Skip to main content

High-resolution Thermogravimetric Analysis For Rapid Characterization of Biomass Composition and Selection of Shrub Willow Varieties

  • Conference paper
  • First Online:
Biotechnology for Fuels and Chemicals

Part of the book series: ABAB Symposium ((ABAB))

Abstract

The cultivation of shrub willow (Salix spp.) bioenergy crops is being commercialized in North America, as it has been in Europe for many years. Considering the high genetic diversity and ease of hybridization, there is great potential for genetic improvement of shrub willow through traditional breeding. The State University of New York—College of Environmental Science and Forestry has an extensive breeding program for the genetic improvement of shrub willow for biomass production and for other environmental applications. Since 1998, breeding efforts have produced more than 200 families resulting in more than 5,000 progeny. The goal for this project was to utilize a rapid, low-cost method for the compositional analysis of willow biomass to aid in the selection of willow clones for improved conversion efficiency. A select group of willow clones was analyzed using high-resolution thermogravimetric analysis (HR-TGA), and significant differences in biomass composition were observed. Differences among and within families produced through controlled pollinations were observed, as well as differences by age at time of sampling. These results suggest that HR-TGA has a great promise as a tool for rapid biomass characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Perlack, R. D., Wright, L. L., Turhollow, A., Graham, R., Stokes, B., & Erbach, D. (2005). Tech. Rep. ORNL/TM-2005/66. Oak Ridge, TN: Oak Ridge National Laboratory.

    Google Scholar 

  2. Volk, T. A., Verwijst, T., Tharakan, P. J., Abrahamson, L. P., & White, E. H. (2004). Frontiers in Ecology and the Environment, 2, 411–418.

    Article  Google Scholar 

  3. Volk, T. A., Abrahamson, L. P., Nowak, C. A., Smart, L. B., Tharakan, P. J., & White, E. H. (2006). Biomass and Bioenergy, 30, 715–727.

    Article  Google Scholar 

  4. Smart, L. B., Volk, T. A., Lin, J., Kopp, R. F., Phillips, I. S., Cameron, K. D., et al. (2005). Unasylva, 221(56), 51–55.

    Google Scholar 

  5. Kopp, R. F., Smart, L. B., Maynard, C. A., Isebrands, J. G., Tuskan, G. A., & Abrahamson, L. P. (2001). The Forestry Chronicle, 77, 287–292.

    Google Scholar 

  6. Argus, G. W. (1997). Infrageneric classification of Salix (Salicaceae) in the New World. Ann Arbor, MI: The American Society of Plant Taxonomists.

    Google Scholar 

  7. Kopp, R. F. (2000). Ph.D. thesis, State University of New York College of Environmental Science and Forestry.

    Google Scholar 

  8. Himmel, M. E., Ding, S. Y., Johnson, D.-K., Adney, W. S., Nimlos, M. R., Brady, J. W., et al. (2007). Science, 315, 804–807.

    Article  CAS  Google Scholar 

  9. US DOE (2006). US Department of Energy Office of Science and Office of Energy efficiency and renewable energy. Available at: doegenomestolife.org/biofuels/.

    Google Scholar 

  10. Labbe, N., Rials, T. G., Kelley, S. S., Cheng, Z.-M., Kim, J.-Y., & Li, Y (2005). Wood Science and Technology, 39, 61–77.

    Article  CAS  Google Scholar 

  11. Hames, B. R., Thomas, S. R., Sluiter, A. D., Roth, C. J., & Templeton, D. W. (2003). Applied Biochemistry and Biotechnology, 105, 5–16.

    Article  Google Scholar 

  12. Kelley, S., Rials, T., Snell, R., Groom, L., & Sluiter, A. (2004). Wood Science and Technology, 38, 257–276.

    Article  CAS  Google Scholar 

  13. Tuskan, G. A., West, D., Bradshaw, H. D., Neale, D., Sewell, M., Wheeler, N., et al. (1999). Applied Biochemistry and Biotechnology, 77, 55–65.

    Article  Google Scholar 

  14. Shafizadeh, F., & Chin, P. P. S. (1977). In I. S. Goldstein (Ed.) Wood technology: Chemical aspects (vol. 43, pp. 57–81). Washington, DC: American Chemical Society Symposium Series.

    Chapter  Google Scholar 

  15. Cozzani, V., Lucchesti, A., Stoppato, G., & Maschio, G. (1997). Canadian Journal of Chemical Engineering, 75, 127–133.

    Article  CAS  Google Scholar 

  16. Stipanovic, A. J., Goodrich, J., & Hennessy, P. (2004). In American Chemical Society Symposium on “Novel Analytical Tools in the Characterization of Polysaccharides”. Cellulose and Renewable Materials Division.

    Google Scholar 

  17. Kopp, R. F., Smart, L. B., Maynard, C., Tuskan, G., & Abrahamson, L. P. (2002). Theoretical and Applied Genetics, 105, 106–112.

    Article  CAS  Google Scholar 

  18. Cervera, M. T., Remington, D., Frigerio, J.-M., Storme, V., Ivens, B., Boerjan, W., et al. (2000). Canadian Journal of Forest Research, 30, 1608–1616.

    Article  CAS  Google Scholar 

  19. Cervera, M. T., Storme, V., Soto, A., Ivens, B., Van Montagu, M., Rajora, O. P., et al. (2005). Theoretical and Applied Genetics, 111, 1440–1456.

    Article  CAS  Google Scholar 

  20. Blankenhorn, P. R., Bowersox, T. W., Kuklewski, K. M., Stimely, G. L., & Murphy, W. K. (1985). Wood and Fiber Science, 17, 148–158.

    CAS  Google Scholar 

  21. Kenney, W. A., Gambles, R. L., & Sennerby-Forsse, L. (1992). In C. Mitchell, J. Forb-Robertson, T. Hinckley, & L. Sennerby-Forsse (Eds.) Ecophysiology of short rotation forest crops pp. 267–284. Elsevier: Essex, England.

    Google Scholar 

  22. Adler, A., Verwijst, T., & Aronsson, P. (2005). Biomass and Bioenergy, 29, 102–113.

    Article  CAS  Google Scholar 

  23. Kiemle, D. J., Stipanovic, A. J., & Mayo, K. E. (2004). In P. Gatenholm, & M. Tenkanen (Eds.), ACS Symposium Series 864 pp. 122–139. Washington, DC: American Chemical Society.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence B. Smart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this paper

Cite this paper

Serapiglia, M.J., Cameron, K.D., Stipanovic, A.J., Smart, L.B. (2007). High-resolution Thermogravimetric Analysis For Rapid Characterization of Biomass Composition and Selection of Shrub Willow Varieties. In: Adney, W.S., McMillan, J.D., Mielenz, J., Klasson, K.T. (eds) Biotechnology for Fuels and Chemicals. ABAB Symposium. Humana Press. https://doi.org/10.1007/978-1-60327-526-2_2

Download citation

Publish with us

Policies and ethics