JAMA. 2009;302:1993–2000.CrossRefPubMedGoogle Scholar
  7. 7.
    Toth PP, Potter D, Ming EE. Prevalence of lipid abnormalities in the United States: the National Health and Nutrition Examination Survey 2003–2006. J Clin Lipidol. 2012;6:325–30.CrossRefPubMedGoogle Scholar
  8. 8.
    Heinecke JW. The protein cargo of HDL: implications for vascular wall biology and therapeutics. J Clin Lipidol. 2010;4:371–5.CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Zhong S, Sharp DS, Grove JS, et al. Increased coronary heart disease in Japanese-American men with mutation in the cholesteryl ester transfer protein gene despite increased HDL levels. J Clin Invest. 1996;97:2917–23.CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Barter PJ, Nicholls S, Rye KA, Anantharamaiah GM, Navab M, Fogelman AM. Antiinflammatory properties of HDL. Circ Res. 2004;95:764–72.CrossRefPubMedGoogle Scholar
  11. 11.
    Camont L, Chapman MJ, Kontush A. Biological activities of HDL subpopulations and their relevance to cardiovascular disease. Trends Mol Med. 2011;17:594–603.CrossRefPubMedGoogle Scholar
  12. 12.
    Vaisar T, Pennathur S, Green PS, et al. Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL. J Clin Invest. 2007;117:746–56.CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Vickers KC, Remaley, AT. High density Lipoprotein Structure, Function, and Metabolism: HDL and cholesterol: life after the divorce? J Lipid Res. 2014;55:4–12.Google Scholar
  14. 14.
    Christoffersen C, Obinata H, Kumaraswamy SB, et al. Endothelium-protective sphingosine-1-phosphate provided by HDL-associated apolipoprotein M. Proc Natl Acad Sci U S A. 2011;108:9613–8.CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Wang X, Collins HL, Ranalletta M, et al. Macrophage ABCA1 and ABCG1, but not SR-BI, promote macrophage reverse cholesterol transport in vivo. J Clin Invest. 2007;117:2216–24.CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Scott J. Heart disease. Good cholesterol news. Nature. 1999;400:816–7, 819.CrossRefPubMedGoogle Scholar
  17. 17.
    Mineo C, Shaul PW. Functions of scavenger receptor class B, type I in atherosclerosis. Curr Opin Lipidol. 2012;23:487–93.CrossRefPubMedGoogle Scholar
  18. 18.
    Sacks FM, Alaupovic P, Moye LA, et al. VLDL, apolipoproteins B, CIII, and E, and risk of recurrent coronary events in the Cholesterol and Recurrent Events (CARE) trial. Circulation. 2000;102:1886–92.CrossRefPubMedGoogle Scholar
  19. 19.
    Havel RJ. Genetic underpinnings of LDL size and density: a role for hepatic lipase? Am J Clin Nutr. 2000;71:1390–1.PubMedGoogle Scholar
  20. 20.
    Minicocci I, Montali A, Robciuc MR, et al. Mutations in the ANGPTL3 gene and familial combined hypolipidemia: a clinical and biochemical characterization. J Clin Endocrinol Metab. 2012;97:E1266–75.CrossRefPubMedGoogle Scholar
  21. 21.
    National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation. 2002;106:3143–421.Google Scholar
  22. 22.
    Sampson UK, Fazio S, Linton MF. Residual Cardiovascular Risk Despite Optimal LDL-Cholesterol Reduction: The Evidence, Etiology, and Therapeutic Challenges. Curr Atheroscler Reports. 2012;14:1–10Google Scholar
  23. 23.
    Wendel M, Paul R, Heller AR. Lipoproteins in inflammation and sepsis. II. Clinical aspects. Intensive Care Med. 2007;33:25–35.CrossRefPubMedGoogle Scholar
  24. 24.
    van der Voort PH, Gerritsen RT, Bakker AJ, Boerma EC, Kuiper MA, de Heide L. HDL-cholesterol level and cortisol response to synacthen in critically ill patients. Intensive Care Med. 2003;29:2199–203.CrossRefPubMedGoogle Scholar
  25. 25.
    Barlage S, Gnewuch C, Liebisch G, et al. Changes in HDL-associated apolipoproteins relate to mortality in human sepsis and correlate to monocyte and platelet activation. Intensive Care Med. 2009;35:1877–85.CrossRefPubMedGoogle Scholar
  26. 26.
    Brooks-Wilson A, Marcil M, Clee SM, et al. Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. Nat Genet. 1999;22:336–45.CrossRefPubMedGoogle Scholar
  27. 27.
    Bodzioch M, Orso E, Klucken J, et al. The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nat Genet. 1999;22:347–51.CrossRefPubMedGoogle Scholar
  28. 28.
    Rust S, Rosier M, Funke H, et al. Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1. Nat Genet. 1999;22:352–5.CrossRefPubMedGoogle Scholar
  29. 29.
    Lawn RM, Wade DP, Garvin MR, et al. The Tangier disease gene product ABC1 controls the cellular apolipoprotein-mediated lipid removal pathway. J Clin Invest. 1999;104:R25–31.CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Fredrickson DS. The inheritance of high density lipoprotein deficiency (Tangier disease). J Clin Invest. 1964;43:228–36.CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Marcil M, Brooks-Wilson A, Clee SM, et al. Mutations in the ABC1 gene in familial HDL deficiency with defective cholesterol efflux. Lancet. 1999;354:1341–6.CrossRefPubMedGoogle Scholar
  32. 32.
    Puntoni M, Sbrana F, Bigazzi F, Sampietro T. Tangier disease: epidemiology, pathophysiology, and management. Am J Cardiovasc Drugs. 2012;12:303–11.CrossRefPubMedGoogle Scholar
  33. 33.
    Clee SM, Kastelein JJ, van Dam M, et al. Age and residual cholesterol efflux affect HDL cholesterol levels and coronary artery disease in ABCA1 heterozygotes. J Clin Invest. 2000;106:1263–70.CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Azoulay M, Henry I, Tata F, et al. The structural gene for lecithin: cholesterol acyl transferase (LCAT) maps to 16q22. Ann Hum Genet. 1987;51:129–36.CrossRefPubMedGoogle Scholar
  35. 35.
    Savel J, Lafitte M, Pucheu Y, Pradeau V, Tabarin A, Couffinhal T. Very low levels of HDL cholesterol and atherosclerosis, a variable relationship- a review of LCAT deficiency. Vasc Health Risk Manage. 2012;8:357–61.Google Scholar
  36. 36.
    Kunnen S, Van Eck M. Lecithin: cholesterol acyltransferase: old friend or foe in atherosclerosis? J Lipid Res. 2012;53:1783–99.CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Norum KR, Gjone E. Familial serum-cholesterol esterification failure. A new inborn error of metabolism. Biochim Biophys Acta. 1967;144:698–700.CrossRefPubMedGoogle Scholar
  38. 38.
    Bravo I, Amigo L, Cohen DE, et al. Role of plasma and liver cholesterol- and lipoprotein-metabolism determinants in LpX formation in the mouse. Biochim Biophys Acta. 2007;1770:979–88.CrossRefPubMedGoogle Scholar
  39. 39.
    Zhu X, Herzenberg AM, Eskandarian M, et al. A novel in vivo lecithin-cholesterol acyltransferase (LCAT)-deficient mouse expressing predominantly LpX is associated with spontaneous glomerulopathy. Am J Pathol. 2004;165:1269–78.CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    Grone EF, Walli AK, Grone HJ, Miller B, Seidel D. The role of lipids in nephrosclerosis and glomerulosclerosis. Atherosclerosis. 1994;107:1–13.CrossRefPubMedGoogle Scholar
  41. 41.
    Wells IC, Peitzmeier G, Vincent JK. Lecithin: cholesterol acyltransferase and lysolecithin in coronary atherosclerosis. Exp Mol Pathol. 1986;45:303–10.CrossRefPubMedGoogle Scholar
  42. 42.
    Solajic-Bozicevic N, Stavljenic-Rukavina A, Sesto M. Lecithin-cholesterol acryltransferase activity in patients with coronary artery disease examined by coronary angiography. Clin Investig. 1994;72:951–6.CrossRefPubMedGoogle Scholar
  43. 43.
    Calabresi L, Baldassarre D, Castelnuovo S, et al. Functional lecithin: cholesterol acyltransferase is not required for efficient atheroprotection in humans. Circulation. 2009;120:628–35.CrossRefPubMedGoogle Scholar
  44. 44.
    Hovingh GK, Hutten BA, Holleboom AG, et al. Compromised LCAT function is associated with increased atherosclerosis. Circulation. 2005;112:879–84.CrossRefPubMedGoogle Scholar
  45. 45.
    Jimi S, Uesugi N, Saku K, et al. Possible induction of renal dysfunction in patients with lecithin: cholesterol acyltransferase deficiency by oxidized phosphatidylcholine in glomeruli. Arterioscler Thromb Vasc Biol. 1999;19:794–801.CrossRefPubMedGoogle Scholar
  46. 46.
    Weisgraber KH, Bersot TP, Mahley RW, Franceschini G, Sirtori CR. A-Imilano apoprotein. Isolation and characterization of a cysteine-containing variant of the A-I apoprotein from human high density lipoproteins. J Clin Invest. 1980;66:901–7.CrossRefPubMedCentralPubMedGoogle Scholar
  47. 47.
    Schaefer EJ, Heaton WH, Wetzel MG, Brewer HB Jr. Plasma apolipoprotein A-1 absence associated with a marked reduction of high density lipoproteins and premature coronary artery disease. Arteriosclerosis. 1982;2:16–26.CrossRefPubMedGoogle Scholar
  48. 48.
    Singh V, Sharma R, Kumar A, Deedwania P. Low high-density lipoprotein cholesterol: current status and future strategies for management. Vasc Health Risk Manage. 2010;6:979–96.CrossRefGoogle Scholar
  49. 49.
    Al-Sarraf A, Al-Ghofaili K, Sullivan DR, Wasan KM, Hegele R, Frohlich J. Complete Apo AI deficiency in an Iraqi Mandaean family: case studies and review of the literature. J Clin Lipidol. 2010;4:420–6.CrossRefPubMedGoogle Scholar
  50. 50.
    Sorci-Thomas MG, Thomas MJ. The effects of altered apolipoprotein A-I structure on plasma HDL concentration. Trends Cardiovasc Med. 2002;12:121–8.CrossRefPubMedGoogle Scholar
  51. 51.
    Haase CL, Frikke-Schmidt R, Nordestgaard BG, Tybjaerg-Hansen A. Population-based resequencing of APOA1 in 10,330 individuals: spectrum of genetic variation, phenotype, and comparison with extreme phenotype approach. PLoS Genet. 2012;8:e1003063.CrossRefPubMedCentralPubMedGoogle Scholar
  52. 52.
    Booth DR, Tan SY, Booth SE, et al. Hereditary hepatic and systemic amyloidosis caused by a new deletion/insertion mutation in the apolipoprotein AI gene. J Clin Invest. 1996;97:2714–21.CrossRefPubMedCentralPubMedGoogle Scholar
  53. 53.
    de Sousa MM, Vital C, Ostler D, et al. Apolipoprotein AI and transthyretin as components of amyloid fibrils in a kindred with apoAI Leu178His amyloidosis. Am J Pathol. 2000;156:1911–7.CrossRefPubMedCentralPubMedGoogle Scholar
  54. 54.
    Eriksson M, Schonland S, Yumlu S, et al. Hereditary apolipoprotein AI-associated amyloidosis in surgical pathology specimens: identification of three novel mutations in the APOA1 gene. J Mol Diagn. 2009;11:257–62.CrossRefPubMedCentralPubMedGoogle Scholar
  55. 55.
    Weisgraber KH, Rall SC Jr., Bersot TP, Mahley RW, Franceschini G, Sirtori CR. Apolipoprotein A-IMilano. Detection of normal A-I in affected subjects and evidence for a cysteine for arginine substitution in the variant A-I. J Biol Chem. 1983;258:2508–13.PubMedGoogle Scholar
  56. 56.
    Nissen SE, Tsunoda T, Tuzcu EM, et al. Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial. JAMA. 2003;290:2292–300.CrossRefPubMedGoogle Scholar
  57. 57.
    Musunuru K, Pirruccello JP, Do R, et al. Exome sequencing, ANGPTL3 mutations, and familial combined hypolipidemia. N Engl J Med. 2010;363:2220–7.CrossRefPubMedCentralPubMedGoogle Scholar
  58. 58.
    Schulz R, Schlüter KD, Laufs U. Molecular and cellular function of the proprotein convertase subtilisin/kexin type 9 (PCSK9). Basic Res Cardiol. 2015;110(2):463.Google Scholar
  59. 59.
    Goldstein JL, Schrott HG, Hazzard WR, Bierman EL, Motulsky AG. Hyperlipidemia in coronary heart disease. II. Genetic analysis of lipid levels in 176 families and delineation of a new inherited disorder, combined hyperlipidemia. J Clin Invest. 1973;52:1544–68.CrossRefPubMedCentralPubMedGoogle Scholar
  60. 60.
    Gaddi A, Cicero AF, Odoo FO, Poli AA, Paoletti R. Practical guidelines for familial combined hyperlipidemia diagnosis: an up-date. Vasc Health Risk Manage. 2007;3:877–86.Google Scholar
  61. 61.
    Castro Cabezas M, de Bruin TW, Erkelens DW. Familial combined hyperlipidaemia: 1973–1991. Neth J Med. 1992;40:83–95.PubMedGoogle Scholar
  62. 62.
    Eckel RH, Alberti KG, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet. 2010;375:181–3.CrossRefPubMedGoogle Scholar
  63. 63.
    Povel CM, Boer JM, Imholz S, Dolle ME, Feskens EJ. Genetic variants in lipid metabolism are independently associated with multiple features of the metabolic syndrome. Lipids Health Dis. 2011;10:118.CrossRefPubMedCentralPubMedGoogle Scholar
  64. 64.
    Darabi M, Abolfathi AA, Noori M, et al. Cholesteryl ester transfer protein I405V polymorphism influences apolipoprotein A-I response to a change in dietary fatty acid composition. Horm Metab Res = Hormon- und Stoffwechselforschung = Hormones et metabolisme. 2009;41:554–8.CrossRefGoogle Scholar
  65. 65.
    Deeb SS, Zambon A, Carr MC, Ayyobi AF, Brunzell JD. Hepatic lipase and dyslipidemia: interactions among genetic variants, obesity, gender, and diet. J Lipid Res. 2003;44:1279–86.CrossRefPubMedGoogle Scholar
  66. 66.
    Yin RX, Wu DF, Aung LH, et al. Several lipid-related gene polymorphisms interact with overweight/obesity to modulate blood pressure levels. Int J Mol Sci. 2012;13:12062–81.CrossRefPubMedCentralPubMedGoogle Scholar
  67. 67.
    Patsch W, Kuisk I, Glueck C, Schonfeld G. Lipoproteins in familial hyperalphalipoproteinemia. Arteriosclerosis. 1981;1:156–61.CrossRefPubMedGoogle Scholar
  68. 68.
    Barzilai N, Atzmon G, Schechter C, et al. Unique lipoprotein phenotype and genotype associated with exceptional longevity. JAMA. 2003;290:2030–40.CrossRefPubMedGoogle Scholar
  69. 69.
    Lewington S, Whitlock G, Clarke R, et al. Blood cholesterol and vascular mortality by age, sex, and blood pressure: a meta-analysis of individual data from 61 prospective studies with 55,000 vascular deaths. Lancet. 2007;370:1829–39.CrossRefPubMedGoogle Scholar
  70. 70.
    Nikkila M, Heikkinen J. High-density lipoprotein cholesterol and longevity. Age Ageing. 1990;19:119–24.CrossRefPubMedGoogle Scholar
  71. 71.
    Linsel-Nitschke P, Tall AR. HDL as a target in the treatment of atherosclerotic cardiovascular disease. Nat Rev Drug Discov. 2005;4:193–205.CrossRefPubMedGoogle Scholar
  72. 72.
    Guyton JR, Slee AE, Anderson T, et al. Relationship of lipoproteins to cardiovascular events: the AIM-HIGH Trial (Atherothrombosis Intervention in Metabolic Syndrome With Low HDL/High Triglycerides and Impact on Global Health Outcomes). J Am Coll Cardiol. 2013;62:1580–4.CrossRefPubMedGoogle Scholar
  73. 73.
    Barter PJ, Caulfield M, Eriksson M, et al. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med. 2007;357:2109–22.CrossRefPubMedGoogle Scholar
  74. 74.
    Schwartz GG, Olsson AG, Abt M, et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N Engl J Med. 2012;367:2089–99.CrossRefPubMedGoogle Scholar
  75. 75.
    Agellon LB, Quinet EM, Gillette TG, Drayna DT, Brown ML, Tall AR. Organization of the human cholesteryl ester transfer protein gene. Biochemistry. 1990;29:1372–6.CrossRefPubMedGoogle Scholar
  76. 76.
    Kathiresan S, Melander O, Guiducci C, et al. Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nature Genet. 2008;40:189–97.CrossRefPubMedCentralPubMedGoogle Scholar
  77. 77.
    Koizumi J, Mabuchi H, Yoshimura A, et al. Deficiency of serum cholesteryl-ester transfer activity in patients with familial hyperalphalipoproteinaemia. Atherosclerosis. 1985;58:175–86.CrossRefPubMedGoogle Scholar
  78. 78.
    Brown ML, Inazu A, Hesler CB, et al. Molecular basis of lipid transfer protein deficiency in a family with increased high-density lipoproteins. Nature. 1989;342:448–51.CrossRefPubMedGoogle Scholar
  79. 79.
    Nagano M, Yamashita S, Hirano K, et al. Molecular mechanisms of cholesteryl ester transfer protein deficiency in Japanese. J Atheroscler Thromb. 2004;11:110–21.CrossRefPubMedGoogle Scholar
  80. 80.
    Hirano K, Yamashita S, Nakajima N, et al. Genetic cholesteryl ester transfer protein deficiency is extremely frequent in the Omagari area of Japan. Marked hyperalphalipoproteinemia caused by CETP gene mutation is not associated with longevity. Arterioscler Thromb Vasc Biol. 1997;17:1053–9.CrossRefPubMedGoogle Scholar
  81. 81.
    Thompson A, Di Angelantonio E, Sarwar N, et al. Association of cholesteryl ester transfer protein genotypes with CETP mass and activity, lipid levels, and coronary risk. JAMA. 2008;299:2777–88.CrossRefPubMedGoogle Scholar
  82. 82.
    Ohtani R, Inazu A, Noji Y, et al. Novel mutations of cholesteryl ester transfer protein (CETP) gene in Japanese hyperalphalipoproteinemic subjects. Clin Chim Acta. 2012;413:537–43.CrossRefPubMedGoogle Scholar
  83. 83.
    Lira ME, Loomis AK, Paciga SA, Lloyd DB, Thompson JF. Expression of CETP and of splice variants induces the same level of ER stress despite secretion efficiency differences. J Lipid Res. 2008;49:1955–62.CrossRefPubMedGoogle Scholar
  84. 84.
    Papp AC, Pinsonneault JK, Wang D, et al. Cholesteryl Ester Transfer Protein (CETP) polymorphisms affect mRNA splicing, HDL levels, and sex-dependent cardiovascular risk. PloS One. 2012;7:e31930.CrossRefPubMedCentralPubMedGoogle Scholar
  85. 85.
    Dullaart RP, Sluiter WJ. Common variation in the CETP gene and the implications for cardiovascular disease and its treatment: an updated analysis. Pharmacogenomics. 2008;9:747–63.CrossRefPubMedGoogle Scholar
  86. 86.
    Bruce C, Sharp DS, Tall AR. Relationship of HDL and coronary heart disease to a common amino acid polymorphism in the cholesteryl ester transfer protein in men with and without hypertriglyceridemia. J Lipid Res. 1998;39:1071–8.PubMedGoogle Scholar
  87. 87.
    Overgaard M, Brasen CL, Svaneby D, Feddersen S, Nybo M. Familial lipoprotein lipase deficiency: a case of compound heterozygosity of a novel duplication (R44Kfs*4) and a common mutation (N291S) in the lipoprotein lipase gene. Ann Clin Biochem. 2013;50:374–9.CrossRefPubMedGoogle Scholar
  88. 88.
    Connelly PW, Hegele RA. Hepatic lipase deficiency. Crit Rev Clin Lab Sci. 1998;35:547–72.CrossRefPubMedGoogle Scholar
  89. 89.
    von Eckardstein A, Holz H, Sandkamp M, Weng W, Funke H, Assmann G. Apolipoprotein C-III(Lys58-Glu). Identification of an apolipoprotein C-III variant in a family with hyperalphalipoproteinemia. J Clin Invest. 1991;87:1724–31.CrossRefPubMedCentralPubMedGoogle Scholar
  90. 90.
    Voight BF, Peloso GM, Orho-Melander M, et al. Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet. 2012;380:572–80.CrossRefPubMedCentralPubMedGoogle Scholar
  91. 91.
    Manichaikul A, Naj AC, Herrington D, Post W, Rich SS, Rodriguez A. Association of SCARB1 variants with subclinical atherosclerosis and incident cardiovascular disease: the multi-ethnic study of atherosclerosis. Arterioscler Thromb Vasc Biol. 2012;32:1991–9.CrossRefPubMedGoogle Scholar
  92. 92.
    Navab M, Reddy ST, Van Lenten BJ, Fogelman AM. HDL and cardiovascular disease: atherogenic and atheroprotective mechanisms. Nat Rev Cardiol. 2011;8:222–32.CrossRefPubMedGoogle Scholar
  93. 93.
    Gotto AM Jr., Moon JE. Safety of inhibition of cholesteryl ester transfer protein with anacetrapib: the DEFINE study. Expert Rev Cardiovasc Ther. 2012;10:955–63.CrossRefPubMedGoogle Scholar
  94. 94.
    Cannon CP, Shah S, Dansky HM, et al. Safety of anacetrapib in patients with or at high risk for coronary heart disease. N Engl J Med. 2010;363:2406–15.CrossRefPubMedGoogle Scholar
  95. 95.
    Nicholls SJ, Brewer HB, Kastelein JJ, et al. Effects of the CETP inhibitor evacetrapib administered as monotherapy or in combination with statins on HDL and LDL cholesterol: a randomized controlled trial. JAMA. 2011;306:2099–109.CrossRefPubMedGoogle Scholar
  96. 96.
    Shinkai H. Cholesteryl ester transfer-protein modulator and inhibitors and their potential for the treatment of cardiovascular diseases. Vasc Health Risk Manage. 2012;8:323–31.CrossRefGoogle Scholar
  97. 97.
    Lavigne PM, Karas RH. The current state of niacin in cardiovascular disease prevention: a systematic review and meta-regression. J Am Coll Cardiol. 2013;61:440–6.CrossRefPubMedGoogle Scholar
  98. 98.
    AIM-HIGH Investigators. The role of niacin in raising high-density lipoprotein cholesterol to reduce cardiovascular events in patients with atherosclerotic cardiovascular disease and optimally treated low-density lipoprotein cholesterol: baseline characteristics of study participants. The Atherothrombosis Intervention in Metabolic syndrome with low HDL/high triglycerides: impact on Global Health outcomes (AIM-HIGH) trial. Am Heart J. 2011;161:538–43.CrossRefGoogle Scholar
  99. 99.
    Group HTC. HPS2-THRIVE randomized placebo-controlled trial in 25 673 high-risk patients of ER niacin/laropiprant: trial design, pre-specified muscle and liver outcomes, and reasons for stopping study treatment. Eur Heart J. 2013;34:1279–91.CrossRefGoogle Scholar
  100. 100.
    Khera AV, Cuchel M, de la Llera-Moya M, et al. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N Engl J Med. 2011;364:127–35.CrossRefPubMedCentralPubMedGoogle Scholar
  101. 99.
    Yamamoto S, Yancey PG, Ikizler TA, et al. Dysfunctional high-density lipoprotein in patients on chronic hemodialysis. J Am Coll Cardiol. 2012;60:2372–9.CrossRefPubMedGoogle Scholar
  102. 102.
    Frikke-Schmidt R, Nordestgaard BG, Stene MC, et al. Association of loss-of-function mutations in the ABCA1 gene with high-density lipoprotein cholesterol levels and risk of ischemic heart disease. JAMA. 2008;299:2524–32.CrossRefPubMedGoogle Scholar
  103. 103.
    Haase CL, Tybjaerg-Hansen A, Qayyum AA, Schou J, Nordestgaard BG, Frikke-Schmidt R. LCAT, HDL cholesterol and ischemic cardiovascular disease: a Mendelian randomization study of HDL cholesterol in 54,500 individuals. J Clin Endocrinol Metab. 2012;97:E248–56.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press 2015

Authors and Affiliations

  • Jessica Sparks Lilley
    • 1
    Email author
  • MacRae F. Linton
    • 2
  • Sergio Fazio
    • 3
  1. 1.Department of Pediatrics, Division of Pediatric EndocrinologyUniversity of Mississippi School of MedicineNashvilleUSA
  2. 2.Atherosclerosis Research UnitVanderbilt University School of MedicineCardiovascular Medicine NashvilleUSA
  3. 3.Center for Preventive Cardiology, Knight Cardiovascular InstituteOregon Health and Science UniversityPortlandUSA

Personalised recommendations