Skip to main content

Advantages of Robotic-Assisted Laparoscopy

  • Chapter
  • First Online:
Pediatric Robotic Urology

Part of the book series: Current Clinical Urology ((CCU))

Abstract

The introduction of robotic surgical systems represents a further step in the evolution of endoscopic instrumentation. Initially, the robot was thought to be bulky for children, but the delicate robotic movements are ideal for the reconstructive surgeries children require, hence pediatric urology has embraced robotic technology. The systems enhance dexterity using internal software that filters out the natural tremor of a surgeon’s hand, which becomes particularly evident under high magnification and may be problematic when attempting fine maneuvers in very small fields. The introduction of the da Vinci system to perform precise laparoscopic manipulations offers an opportunity to spread reconstructive laparoscopic skills among pediatric surgeons.

However, despite its numerous advantages, the surgical robotic has a number of general limitations. In pediatric surgery, the size and variety of available robotic instrumentation remains limited compared with those offered for standard minimal invasive surgery (MIS) and the huge size discrepancy between the typical pediatric patient and the size of the robotic system (i.e., its “footprint”) can restrict the anesthesiologist’s access to the patient. Herein we are providing the benefits of robotic technology in children.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Garcia-Ruiz A, Smedira NG, Loop FD, Hahn JF, Miller JH, Steiner CP and Gagner M: Robotic surgical instruments for dexterity enhancement in thoracoscopic coronary artery bypass graft. J Laparoendosc Adv Surg Tech A. 7: 277–83, 1997.

    Article  PubMed  CAS  Google Scholar 

  2. Kavoussi LR, Moore RG, Adams JB and Partin AW: Comparison of robotic versus human laparoscopic camera control. J Urol. 154: 2134–6, 1995.

    Article  PubMed  CAS  Google Scholar 

  3. Suematsu Y and del Nido PJ: Robotic pediatric cardiac surgery: present and future perspectives. Am J Surg. 188: 98S–103S, 2004.

    Article  PubMed  Google Scholar 

  4. Park S, Howe, R., Torchiana, D.: Virtual fixtures for robotic cardiac surgery. 2005, pp 2312.

    Google Scholar 

  5. Suematsu Y, Mora BN, Mihaljevic T and del Nido PJ: Totally endoscopic robotic-assisted repair of patent ductus arteriosus and vascular ring in children. Ann Thorac Surg. 80: 2309–13, 2005.

    Article  PubMed  Google Scholar 

  6. Miccai: Lecture notes in computer science. Utrecht, The Netherlands, Berlin: Springer-Verlag, 2001, pp 1419–20.

    Google Scholar 

  7. Camarillo DB, Krummel TM and Salisbury JK, Jr: Robotic technology in surgery: past, present, and future. Am J Surg. 188: 2S–15S, 2004.

    Article  PubMed  Google Scholar 

  8. Gutt CN, Markus B, Kim ZG, Meininger D, Brinkmann L and Heller K: Early experiences of robotic surgery in children. Surg Endosc. 16: 1083–6, 2002.

    Article  PubMed  CAS  Google Scholar 

  9. Gallagher AG and Smith CD: From the operating room of the present to the operating room of the future. Human-factors lessons learned from the minimally invasive surgery revolution. Semin Laparosc Surg. 10: 127–39, 2003.

    PubMed  Google Scholar 

  10. Woo R, Le D, Krummel TM and Albanese C: Robot-assisted pediatric surgery. Am J Surg. 188: 27S–37S, 2004.

    Article  PubMed  Google Scholar 

  11. Lanfranco AR, Castellanos AE, Desai JP and Meyers WC: Robotic surgery: a current perspective. Ann Surg. 239: 14–21, 2004.

    Article  PubMed  Google Scholar 

  12. Le D, Woo, R., Albanese, C.: Robotically-assisted pediatric surgery. Boca Raton, FL, Taylor and Francis, 2005, pp 479–93.

    Google Scholar 

  13. Su LM, Stoianovici D, Jarrett TW, Patriciu A, Roberts WW, Cadeddu JA, Ramakumar S, Solomon SB and Kavoussi LR: Robotic percutaneous access to the kidney: comparison with standard manual access. J Endourol. 16: 471–5, 2002.

    Article  PubMed  Google Scholar 

  14. Cadeddu JA, Bzostek A, Schreiner S, Barnes AC, Roberts WW, Anderson JH, Taylor RH and Kavoussi LR: A robotic system for percutaneous renal access. J Urol. 158: 1589–93, 1997.

    Article  PubMed  CAS  Google Scholar 

  15. Sim HG, Yip SK and Cheng CW: Equipment and technology in surgical robotics. World J Urol. 24: 128–35, 2006.

    Article  PubMed  Google Scholar 

  16. Kasalicky MA, Svab J, Fried M and Melechovsky D: [AESOP 3000 – computer-assisted surgery, personal experience]. Rozhl Chir. 81: 346–9, 2002.

    PubMed  CAS  Google Scholar 

  17. Kant AJ, Klein MD and Langenburg SE: Robotics in pediatric surgery: perspectives for imaging. Pediatr Radiol. 34: 454–61, 2004.

    Article  PubMed  Google Scholar 

  18. Kim VB, Chapman WH, Albrecht RJ, Bailey BM, Young JA, Nifong LW and Chitwood WR, Jr.: Early experience with telemanipulative robot-assisted laparoscopic cholecystectomy using da Vinci. Surg Laparosc Endosc Percutan Tech. 12: 33–40, 2002.

    Article  PubMed  Google Scholar 

  19. Maniar HS, Council ML, Prasad SM, Prasad SM, Chu C and Damiano RJ, Jr.: Comparison of skill training with robotic systems and traditional endoscopy: implications on training and adoption. J Surg Res. 125: 23–9, 2005.

    Article  PubMed  Google Scholar 

  20. Talamini MA, Chapman S, Horgan S and Melvin WS: A prospective analysis of 211 robotic-assisted surgical procedures. Surg Endosc. 17: 1521–4, 2003.

    Article  PubMed  CAS  Google Scholar 

  21. Hubens G, Coveliers H, Balliu L, Ruppert M and Vaneerdeweg W: A performance study comparing manual and robotically assisted laparoscopic surgery using the da Vinci system. Surg Endosc. 17: 1595–9, 2003.

    Article  PubMed  CAS  Google Scholar 

  22. Dakin GF and Gagner M: Comparison of laparoscopic skills performance between standard instruments and two surgical robotic systems. Surg Endosc. 17: 574–9, 2003.

    Article  PubMed  CAS  Google Scholar 

  23. Jaffray B: Minimally invasive surgery. Arch Dis Child. 90: 537–42, 2005.

    Article  PubMed  CAS  Google Scholar 

  24. Vereczkel A, Bubb H and Feussner H: Laparoscopic surgery and ergonomics: it's time to think of ourselves as well. Surg Endosc. 17: 1680–2, 2003.

    Article  PubMed  CAS  Google Scholar 

  25. Hollands CM and Dixey LN: Applications of robotic surgery in pediatric patients. Surg Laparosc Endosc Percutan Tech. 12: 71–6, 2002.

    Article  PubMed  Google Scholar 

  26. Tan HL: Laparoscopic Anderson-Hynes dismembered pyeloplasty in children using needlescopic instrumentation. Urol Clin North Am. 28: 43–51, viii, 2001.

    Article  PubMed  CAS  Google Scholar 

  27. Eden CG, Cahill D and Allen JD: Laparoscopic dismembered pyeloplasty: 50 consecutive cases. BJU Int. 88: 526–31, 2001.

    Article  PubMed  CAS  Google Scholar 

  28. Turk IA, Davis JW, Winkelmann B, Deger S, Richter F, Fabrizio MD, Schonberger B, Jordan GH and Loening SA: Laparoscopic dismembered pyeloplasty – the method of choice in the presence of an enlarged renal pelvis and crossing vessels. Eur Urol. 42: 268–75, 2002.

    Article  PubMed  Google Scholar 

  29. Tan HL and Roberts JP: Laparoscopic dismembered pyeloplasty in children: preliminary results. Br J Urol. 77: 909–13, 1996.

    PubMed  CAS  Google Scholar 

  30. Schier F: Laparoscopic Anderson-Hynes pyeloplasty in children. Pediatr Surg Int. 13: 497–500, 1998.

    Article  PubMed  CAS  Google Scholar 

  31. Tan HL: Laparoscopic Anderson-Hynes dismembered pyeloplasty in children. J Urol. 162: 1045–7; discussion 1048, 1999.

    Article  PubMed  CAS  Google Scholar 

  32. Yeung CK, Tam YH, Sihoe JD, Lee KH and Liu KW: Retroperitoneoscopic dismembered pyeloplasty for pelvi-ureteric junction obstruction in infants and children. BJU Int. 87: 509–13, 2001.

    Article  PubMed  CAS  Google Scholar 

  33. El-Ghoneimi A, Farhat W, Bolduc S, Bagli D, McLorie G, Aigrain Y and Khoury A: Laparoscopic dismembered pyeloplasty by a retroperitoneal approach in children. BJU Int. 92: 104–8; discussion 108, 2003.

    Article  PubMed  CAS  Google Scholar 

  34. Farhat W, Khoury A, Bagli D, McLorie G and El-Ghoneimi A: Mentored retroperitoneal laparoscopic renal surgery in children: a safe approach to learning. BJU Int. 92: 617–20; discussion 620, 2003.

    Article  PubMed  CAS  Google Scholar 

  35. Chen RN, Moore RG and Kavoussi LR: Laparoscopic pyeloplasty. Indications, technique, and long-term outcome. Urol Clin North Am. 25: 323–30, 1998.

    Article  PubMed  CAS  Google Scholar 

  36. Bauer JJ, Bishoff JT, Moore RG, Chen RN, Iverson AJ and Kavoussi LR: Laparoscopic versus open pyeloplasty: assessment of objective and subjective outcome. J Urol. 162: 692–5, 1999.

    Article  PubMed  CAS  Google Scholar 

  37. Hubert J, Feuillu B, Mangin P, Lobontiu A, Artis M and Villemot JP: Laparoscopic computer-assisted pyeloplasty: the results of experimental surgery in pigs. BJU Int. 92: 437–40, 2003.

    Article  PubMed  CAS  Google Scholar 

  38. Gettman MT, Blute ML, Peschel R and Bartsch G: Current status of robotics in urologic laparoscopy. Eur Urol. 43: 106–12, 2003.

    Article  PubMed  Google Scholar 

  39. Gettman MT, Neururer R, Bartsch G and Peschel R: Anderson-Hynes dismembered pyeloplasty performed using the da Vinci robotic system. Urology. 60: 509–13, 2002.

    Article  PubMed  Google Scholar 

  40. Gettman MT, Peschel R, Neururer R and Bartsch G: A comparison of laparoscopic pyeloplasty performed with the da Vinci robotic system versus standard laparoscopic techniques: initial clinical results. Eur Urol. 42: 453–7; discussion 457–8, 2002.

    Article  PubMed  Google Scholar 

  41. Olsen H, Joregensen, T.: Robotic vs. standard retroperitoneoscopic pyeloplasty in children. Brit J Urol. 91, 2003.

    Google Scholar 

  42. Peters CA: Robotically assisted paediatric pyeloplasty: cutting edge or expensive toy? BJU Int. 94: 1214–5, 2004.

    Article  PubMed  Google Scholar 

  43. Peters CA: Robotic assisted surgery in pediatric urology. Pediatr Endosurg Innov Tech. 7: 403–414, 2003.

    Article  Google Scholar 

  44. Pedraza R, Weiser A and Franco I: Laparoscopic appendicovesicostomy (Mitrofanoff procedure) in a child using the da Vinci robotic system. J Urol. 171: 1652–3, 2004.

    Article  PubMed  Google Scholar 

  45. Pedraza R, Palmer L, Moss V and Franco I: Bilateral robotic assisted laparoscopic heminephroureterectomy. J Urol. 171: 2394–5, 2004.

    Article  PubMed  Google Scholar 

  46. Mendez-Torres F, Woods M and Thomas R: Technical modifications for robot-assisted laparoscopic pyeloplasty. J Endourol. 19: 393–6, 2005.

    Article  PubMed  Google Scholar 

  47. Atug F, Woods M, Burgess SV, Castle EP and Thomas R: Robotic assisted laparoscopic pyeloplasty in children. J Urol. 174: 1440–2, 2005.

    Article  PubMed  Google Scholar 

  48. Lee RS, Retik AB, Borer JG and Peters CA: Pediatric robot assisted laparoscopic dismembered pyeloplasty: comparison with a cohort of open surgery. J Urol. 175: 683–7; discussion 687, 2006.

    Article  PubMed  Google Scholar 

  49. Yee DS, Shanberg AM, Duel BP, Rodriguez E, Eichel L and Rajpoot D: Initial comparison of robotic-assisted laparoscopic versus open pyeloplasty in children. Urology 67: 599–602, 2006.

    Article  PubMed  Google Scholar 

  50. Talamini MA: Robotic surgery: is it for you? Adv Surg. 36: 1–13, 2002.

    PubMed  Google Scholar 

  51. Mariano ER, Furukawa L, Woo RK, Albanese CT and Brock-Utne JG: Anesthetic concerns for robot-assisted laparoscopy in an infant. Anesth Analg. 99: 1665–7, table of contents, 2004.

    Article  PubMed  Google Scholar 

  52. Rosen J, Hannaford B, MacFarlane MP and Sinanan MN: Force controlled and teleoperated endoscopic grasper for minimally invasive surgery – experimental performance evaluation. IEEE Trans Biomed Eng. 46: 1212–21, 1999.

    Article  PubMed  CAS  Google Scholar 

  53. Gulbins H, Boehm DH, Reichenspurner H, Arnold M, Ellgass R and Reichart B: 3D–visualization improves the dry-lab coronary anastomoses using the Zeus robotic system. Heart Surg Forum. 2: 318–24; discussion 324–5, 1999.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walid A. Farhat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a Part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Farhat, W.A., Casale, P. (2009). Advantages of Robotic-Assisted Laparoscopy. In: Palmer, J. (eds) Pediatric Robotic Urology. Current Clinical Urology. Humana Press. https://doi.org/10.1007/978-1-60327-422-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-422-7_4

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-421-0

  • Online ISBN: 978-1-60327-422-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics