Skip to main content

MicroRNAs in the Central Nervous System and Potential Roles of RNA Interference in Brain Tumors

  • Chapter
  • First Online:
CNS Cancer

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 1472 Accesses

Abstract

The study of RNA interference, in the form of endogenous microRNAs (miRNAs) or exogenous small interfering RNAs (siRNAs), is revealing powerful regulatory mechanisms throughout biology. Though small, these short RNA duplexes can lead to potent suppression of their targets. Numerous miRNAs are dysregulated in cancers, and several have been shown to play oncogenic or tumor suppressor roles. miRNAs are also pivotal in the development and function of the central nervous system. Brain tumors, positioned at the intersection of both, are strongly influenced by miRNAs. Early studies have shown upregulated miRNAs such as miR-21 and miR-221/222 to act in an oncogenic fashion, while the underexpressed miR-124 and miR-7 appear to suppress brain tumor formation. miRNAs and siRNAs also offer novel targeted approaches to the treatment of brain tumors. In this chapter we will discuss miRNAs in the central nervous system, their roles in brain tumors, and potential miRNA- and siRNA-based therapeutic strategies in neuro-oncology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akao Y, Nakagawa Y Naoe T (2006) let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biol Pharm Bull 29(5): 903–6

    Article  PubMed  CAS  Google Scholar 

  • Ambros V (1989) A hierarchy of regulatory genes controls a larva-to-adult developmental switch in C. elegans. Cell 57(1): 49–57

    Article  PubMed  CAS  Google Scholar 

  • Ambros V Lee RC (2004) Identification of microRNAs and other tiny noncoding RNAs by cDNA cloning. Methods Mol Biol 265: 131–58

    PubMed  CAS  Google Scholar 

  • Amos S, Mut M, diPierro CG, Carpenter JE, Xiao A, Kohutek ZA, Redpath GT, Zhao Y, Wang J, Shaffrey ME Hussaini IM (2007) Protein kinase C-alpha-mediated regulation of low-density lipoprotein receptor related protein and urokinase increases astrocytoma invasion. Cancer Res 67(21): 10241–51

    Article  PubMed  CAS  Google Scholar 

  • Arwert E, Hingtgen S, Figueiredo JL, Bergquist H, Mahmood U, Weissleder R Shah K (2007) Visualizing the dynamics of EGFR activity and antiglioma therapies in vivo. Cancer Res 67(15): 7335–42

    Article  PubMed  CAS  Google Scholar 

  • Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S Allgayer H (2008) MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27(15): 2128–36

    Article  PubMed  CAS  Google Scholar 

  • Babak T, Zhang W, Morris Q, Blencowe BJ Hughes TR (2004) Probing microRNAs with microarrays: tissue specificity and functional inference. Rna 10(11): 1813–9

    Article  PubMed  CAS  Google Scholar 

  • Baek B, Villen J, Shin C, Camargo FD, Gygi SP Bartel B (2008) The impact of microRNAs on protein output. Nature: Epub ahead of print

    Google Scholar 

  • Bak M, Silahtaroglu A, Moller M, Christensen M, Rath MF, Skryabin B, Tommerup N Kauppinen S (2008) MicroRNA expression in the adult mouse central nervous system. Rna 14(3): 432–44

    Article  PubMed  CAS  Google Scholar 

  • Barad O, Meiri E, Avniel A, Aharonov R, Barzilai A, Bentwich I, Einav U, Gilad S, Hurban P, Karov Y, Lobenhofer EK, Sharon E, Shiboleth YM, Shtutman M, Bentwich Z Einat P (2004) MicroRNA expression detected by oligonucleotide microarrays: system establishment and expression profiling in human tissues. Genome Res 14(12): 2486–94

    Article  PubMed  CAS  Google Scholar 

  • Berezikov E, Thuemmler F, van Laake LW, Kondova I, Bontrop R, Cuppen E Plasterk RH (2006) Diversity of microRNAs in human and chimpanzee brain. Nat Genet 38(12): 1375–7

    Article  PubMed  CAS  Google Scholar 

  • Bernstein E, Caudy AA, Hammond SM Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409(6818): 363–6

    Article  PubMed  CAS  Google Scholar 

  • Blower PE, Chung JH, Verducci JS, Lin S, Park JK, Dai Z, Liu CG, Schmittgen TD, Reinhold WC, Croce CM, Weinstein JN Sadee W (2008) MicroRNAs modulate the chemosensitivity of tumor cells. Mol Cancer Ther 7(1): 1–9

    Article  PubMed  CAS  Google Scholar 

  • Bottoni A, Piccin D, Tagliati F, Luchin A, Zatelli MC degli Uberti EC (2005) miR-15a and miR-16-1 down-regulation in pituitary adenomas. J Cell Physiol 204(1): 280–5

    Article  PubMed  CAS  Google Scholar 

  • Bottoni A, Zatelli MC, Ferracin M, Tagliati F, Piccin D, Vignali C, Calin GA, Negrini M, Croce CM Degli Uberti EC (2007) Identification of differentially expressed microRNAs by microarray: a possible role for microRNA genes in pituitary adenomas. J Cell Physiol 210(2): 370–7

    Article  PubMed  CAS  Google Scholar 

  • Bridge AJ, Pebernard S, Ducraux A, Nicoulaz AL Iggo R (2003) Induction of an interferon response by RNAi vectors in mammalian cells. Nat Genet 34(3): 263–4

    Article  PubMed  CAS  Google Scholar 

  • Brown BD, Cantore A, Annoni A, Sergi LS, Lombardo A, Della Valle P, D'Angelo A Naldini L (2007a) A microRNA-regulated lentiviral vector mediates stable correction of hemophilia B mice. Blood 110(13): 4144–52

    Article  PubMed  CAS  Google Scholar 

  • Brown BD, Gentner B, Cantore A, Colleoni S, Amendola M, Zingale A, Baccarini A, Lazzari G, Galli C Naldini L (2007b) Endogenous microRNA can be broadly exploited to regulate transgene expression according to tissue, lineage and differentiation state. Nat Biotechnol 25(12): 1457–67

    Article  PubMed  CAS  Google Scholar 

  • Brown BD, Venneri MA, Zingale A, Sergi Sergi L Naldini L (2006) Endogenous microRNA regulation suppresses transgene expression in hematopoietic lineages and enables stable gene transfer. Nat Med 12(5): 585–91

    Article  PubMed  CAS  Google Scholar 

  • Brown GE, Lebleu B, Kawakita M, Shaila S, Sen GC Lengyel P (1976) Increased endonuclease activity in an extract from mouse Ehrlich ascites tumor cells which had been treated with a partially purified interferon preparation: dependence of double-stranded RNA. Biochem Biophys Res Commun 69(1): 114–22

    Article  PubMed  CAS  Google Scholar 

  • Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F Croce CM (2002) Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99(24): 15524–9

    Article  PubMed  CAS  Google Scholar 

  • Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M Croce CM (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101(9): 2999–3004

    Article  PubMed  CAS  Google Scholar 

  • Camps C, Buffa FM, Colella S, Moore J, Sotiriou C, Sheldon H, Harris AL, Gleadle JM Ragoussis J (2008) hsa-miR-210 Is induced by hypoxia and is an independent prognostic factor in breast cancer. Clin Cancer Res 14(5): 1340–8

    Article  PubMed  CAS  Google Scholar 

  • Chan JA, Krichevsky AM Kosik KS (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65(14): 6029–33

    Article  PubMed  CAS  Google Scholar 

  • Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH, Feldmann G, Yamakuchi M, Ferlito M, Lowenstein CJ, Arking DE, Beer MA, Maitra A Mendell JT (2007) Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 26(5): 745–52

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Huang Q, Dong J, Zhai DZ, Wang AD Lan Q (2008) Overexpression of CDC2/CyclinB1 in gliomas, and CDC2 depletion inhibits proliferation of human glioma cells in vitro and in vivo. BMC Cancer 8: 29

    Article  PubMed  CAS  Google Scholar 

  • Chen MY, Hoffer A, Morrison PF, Hamilton JF, Hughes J, Schlageter KS, Lee J, Kelly BR Oldfield EH (2005) Surface properties, more than size, limiting convective distribution of virus-sized particles and viruses in the central nervous system. J Neurosurg 103(2): 311–9

    Article  PubMed  Google Scholar 

  • Choi PS, Zakhary L, Choi WY, Caron S, Alvarez-Saavedra E, Miska EA, McManus M, Harfe B, Giraldez AJ, Horvitz RH, Schier AF Dulac C (2008) Members of the miRNA-200 family regulate olfactory neurogenesis. Neuron 57(1): 41–55

    Article  PubMed  CAS  Google Scholar 

  • Ciafre SA, Galardi S, Mangiola A, Ferracin M, Liu CG, Sabatino G, Negrini M, Maira G, Croce CM Farace MG (2005) Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 334(4): 1351–8

    Article  PubMed  CAS  Google Scholar 

  • Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik SE, Aqeilan RI, Zupo S, Dono M, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M Croce CM (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 102(39): 13944–9

    Article  PubMed  CAS  Google Scholar 

  • Conaco C, Otto S, Han JJ Mandel G (2006) Reciprocal actions of REST and a microRNA promote neuronal identity. Proc Natl Acad Sci USA 103(7): 2422–7

    Article  PubMed  CAS  Google Scholar 

  • Corney DC, Flesken-Nikitin A, Godwin AK, Wang W Nikitin AY (2007) MicroRNA-34b and MicroRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth. Cancer Res 67(18): 8433–8

    Article  PubMed  CAS  Google Scholar 

  • Corsten MF, Miranda R, Kasmieh R, Krichevsky AM, Weissleder R Shah K (2007) MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas. Cancer Res 67(19): 8994–9000

    Article  PubMed  CAS  Google Scholar 

  • Cuellar TL, Davis TH, Nelson PT, Loeb GB, Harfe BD, Ullian E McManus MT (2008) Dicer loss in striatal neurons produces behavioral and neuroanatomical phenotypes in the absence of neurodegeneration. Proc Natl Acad Sci USA 105(14): 5614–9

    Article  PubMed  CAS  Google Scholar 

  • Dahiya N, Sherman-Baust CA, Wang TL, Davidson B, Shih Ie M, Zhang Y, Wood W, 3rd, Becker KG Morin PJ (2008) MicroRNA expression and identification of putative miRNA targets in ovarian cancer. PLoS ONE 3(6): e2436

    Article  PubMed  CAS  Google Scholar 

  • Davis TH, Cuellar TL, Koch SM, Barker AJ, Harfe BD, McManus MT Ullian EM (2008) Conditional loss of Dicer disrupts cellular and tissue morphogenesis in the cortex and hippocampus. J Neurosci 28(17): 4322–30

    Article  PubMed  CAS  Google Scholar 

  • de la Iglesia N, Konopka G, Lim KL, Nutt CL, Bromberg JF, Frank DA, Mischel PS, Louis DN Bonni A (2008) Deregulation of a STAT3-interleukin 8 signaling pathway promotes human glioblastoma cell proliferation and invasiveness. J Neurosci 28(23): 5870–8

    Article  PubMed  CAS  Google Scholar 

  • Desbaillets I, Diserens AC, de Tribolet N, Hamou MF Van Meir EG (1999) Regulation of interleukin-8 expression by reduced oxygen pressure in human glioblastoma. Oncogene 18(7): 1447–56

    Article  PubMed  CAS  Google Scholar 

  • Dostie J, Mourelatos Z, Yang M, Sharma A Dreyfuss G (2003) Numerous microRNPs in neuronal cells containing novel microRNAs. Rna 9(2): 180–6

    Article  PubMed  CAS  Google Scholar 

  • Ebert MS, Neilson JR Sharp PA (2007) MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 4(9): 721–6

    Article  PubMed  CAS  Google Scholar 

  • Edge RE, Falls TJ, Brown CW, Lichty BD, Atkins H Bell JC (2008) A let-7 MicroRNA-sensitive vesicular stomatitis virus demonstrates tumor-specific replication. Mol Ther: Epub ahead of print

    Google Scholar 

  • Farh KK, Grimson A, Jan C, Lewis BP, Johnston WK, Lim LP, Burge CB Bartel DP (2005) The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science 310(5755): 1817–21

    Article  PubMed  CAS  Google Scholar 

  • Felicetti F, Errico MC, Bottero L, Segnalini P, Stoppacciaro A, Biffoni M, Felli N, Mattia G, Petrini M, Colombo MP, Peschle C Care A (2008) The promyelocytic leukemia zinc finger-microRNA-221/-222 pathway controls melanoma progression through multiple oncogenic mechanisms. Cancer Res 68(8): 2745–54

    Article  PubMed  CAS  Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669): 806–11

    Article  PubMed  CAS  Google Scholar 

  • Fornari F, Gramantieri L, Ferracin M, Veronese A, Sabbioni S, Calin GA, Grazi GL, Giovannini C, Croce CM, Bolondi L Negrini M (2008) MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma. Oncogene: Epub ahead of print

    Google Scholar 

  • Frankel LB, Christoffersen NR, Jacobsen A, Lindow M, Krogh A Lund AH (2008) Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem 283(2): 1026–33

    Article  PubMed  CAS  Google Scholar 

  • Fujita S, Ito T, Mizutani T, Minoguchi S, Yamamichi N, Sakurai K Iba H (2008) miR-21 Gene expression triggered by AP-1 is sustained through a double-negative feedback mechanism. J Mol Biol 378(3): 492–504

    Article  PubMed  CAS  Google Scholar 

  • Gabriely G, Wurdinger T, Kesari S, Esau CC, Burchard J, Linsley PS Krichevsky AM (2008) MiR-21 Promotes Glioma Invasion by Targeting MMP Regulators. Mol Cell Biol: Epub ahead of print

    Google Scholar 

  • Galardi S, Mercatelli N, Giorda E, Massalini S, Frajese GV, Ciafre SA Farace MG (2007) miR-221 and miR-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27Kip1. J Biol Chem 282(32): 23716–24

    Article  PubMed  CAS  Google Scholar 

  • Gaur A, Jewell DA, Liang Y, Ridzon D, Moore JH, Chen C, Ambros VR Israel MA (2007) Characterization of microRNA expression levels and their biological correlates in human cancer cell lines. Cancer Res 67(6): 2456–68

    Article  PubMed  CAS  Google Scholar 

  • Gillies JK Lorimer IA (2007) Regulation of p27Kip1 by miRNA 221/222 in glioblastoma. Cell Cycle 6(16): 2005–9

    Article  PubMed  CAS  Google Scholar 

  • Giraldez AJ, Cinalli RM, Glasner ME, Enright AJ, Thomson JM, Baskerville S, Hammond SM, Bartel DP Schier AF (2005) MicroRNAs regulate brain morphogenesis in zebrafish. Science 308(5723): 833–8

    Article  PubMed  CAS  Google Scholar 

  • Gironella M, Seux M, Xie MJ, Cano C, Tomasini R, Gommeaux J, Garcia S, Nowak J, Yeung ML, Jeang KT, Chaix A, Fazli L, Motoo Y, Wang Q, Rocchi P, Russo A, Gleave M, Dagorn JC, Iovanna JL, Carrier A, Pebusque MJ Dusetti NJ (2007) Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development. Proc Natl Acad Sci USA 104(41): 16170–5

    Article  PubMed  CAS  Google Scholar 

  • Gottardo F, Liu CG, Ferracin M, Calin GA, Fassan M, Bassi P, Sevignani C, Byrne D, Negrini M, Pagano F, Gomella LG, Croce CM Baffa R (2007) Micro-RNA profiling in kidney and bladder cancers. Urol Oncol 25(5): 387–92

    Article  PubMed  CAS  Google Scholar 

  • Grimm D, Streetz KL, Jopling CL, Storm TA, Pandey K, Davis CR, Marion P, Salazar F Kay MA (2006) Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441(7092): 537–41

    Article  PubMed  CAS  Google Scholar 

  • Grishok A, Pasquinelli AE, Conte D, Li N, Parrish S, Ha I, Baillie DL, Fire A, Ruvkun G Mello CC (2001) Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106(1): 23–34

    Article  PubMed  CAS  Google Scholar 

  • Ha I, Wightman B Ruvkun G (1996) A bulged lin-4/lin-14 RNA duplex is sufficient for Caenorhabditis elegans lin-14 temporal gradient formation. Genes Dev 10(23): 3041–50

    Article  PubMed  CAS  Google Scholar 

  • Haas-Kogan D, Shalev N, Wong M, Mills G, Yount G Stokoe D (1998) Protein kinase B (PKB/Akt) activity is elevated in glioblastoma cells due to mutation of the tumor suppressor PTEN/MMAC. Curr Biol 8(21): 1195–8

    Article  PubMed  CAS  Google Scholar 

  • Hamilton AJ Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286(5441): 950–2

    Article  PubMed  CAS  Google Scholar 

  • Hammond SM, Bernstein E, Beach D Hannon GJ (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404(6775): 293–6

    Article  PubMed  CAS  Google Scholar 

  • He H, Jazdzewski K, Li W, Liyanarachchi S, Nagy R, Volinia S, Calin GA, Liu CG, Franssila K, Suster S, Kloos RT, Croce CM de la Chapelle A (2005a) The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci USA 102(52): 19075–80

    Article  PubMed  CAS  Google Scholar 

  • He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D, Jackson AL, Linsley PS, Chen C, Lowe SW, Cleary MA Hannon GJ (2007) A microRNA component of the p53 tumour suppressor network. Nature 447(7148): 1130–4

    Article  PubMed  CAS  Google Scholar 

  • He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, Powers S, Cordon-Cardo C, Lowe SW, Hannon GJ Hammond SM (2005b) A microRNA polycistron as a potential human oncogene. Nature 435(7043): 828–33

    Article  PubMed  CAS  Google Scholar 

  • Holland EC, Li Y, Celestino J, Dai C, Schaefer L, Sawaya RA Fuller GN (2000) Astrocytes give rise to oligodendrogliomas and astrocytomas after gene transfer of polyoma virus middle T antigen in vivo. Am J Pathol 157(3): 1031–7

    Article  PubMed  CAS  Google Scholar 

  • Huang Q, Gumireddy K, Schrier M, le Sage C, Nagel R, Nair S, Egan DA, Li A, Huang G, Klein-Szanto AJ, Gimotty PA, Katsaros D, Coukos G, Zhang L, Pure E Agami R (2008) The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol 10(2): 202–10

    Article  PubMed  CAS  Google Scholar 

  • Hutvagner G Zamore PD (2002) A microRNA in a multiple-turnover RNAi enzyme complex. Science 297(5589): 2056–60

    Article  PubMed  CAS  Google Scholar 

  • Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, Menard S, Palazzo JP, Rosenberg A, Musiani P, Volinia S, Nenci I, Calin GA, Querzoli P, Negrini M Croce CM (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65(16): 7065–70

    Article  PubMed  CAS  Google Scholar 

  • Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D Slack FJ (2005) RAS is regulated by the let-7 microRNA family. Cell 120(5): 635–47

    Article  PubMed  CAS  Google Scholar 

  • Kapsimali M, Kloosterman WP, de Bruijn E, Rosa F, Plasterk RH Wilson SW (2007) MicroRNAs show a wide diversity of expression profiles in the developing and mature central nervous system. Genome Biol 8(8): R173

    Article  PubMed  CAS  Google Scholar 

  • Kargiotis O, Chetty C, Gondi CS, Tsung AJ, Dinh DH, Gujrati M, Lakka SS, Kyritsis AP Rao JS (2008) Adenovirus-mediated transfer of siRNA against MMP-2 mRNA results in impaired invasion and tumor-induced angiogenesis, induces apoptosis in vitro and inhibits tumor growth in vivo in glioblastoma. Oncogene: Epub ahead of print

    Google Scholar 

  • Kariko K, Bhuyan P, Capodici J Weissman D (2004) Small interfering RNAs mediate sequence-independent gene suppression and induce immune activation by signaling through toll-like receptor 3. J Immunol 172(11): 6545–9

    PubMed  CAS  Google Scholar 

  • Kefas B, Godlewski J, Comeau L, Li Y, Abounader R, Hawkinson M, Lee J, Fine H, Chiocca EA, Lawler S Purow B (2008) microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res 68(10): 3566–72

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Krichevsky A, Grad Y, Hayes GD, Kosik KS, Church GM Ruvkun G (2004) Identification of many microRNAs that copurify with polyribosomes in mammalian neurons. Proc Natl Acad Sci USA 101(1): 360–5

    Article  PubMed  CAS  Google Scholar 

  • Kluiver J, Poppema S, de Jong D, Blokzijl T, Harms G, Jacobs S, Kroesen BJ van den Berg A (2005) BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. J Pathol 207(2): 243–9

    Article  PubMed  CAS  Google Scholar 

  • Krichevsky AM, King KS, Donahue CP, Khrapko K Kosik KS (2003) A microRNA array reveals extensive regulation of microRNAs during brain development. Rna 9(10): 1274–81

    Article  PubMed  CAS  Google Scholar 

  • Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M Stoffel M (2005) Silencing of microRNAs in vivo with 'antagomirs'. Nature 438(7068): 685–9

    Article  PubMed  CAS  Google Scholar 

  • Lagos-Quintana M, Rauhut R, Lendeckel W Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294(5543): 853–8

    Article  PubMed  CAS  Google Scholar 

  • Lagos-Quintana M, Rauhut R, Meyer J, Borkhardt A Tuschl T (2003) New microRNAs from mouse and human. Rna 9(2): 175–9

    Article  PubMed  CAS  Google Scholar 

  • Lai EC, Tam B Rubin GM (2005) Pervasive regulation of Drosophila Notch target genes by GY-box-, Brd-box-, and K-box-class microRNAs. Genes Dev 19(9): 1067–80

    Article  PubMed  CAS  Google Scholar 

  • Lee EJ, Gusev Y, Jiang J, Nuovo GJ, Lerner MR, Frankel WL, Morgan DL, Postier RG, Brackett DJ Schmittgen TD (2007) Expression profiling identifies microRNA signature in pancreatic cancer. Int J Cancer 120(5): 1046–54

    Article  PubMed  CAS  Google Scholar 

  • Lee HJ, Palkovits M Young WS, 3rd (2006) miR-7b, a microRNA up-regulated in the hypothalamus after chronic hyperosmolar stimulation, inhibits Fos translation. Proc Natl Acad Sci USA 103(42): 15669–74

    Article  PubMed  CAS  Google Scholar 

  • Lee RC Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294 (5543): 862–4

    Article  PubMed  CAS  Google Scholar 

  • Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S Kim VN (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425 (6956): 415–9

    Article  PubMed  CAS  Google Scholar 

  • Lee YS, Kim HK, Chung S, Kim KS Dutta A (2005) Depletion of human micro-RNA miR-125b reveals that it is critical for the proliferation of differentiated cells but not for the down-regulation of putative targets during differentiation. J Biol Chem 280(17): 16635–41

    Article  PubMed  CAS  Google Scholar 

  • Leucht C, Stigloher C, Wizenmann A, Klafke R, Folchert A Bally-Cuif L (2008) MicroRNA-9 directs late organizer activity of the midbrain-hindbrain boundary. Nat Neurosci 11(6): 641–8

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Guessous F, Kwon S, Kumar M, Ibidapo O, Fuller L, Johnson E, Lal B, Hussaini I, Bao Y, Laterra J, Schiff D Abounader R (2008) PTEN has tumor-promoting properties in the setting of gain-of-function p53 mutations. Cancer Res 68(6): 1723–31

    Article  PubMed  CAS  Google Scholar 

  • Libermann TA, Nusbaum HR, Razon N, Kris R, Lax I, Soreq H, Whittle N, Waterfield MD, Ullrich A Schlessinger J (1985) Amplification, enhanced expression and possible rearrangement of EGF receptor gene in primary human brain tumours of glial origin. Nature 313 (5998): 144–7

    Article  PubMed  CAS  Google Scholar 

  • Liu CG, Calin GA, Meloon B, Gamliel N, Sevignani C, Ferracin M, Dumitru CD, Shimizu M, Zupo S, Dono M, Alder H, Bullrich F, Negrini M Croce CM (2004) An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc Natl Acad Sci USA 101(26): 9740–4

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Valencia-Sanchez MA, Hannon GJ Parker R (2005) MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat Cell Biol 7(7): 719–23

    Article  PubMed  CAS  Google Scholar 

  • Loffler D, Brocke-Heidrich K, Pfeifer G, Stocsits C, Hackermuller J, Kretzschmar AK, Burger R, Gramatzki M, Blumert C, Bauer K, Cvijic H, Ullmann AK, Stadler PF Horn F (2007) Interleukin-6 dependent survival of multiple myeloma cells involves the Stat3-mediated induction of microRNA-21 through a highly conserved enhancer. Blood 110(4): 1330–3

    Article  PubMed  CAS  Google Scholar 

  • Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR Golub TR (2005) MicroRNA expression profiles classify human cancers. Nature 435 (7043): 834–8

    Article  PubMed  CAS  Google Scholar 

  • Lu Z, Liu M, Stribinskis V, Klinge CM, Ramos KS, Colburn NH Li Y (2008) MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene 27(31): 4373–9

    Article  PubMed  CAS  Google Scholar 

  • Lugli G, Torvik VI, Larson J Smalheiser NR (2008) Expression of microRNAs and their precursors in synaptic fractions of adult mouse forebrain. J Neurochem: Epub ahead of print

    Google Scholar 

  • Lund E, Guttinger S, Calado A, Dahlberg JE Kutay U (2004) Nuclear export of microRNA precursors. Science 303 (5654): 95–8

    Article  PubMed  CAS  Google Scholar 

  • Lytle JR, Yario TA Steitz JA (2007) Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5' UTR as in the 3' UTR. Proc Natl Acad Sci USA 104(23): 9667–72

    Article  PubMed  CAS  Google Scholar 

  • Ma L, Teruya-Feldstein J Weinberg RA (2007) Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449 (7163): 682–8

    Article  PubMed  CAS  Google Scholar 

  • Makeyev EV, Zhang J, Carrasco MA Maniatis T (2007) The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell 27(3): 435–48

    Article  PubMed  CAS  Google Scholar 

  • Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST Patel T (2007) MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133(2): 647–58

    Article  PubMed  CAS  Google Scholar 

  • Naguibneva I, Ameyar-Zazoua M, Polesskaya A, Ait-Si-Ali S, Groisman R, Souidi M, Cuvellier S Harel-Bellan A (2006) The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation. Nat Cell Biol 8(3): 278–84

    Article  PubMed  CAS  Google Scholar 

  • Nass D, Rosenwald S, Meiri E, Gilad S, Tabibian-Keissar H, Schlosberg A, Kuker H, Sion-Vardy N, Tobar A, Kharenko O, Sitbon E, Yanai G, Elyakim E, Cholakh H, Gibori H, Spector Y, Bentwich Z, Barshack I Rosenfeld N (2008) MiR-92b and miR-9/9* Are Specifically Expressed in Brain Primary Tumors and Can Be Used to Differentiate Primary from Metastatic Brain Tumors. Brain Pathol: Epub ahead of print

    Google Scholar 

  • Nelson PT, Baldwin DA, Kloosterman WP, Kauppinen S, Plasterk RH Mourelatos Z (2006) RAKE and LNA-ISH reveal microRNA expression and localization in archival human brain. Rna 12(2): 187–91

    Article  PubMed  CAS  Google Scholar 

  • Newman MA, Thomson JM Hammond SM (2008) Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. Rna: Epub ahead of print

    Google Scholar 

  • Nguyen TT, Pannu YS, Sung C, Dedrick RL, Walbridge S, Brechbiel MW, Garmestani K, Beitzel M, Yordanov AT Oldfield EH (2003) Convective distribution of macromolecules in the primate brain demonstrated using computerized tomography and magnetic resonance imaging. J Neurosurg 98(3): 584–90

    Article  PubMed  CAS  Google Scholar 

  • Nikiforova MN, Tseng GC, Steward D, Diorio D Nikiforov YE (2008) MicroRNA expression profiling of thyroid tumors: biological significance and diagnostic utility. J Clin Endocrinol Metab 93(5): 1600–8

    Article  PubMed  CAS  Google Scholar 

  • O'Connell RM, Rao DS, Chaudhuri AA, Boldin MP, Taganov KD, Nicoll J, Paquette RL Baltimore D (2008) Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. J Exp Med 205(3): 585–94

    Article  PubMed  CAS  Google Scholar 

  • Orom UA, Kauppinen S Lund AH (2006) LNA-modified oligonucleotides mediate specific inhibition of microRNA function. Gene 372: 137–41

    Article  PubMed  CAS  Google Scholar 

  • Ossowski S, Schwab R Weigel D (2008) Gene silencing in plants using artificial microRNAs and other small RNAs. Plant J 53(4): 674–90

    Article  PubMed  CAS  Google Scholar 

  • Pekarsky Y, Santanam U, Cimmino A, Palamarchuk A, Efanov A, Maximov V, Volinia S, Alder H, Liu CG, Rassenti L, Calin GA, Hagan JP, Kipps T Croce CM (2006) Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181. Cancer Res 66(24): 11590–3

    Article  PubMed  CAS  Google Scholar 

  • Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, Misra A, Nigro JM, Colman H, Soroceanu L, Williams PM, Modrusan Z, Feuerstein BG Aldape K (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9(3): 157–73

    Article  PubMed  CAS  Google Scholar 

  • Pierson J, Hostager B, Fan R Vibhakar R (2008) Regulation of cyclin dependent kinase 6 by microRNA 124 in medulloblastoma. J Neurooncol: Epub ahead of print

    Google Scholar 

  • Pirollo KF Chang EH (2008) Targeted delivery of small interfering RNA: approaching effective cancer therapies. Cancer Res 68(5): 1247–50

    Article  PubMed  CAS  Google Scholar 

  • Purow BW, Haque RM, Noel MW, Su Q, Burdick MJ, Lee J, Sundaresan T, Pastorino S, Park JK, Mikolaenko I, Maric D, Eberhart CG Fine HA (2005) Expression of Notch-1 and its ligands, Delta-like-1 and Jagged-1, is critical for glioma cell survival and proliferation. Cancer Res 65(6): 2353–63

    Article  PubMed  CAS  Google Scholar 

  • Pyrko P, Schonthal AH, Hofman FM, Chen TC Lee AS (2007) The unfolded protein response regulator GRP78/BiP as a novel target for increasing chemosensitivity in malignant gliomas. Cancer Res 67(20): 9809–16

    Article  PubMed  CAS  Google Scholar 

  • Qi Y, Hoadley K, Topal M, Perou CM Hayes DN (2008) Parallel microRNA and gene expression strategies of human glioblastomas. abstract/presentation, 2008 Annual Meeting: 4965

    Google Scholar 

  • Ramkissoon SH, Mainwaring LA, Ogasawara Y, Keyvanfar K, McCoy JP, Jr., Sloand EM, Kajigaya S Young NS (2006) Hematopoietic-specific microRNA expression in human cells. Leuk Res 30(5): 643–7

    Article  PubMed  CAS  Google Scholar 

  • Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N, Bentwich Z Oren M (2007) Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell 26(5): 731–43

    Article  PubMed  CAS  Google Scholar 

  • Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B Bartel DP (2002) MicroRNAs in plants. Genes Dev 16(13): 1616–26

    Article  PubMed  CAS  Google Scholar 

  • Roldo C, Missiaglia E, Hagan JP, Falconi M, Capelli P, Bersani S, Calin GA, Volinia S, Liu CG, Scarpa A Croce CM (2006) MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. J Clin Oncol 24(29): 4677–84

    Article  PubMed  CAS  Google Scholar 

  • Saito T, Hama S, Izumi H, Yamasaki F, Kajiwara Y, Matsuura S, Morishima K, Hidaka T, Shrestha P, Sugiyama K Kurisu K (2008) Centrosome amplification induced by survivin suppression enhances both chromosome instability and radiosensitivity in glioma cells. Br J Cancer 98(2): 345–55

    Article  PubMed  CAS  Google Scholar 

  • Sampson VB, Rong NH, Han J, Yang Q, Aris V, Soteropoulos P, Petrelli NJ, Dunn SP Krueger LJ (2007) MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Res 67(20): 9762–70

    Article  PubMed  CAS  Google Scholar 

  • Sayed D, Rane S, Lypowy J, He M, Chen IY, Vashistha H, Yan L, Malhotra A, Vatner D Abdellatif M (2008) MicroRNA-21 Targets Sprouty2 and Promotes Cellular Outgrowths. Mol Biol Cell: Epub ahead of print

    Google Scholar 

  • Scacheri PC, Rozenblatt-Rosen O, Caplen NJ, Wolfsberg TG, Umayam L, Lee JC, Hughes CM, Shanmugam KS, Bhattacharjee A, Meyerson M Collins FS (2004) Short interfering RNAs can induce unexpected and divergent changes in the levels of untargeted proteins in mammalian cells. Proc Natl Acad Sci USA 101(7): 1892–7

    Article  PubMed  CAS  Google Scholar 

  • Schetter AJ, Leung SY, Sohn JJ, Zanetti KA, Bowman ED, Yanaihara N, Yuen ST, Chan TL, Kwong DL, Au GK, Liu CG, Calin GA, Croce CM Harris CC (2008) MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. Jama 299(4): 425–36

    Article  PubMed  CAS  Google Scholar 

  • Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M Greenberg ME (2006) A brain-specific microRNA regulates dendritic spine development. Nature 439 (7074): 283–9

    Article  PubMed  CAS  Google Scholar 

  • Schulte JH, Horn S, Otto T, Samans B, Heukamp LC, Eilers UC, Krause M, Astrahantseff K, Klein-Hitpass L, Buettner R, Schramm A, Christiansen H, Eilers M, Eggert A Berwanger B (2008) MYCN regulates oncogenic MicroRNAs in neuroblastoma. Int J Cancer 122(3): 699–704

    Article  PubMed  CAS  Google Scholar 

  • Schwab R, Ossowski S, Riester M, Warthmann N Weigel D (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18(5): 1121–33

    Article  PubMed  CAS  Google Scholar 

  • Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R Rajewsky N (2008) Widespread changes in protein synthesis induced by microRNAs. Nature: Epub ahead of print

    Google Scholar 

  • Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E Ambros V (2004) Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol 5(3): R13

    Article  PubMed  Google Scholar 

  • Sen GL Blau HM (2005) Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies. Nat Cell Biol 7(6): 633–6

    Article  PubMed  CAS  Google Scholar 

  • Silber J, Lim DA, Petritsch C, Persson AI, Maunakea AK, Yu M, Vandenberg SR, Ginzinger DG, James CD, Costello JF, Bergers G, Weiss WA, Alvarez-Buylla A Hodgson JG (2008) miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC Med 6: 14

    Article  PubMed  CAS  Google Scholar 

  • Sledz CA, Holko M, de Veer MJ, Silverman RH Williams BR (2003) Activation of the interferon system by short-interfering RNAs. Nat Cell Biol 5(9): 834–9

    Article  PubMed  CAS  Google Scholar 

  • Smirnova L, Grafe A, Seiler A, Schumacher S, Nitsch R Wulczyn FG (2005) Regulation of miRNA expression during neural cell specification. Eur J Neurosci 21(6): 1469–77

    Article  PubMed  Google Scholar 

  • Sun F, Fu H, Liu Q, Tie Y, Zhu J, Xing R, Sun Z Zheng X (2008) Downregulation of CCND1 and CDK6 by miR-34a induces cell cycle arrest. FEBS Lett 582(10): 1564–8

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Koo S, White N, Peralta E, Esau C, Dean NM Perera RJ (2004) Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs. Nucleic Acids Res 32(22): e188

    Article  PubMed  CAS  Google Scholar 

  • Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y, Mitsudomi T Takahashi T (2004) Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64(11): 3753–6

    Article  PubMed  CAS  Google Scholar 

  • Tam W Dahlberg JE (2006) miR-155/BIC as an oncogenic microRNA. Gene Chromosome Cancer 45(2): 211–2

    Article  CAS  Google Scholar 

  • Tazawa H, Tsuchiya N, Izumiya M Nakagama H (2007) Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci USA 104(39): 15472–7

    Article  PubMed  CAS  Google Scholar 

  • Thomson JM, Parker J, Perou CM Hammond SM (2004) A custom microarray platform for analysis of microRNA gene expression. Nat Methods 1(1): 47–53

    Article  PubMed  CAS  Google Scholar 

  • Tran N, McLean T, Zhang X, Zhao CJ, Thomson JM, O'Brien C Rose B (2007) MicroRNA expression profiles in head and neck cancer cell lines. Biochem Biophys Res Commun 358(1): 12–7

    Article  PubMed  CAS  Google Scholar 

  • Vigorito E, Perks KL, Abreu-Goodger C, Bunting S, Xiang Z, Kohlhaas S, Das PP, Miska EA, Rodriguez A, Bradley A, Smith KG, Rada C, Enright AJ, Toellner KM, Maclennan IC Turner M (2007) microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells. Immunity 27(6): 847–59

    Article  PubMed  CAS  Google Scholar 

  • Visvanathan J, Lee S, Lee B, Lee JW Lee SK (2007) The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes Dev 21(7): 744–9

    Article  PubMed  CAS  Google Scholar 

  • Viswanathan SR, Daley GQ Gregory RI (2008) Selective blockade of microRNA processing by Lin28. Science 320 (5872): 97–100

    Article  PubMed  CAS  Google Scholar 

  • Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC Croce CM (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103(7): 2257–61

    Article  PubMed  CAS  Google Scholar 

  • Wayman GA, Davare M, Ando H, Fortin D, Varlamova O, Cheng HY, Marks D, Obrietan K, Soderling TR, Goodman RH Impey S (2008) An activity-regulated microRNA controls dendritic plasticity by down-regulating p250GAP. Proc Natl Acad Sci USA 105(26): 9093–8

    Article  PubMed  CAS  Google Scholar 

  • Wei JS, Song YK, Durinck S, Chen QR, Cheuk AT, Tsang P, Zhang Q, Thiele CJ, Slack A, Shohet J Khan J (2008a) The MYCN oncogene is a direct target of miR-34a. Oncogene: Epub ahead of print

    Google Scholar 

  • Wei LC, Shi M, Cao R, Chen LW Chan YS (2008b) Nestin small interfering RNA (siRNA) reduces cell growth in cultured astrocytoma cells. Brain Res 1196: 103–12

    Article  CAS  Google Scholar 

  • Welch C, Chen Y Stallings RL (2007) MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene 26(34): 5017–22

    Article  PubMed  CAS  Google Scholar 

  • Wightman B, Ha I Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75(5): 855–62

    Article  PubMed  CAS  Google Scholar 

  • Wong TS, Liu XB, Wong BY, Ng RW, Yuen AP Wei WI (2008) Mature miR-184 as Potential Oncogenic microRNA of Squamous Cell Carcinoma of Tongue. Clin Cancer Res 14(9): 2588–92

    Article  PubMed  CAS  Google Scholar 

  • Xia L, Zhang D, Du R, Pan Y, Zhao L, Sun S, Hong L, Liu J Fan D (2008) miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells. Int J Cancer 123(2): 372–9

    Article  PubMed  CAS  Google Scholar 

  • Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, Stephens RM, Okamoto A, Yokota J, Tanaka T, Calin GA, Liu CG, Croce CM Harris CC (2006) Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9(3): 189–98

    Article  PubMed  CAS  Google Scholar 

  • Yu Z, Jian Z, Shen SH, Purisima E Wang E (2007) Global analysis of microRNA target gene expression reveals that miRNA targets are lower expressed in mature mouse and Drosophila tissues than in the embryos. Nucleic Acids Res 35(1): 152–64

    Article  PubMed  CAS  Google Scholar 

  • Zeng Y, Wagner EJ Cullen BR (2002) Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol Cell 9(6): 1327–33

    Article  PubMed  CAS  Google Scholar 

  • Zhang R Su B (2008) MicroRNA regulation and the variability of human cortical gene expression. Nucleic Acids Res: Epub ahead of print

    Google Scholar 

  • Zhao P, Wang C, Fu Z, You Y, Cheng Y, Lu X, Lu A, Liu N, Pu P, Kang C, Salford LG Fan X (2007) Lentiviral vector mediated siRNA knock-down of hTERT results in diminished capacity in invasiveness and in vivo growth of human glioma cells in a telomere length-independent manner. Int J Oncol 31(2): 361–8

    PubMed  CAS  Google Scholar 

  • Zhu S, Si ML, Wu H Mo YY (2007) MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem 282(19): 14328–36

    Article  PubMed  CAS  Google Scholar 

  • Zhu S, Wu H, Wu F, Nie D, Sheng S Mo YY (2008) MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res 18(3): 350–9

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Purow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Purow, B. (2009). MicroRNAs in the Central Nervous System and Potential Roles of RNA Interference in Brain Tumors. In: Meir, E. (eds) CNS Cancer. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-60327-553-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-553-8_27

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-552-1

  • Online ISBN: 978-1-60327-553-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics