Skip to main content

Microtubule-Associated Proteins and Microtubule-Interacting Proteins

Regulators of Microtubule Dynamics

  • Chapter
The Role of Microtubules in Cell Biology, Neurobiology, and Oncology

Abstract

Microtubules are regulated by a range of proteins that interact with tubulin and regulate their stability. A large number and variety of microtubule-associated proteins (MAPs) and microtubule-interacting proteins have been indentified and they exhibit cell and tissue specific expression. MAPs and microtubule-interacting proteins carry out a wide range of functions including regulation of microtubule stability, cross-linking microtubules and mediate interactions of microtubules with other proteins in the cell. The dynamic nature of microtubules and their range of cellular functions is dependent of the interaction and regulation of MAPs and microtubule-interacting proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Luduena RF. Multiple forms of tubulin: different gene products and covalent modifications. Int Rev Cytol 1998; 178:207–275.

    Article  PubMed  CAS  Google Scholar 

  2. Nogales E. Structural insight into microtubule function. Annu Rev Biophys Biomol Struct 2001; 30;397–420.

    Article  PubMed  CAS  Google Scholar 

  3. Lewis SA, Cowan NJ. Complex regulation and functional versatility of mammalian alpha-and beta-tubulin isotypes during the differentiation of testis and muscle cells. J Cell Biol 1988; 106: 2023–2033.

    Article  PubMed  CAS  Google Scholar 

  4. Lee G, Cowan N, Kirschner M. The primary structure and heterogeneity of tau protein from mouse brain. Science 1988;239:285–288.

    Article  PubMed  CAS  Google Scholar 

  5. Goedert M, Wischik CM, Crowther RA, Walker JE, Klug A. Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: identification as the microtubule-associated protein tau. Proc Natl Acad Sci USA 1988;85:4051–4055.

    Article  PubMed  CAS  Google Scholar 

  6. Kindler S, Schulz B, Goedert M, Garner CC. Molecular structure of microtubule-associated protein 2b and 2c from rat brain. J Biol Chem 1990;265:19,679–19,684.

    PubMed  CAS  Google Scholar 

  7. Aizawa H, Emori Y, Murofushi H, Kawasaki H, Sakai H, Suzuki K. Molecular cloning of a ubiquitously distributed microtubule-associated protein with Mr 190,000. J Biol Chem 1990;265: 13,849–13,855.

    PubMed  CAS  Google Scholar 

  8. West RR, Tenbarge KM, Olmsted JB. A model for microtubule-associated protein 4 structure. Domains defined by comparisons of human, mouse, and bovine sequences. J Biol Chem 1991;266:21,886–21,896.

    PubMed  CAS  Google Scholar 

  9. Aizawa H, Murofushi H, Kotani S, Hisanaga S, Hirokawa N, Sakai H. Limited chymotryptic digestion of bovine adrenal 190,000-Mr microtubule-associated protein and preparation of a 27,000-Mr fragment which stimulates microtubule assembly. J Biol Chem 1987;262:3782–3787.

    PubMed  CAS  Google Scholar 

  10. Brandt R, Lee G. Functional organization of microtubule-associated protein tau. Identification of regions which affect microtubule growth, nucleation, and bundle formation in vitro. J Biol Chem 1993;268:3414–3419.

    PubMed  CAS  Google Scholar 

  11. Chapin SJ, Bulinski JC. Microtubule-stabilisation by assembly-promoting microtubule-associated proteins: a repeat performance. Cell Motil Cytoskeleton 1992;23:236–243.

    Article  PubMed  CAS  Google Scholar 

  12. Illenberger S, Drewes G, Trinczek B, et al. Phosphorylation of microtubule-associated proteins MAP2 and MAP4 by the protein kinase p110mark. Phosphorylation sites and regulation of microtubule dynamics. J Biol Chem 1996;271:10,834–10,843.

    Article  PubMed  CAS  Google Scholar 

  13. Ebneth A, Drewes G, Mandelkow E. Phosphorylation of MAP2c and MAP4 by MARK kinases leads to the destabilization of microtubules in cells. Cell Motil Cytoskel 1999;44:209–224.

    Article  CAS  Google Scholar 

  14. Ookata K, Hisanaga S, Sugita M, et al. MAP4 is the in vivo substrate for CDC2 kinase in HeLa cells: identification of an M-phase specific and a cell cycle-independent phosphorylation site in MAP4. Biochemistry 1997;36:15,873–15,883.

    Article  PubMed  CAS  Google Scholar 

  15. Drewes G, Ebneth A, Mandelkow EM. MAPs, MARKs and microtubule dynamics. Trends Biochem Sci1998;23:307–311.

    Article  PubMed  CAS  Google Scholar 

  16. Bulinski JC, Borisy GG. Immunofluorescence localization of HeLa cell microtubule-associated proteins on microtubules in vitro and in vivo. J Cell Biol 1980;87:792–801.

    Article  PubMed  CAS  Google Scholar 

  17. Balint E, Cheng M, Rupp B, Grimley PM, Aszalos A. Cytoskeletal modulation of plasma membrane events induced by interferon-alpha. J Interferon Res 1992;12:249–255.

    PubMed  CAS  Google Scholar 

  18. Kanai Y, Takemura R, Takeshi O, et al. Expression of multiple tau isoforms and microtubule bundle formation in fibroblasts transfected with a single tau cDNA. J Cell Biol 1989;109:1173–1184.

    Article  PubMed  CAS  Google Scholar 

  19. Kanai Y, Chin J, Hirokawa N. Microtubule bundling by tau proteins in vivo: analysis of functional domains. EMBO J 1992;11:3953–3961.

    PubMed  CAS  Google Scholar 

  20. Burgin KE, Ludin B, Ferralli J, Matus A. Bundling of microtubules in transfected cells does not involve an autonomous dimerization site on the MAP2 molecule. Mol Biol Cell 1994;5:511–517.

    PubMed  CAS  Google Scholar 

  21. Olson KR, McIntosh JR, Olmsted JB. Analysis of MAP 4 function in living cells using green fluorescent protein (GFP) chimeras. J Cell Biol 1995; 130:639–650.

    Article  PubMed  CAS  Google Scholar 

  22. Nguyen HL, Chari S, Gruber D, Lue CM, Chapin SJ, Bulinski JC. Overexpression of fullor partial-length MAP4 stabilizes microtubules and alters cell growth. J Cell Sci 1997;110:281–294.

    PubMed  CAS  Google Scholar 

  23. Hammarback JA, Obar RA, Hughes SM, Vallee RB. MAP1B is encoded as a polyprotein that is processed to form a complex N-terminal microtubule-binding domain. Neuron 1991;7:129–139.

    Article  PubMed  CAS  Google Scholar 

  24. Langkopf A, Hammarback JA, Muller R, Vallee RB, Garner CC. Microtubule-associated proteins 1A and LC2. Two proteins encoded in one messenger RNA. J Biol Chem 1992;267:16,561–16,566.

    PubMed  CAS  Google Scholar 

  25. Tucker RP. The roles of microtubule-associated proteins in brain morphogenesis: a review. Brain Res Brain Res Rev 1990; 15:101–120.

    Article  PubMed  CAS  Google Scholar 

  26. Cravchik A, Reddy D, Matus A. Identification of a novel microtubule-binding domain in microtubule-associated protein 1A (MAP1 A). J Cell Sci 1994; 107:661–672.

    PubMed  CAS  Google Scholar 

  27. Noble M, Lewis SA, Cowan NJ. The microtubule binding domain of microtubule-associated protein MAP1B contains a repeated sequence motif unrelated to that of MAP2 and tau. J Cell Biol 1989; 109:3367–3376.

    Article  PubMed  CAS  Google Scholar 

  28. Mann SS, Hammarback JA. Molecular characterization of light chain 3. A microtubule binding subunit of MAP1A and MAP1B. J Biol Chem 1994;269:11,492–11,497.

    PubMed  CAS  Google Scholar 

  29. Gonzalez-Billault C, Jimenez-Mateos EM, Caceres A, Diaz-Nido J, Wandosell F, Avila J. Microtubule-associated protein 1B function during normal development, regeneration, and pathological conditions in the nervous system. J Neurobiol 2004;58:48–59.

    Article  PubMed  CAS  Google Scholar 

  30. Takemura R, Okabe S, Umeyama T, Kanai Y, Cowan NJ, Hirokawa N. Increased microtubule stability and alpha tubulin acetylation in cells transfected with microtubule-associated proteins MAP1B, MAP2 or tau. J Cell Sci 1992;103:953–964.

    PubMed  CAS  Google Scholar 

  31. Tucker RP, Binder LI, Matus AI. Neuronal microtubule-associated proteins in the embryonic avian spinal cord. J Comp Neurol 1988;271:44–55.

    Article  PubMed  CAS  Google Scholar 

  32. Tucker RP, Matus AI. Developmental regulation of two microtubule-associated proteins (MAP2 and MAP5) in the embryonic avian retina. Development 1987; 101:535–546.

    PubMed  CAS  Google Scholar 

  33. Viereck C, Tucker RP, Matus A. The adult rat olfactory system expresses microtubule-associated proteins found in the developing brain. J Neurosci 1989;9:3547–3557.

    PubMed  CAS  Google Scholar 

  34. Mansfield SG, Diaz-Nido J, Gordon-Weeks PR, Avila J. The distribution and phosphorylation of the microtubule-associated protein MAP 1B in growth cones. J Neurocytol 1991;20:1007–1022.

    Article  PubMed  CAS  Google Scholar 

  35. Garcia Rocha M, Avila J. Characterization of microtubule-associated protein phosphoisoforms present in isolated growth cones. Brain Res Dev Brain Res 1995;89:47–55.

    Google Scholar 

  36. Edelmann W, Zervas M, Costello P, et al. Neuronal abnormalities in microtubule-associated protein 1B mutant mice. Proc Natl Acad Sci USA 1996;93:1270–1275.

    Article  PubMed  CAS  Google Scholar 

  37. Takei Y Kondo S, Harada A, Inomata S, Noda T, Hirokawa N. Delayed development of nervous system in mice homozygous for disrupted microtubule-associated protein 1B (MAP1B) gene. J Cell Biol 1997;137:1615–1626.

    Article  PubMed  CAS  Google Scholar 

  38. Schoenfeld TA, Obar RA. Diverse distribution and function of fibrous microtubule-associated proteins in the nervous system. Int Rev Cytol 1994;151:67–137.

    Article  PubMed  CAS  Google Scholar 

  39. Chau MF, Radeke MJ, de Ines C, Barasoain I., Kohlstaedt LA, Feinstein SC. The microtubule-associated protein tau cross-links to two distinct sites on each alpha and beta tubulin monomer via separate domains. Biochemistry 1998;37:17,692–17,703.

    Article  PubMed  CAS  Google Scholar 

  40. Neve RL, Harris P, Kosik KS, Kurnit DM, Donlon TA. Identification of cDNA clones for the human microtubule-associated protein tau and chromosomal localization of the genes for tau and microtubule-associated protein 2. Brain Res 1986;387:271–280.

    PubMed  CAS  Google Scholar 

  41. Andreadis A, Brown WM, Kosik KS. Structure and novel exons of the human tau gene. Biochemistry 1992;31:10,626–10,633.

    Article  PubMed  CAS  Google Scholar 

  42. Gu Y, Oyama F, Ihara Y. Tau is widely expressed in rat tissues. J Neurochem 1996;67:1235–1244.

    PubMed  CAS  Google Scholar 

  43. Poorkaj P, Kas A, D’Souza I, et al. A genomic sequence analysis of the mouse and human microtubule-associated protein tau. Mamm Genome 2001;12:700–712.

    Article  PubMed  CAS  Google Scholar 

  44. Goedert M, Spillantini MG, Crowther RA. Cloning of a big tau microtubule-associated protein characteristic of the peripheral nervous system. Proc Natl Acad Sci USA 1992;89:1983–1987.

    Article  PubMed  CAS  Google Scholar 

  45. Wang Y, Loomis PA, Zinkowski RP, Binder LI. A novel tau transcript in cultured human neuroblastoma cells expressing nuclear tau. J Cell Biol 1993;121:257–267.

    Article  PubMed  CAS  Google Scholar 

  46. Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA. Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron 1989;3:519–526.

    Article  PubMed  CAS  Google Scholar 

  47. Henriquez JP, Cross D, Vial C, Maccioni RB. Subpopulations of tau interact with microtubules and actin filaments in various cell types. Cell Biochem Funct 1995; 13:239–250.

    Article  PubMed  CAS  Google Scholar 

  48. Cleveland DW, Hwo S-Y, Kirschner MW. Purification of tau, a microtubule-associated protein that induces assembly of microtubules from purified tubulin. J Mol Biol 1977; 116:207–225.

    Article  PubMed  CAS  Google Scholar 

  49. Drubin DG, Kirschner MW. Tau protein function in living cells. J Cell Biol 1986;103:2739–2746.

    Article  PubMed  CAS  Google Scholar 

  50. Caceres A, Kosik KS. Inhibition of neurite polarity by tau antisense oligonucleotides in primary cerebellar neurons. Nature 1990;343:461–463.

    Article  PubMed  CAS  Google Scholar 

  51. Esmaeli-Asad B, McCarty JH, Feinstein SC. Sense and antisense transfection analysis of tau function: tau influences net microtubule assembly, neurite outgrowth and neuritic stability. J Cell Sci 1994;107:869–879.

    Google Scholar 

  52. Harada A, Oguchi K, Okabe S, et al. Altered microtubule organisation in small-calibre axons of mice lacking tau protein. Nature 1994;369:488–491.

    Article  PubMed  CAS  Google Scholar 

  53. Takei Y Teng J, Harada A, Hirokawa N. Defects in axonal elongation and neuronal migration in mice with disrupted tau and map1b genes. J Cell Biol 2000;150:989–1000.

    Article  PubMed  CAS  Google Scholar 

  54. Garcia ML, Cleveland DW. Going new places using an old MAP: tau, microtubules and human neurodegenerative disease. Curr Opin Cell Biol 2001;13:41–48.

    Article  PubMed  CAS  Google Scholar 

  55. Price DL, Sisodia SS. Mutant genes in familial Alzheimer’s disease and transgenic models. Annu Rev Neurosci 1998;21:479–505.

    Article  PubMed  CAS  Google Scholar 

  56. Hall GF, Chu B, Lee S, Liu Y Yao J. The single neurofilament subunit of the lamprey forms filaments and regulates axonal caliber and neuronal size in vivo. Cell Motil Cytoskel 2000;46:166–182.

    Article  CAS  Google Scholar 

  57. Murphy DB, Borisy GG. Association of high-molecular-weight proteins with microtubules and their role in microtubule assembly in vitro. Proc Natl Acad Sci USA 1975;72:2696–2700.

    Article  PubMed  CAS  Google Scholar 

  58. Serrano L, Avila J, Maccioni RB. Controlled proteolysis of tubulin by subtilisin: localisation of the site for MAP2 interaction. Biochemistry 1984;23:4675–4681.

    Article  PubMed  CAS  Google Scholar 

  59. Selden SC, Pollard TD. Phosphorylation of microtubule-associated proteins regulates their interaction with actin filaments. J Biol Chem 1983;258:7064–7071.

    PubMed  CAS  Google Scholar 

  60. Ozer RS, Halpain S. Phosphorylation-dependent localization of microtubule-associated protein MAP2c to the actin cytoskeleton. Mol Biol Cell 2000;11:3573–3587.

    PubMed  CAS  Google Scholar 

  61. Tucker RP, Binder LI, Viereck C, Hemmings BA, Matus AI. The sequential appearance of low-and high-molecular weight forms of MAP2 in the developing cerebellum. J Neurosci 1988;8:4503–4512.

    PubMed  CAS  Google Scholar 

  62. Falconer MM, Vaillant A, Reuhl K, Laferriere N, Brown DL. The molecular basis of microtubule stability in neurons. Neurotoxicology 1994;15:109–122.

    PubMed  CAS  Google Scholar 

  63. Tucker RP, Matus AI. Microtubule-associated proteins characteristic of embryonic brain are found in the adult mammalian retina. Dev Biol 1988;130:423–434.

    Article  PubMed  CAS  Google Scholar 

  64. Meichsner M, Doll T, Reddy D, Weisshaar B, Matus A. The low molecular weight form of microtubule-associated protein 2 is transported into both axons and dendrites. Neuroscience 1993; 54:873–880.

    Article  PubMed  CAS  Google Scholar 

  65. Doll T, Meichsner M, Riederer BM, Honegger P, Matus A. An isoform of microtubule-associated protein 2 (MAP2) containing four repeats of the tubulin-binding motif. J Cell Sci 1993; 106:633–639.

    PubMed  CAS  Google Scholar 

  66. Ferhat L, Ben-Ari Y Khrestchatisky M. Complete sequence of rat MAP2d, a novel MAP2 isoform. Comptes Rendus de l Academie des Sciences — Serie Iii, Sciences de la Vie CR Acad Sci III 1994;317:304–309.

    CAS  Google Scholar 

  67. Sanchez C, Diaz-Nido J, Avila J. Phosphorylation of microtubule-associated protein 2 (MAP2) and its relevance for the regulation of the neuronal cytoskeleton function. Prog Neurobiol 2000;61: 133–168.

    Article  PubMed  CAS  Google Scholar 

  68. Dinsmore JH, Solomon F. Inhibition of MAP2 expression affects both morphological and cell division phenotypes of neuronal differentiation. Cell 1991;64:817–826.

    Article  PubMed  CAS  Google Scholar 

  69. Harada A, Teng J, Takei Y Oguchi K, Hirokawa N. MAP2 is required for dendrite elongation, PKA anchoring in dendrites, and proper PKA signal transduction. J Cell Biol 2002;158:541–549.

    Article  PubMed  CAS  Google Scholar 

  70. Dehmelt L, Smart FM, Ozer RS, Halpain S. The role of microtubule-associated protein 2c in the reorganization of microtubules and lamellipodia during neurite initiation. J Neurosci 2003;23: 9479–9490.

    PubMed  CAS  Google Scholar 

  71. Don S, Verrills NM, Liaw TYE, et al. Neuronal-associated microtubule proteins class III_ß-tubulin and MAP2c in neuroblastoma: Role in resistance to microtubule-targeted drugs. Mol Cancer Ther 2004;3:1137–1146.

    Article  PubMed  CAS  Google Scholar 

  72. Viereck C, Tucker RP, Matus A. The adult rat olfactory system expresses microtubule-associated proteins found in the developing brain. J Neurosci 1989;9:3547–3557.

    PubMed  CAS  Google Scholar 

  73. Tucker RP. The roles of microtubule-associated proteins in brain morphogenesis: a review. Brain Res Rev1990;15:101–120.

    Article  PubMed  CAS  Google Scholar 

  74. Chapin SJ, Lue CM, Yu MT, Bulinski JC. Differential xpression of alternatively spliced forms of MAP4: a repertoire of structurally different microtubule-binding domains. Biochemistry 1995;34:2289–2301.

    Article  PubMed  CAS  Google Scholar 

  75. Chapin SJ, Bulinski JC. Non-neuronal 210 × 10(3) Mr microtubule-associated protein (MAP4) contains a domain homologous to the microtubule-binding domains of neuronal MAP2 and tau. J Cell Sci 1991;98 (Pt 1):27–36.

    PubMed  CAS  Google Scholar 

  76. Bulinski JC, Borisy GG. Microtubule-associated proteins from cultured HeLa cells. Analysis of molecular properties and effects on microtubule polymerization. J Biol Chem 1980;255:11,570–11,576.

    PubMed  CAS  Google Scholar 

  77. Parysek LM, Asnes CF, Olmsted JB. MAP4: Occurrence in mouse tissues. J Cell Biol 1984;99: 1309–1315.

    Article  PubMed  CAS  Google Scholar 

  78. Olmsted JB. Non-motor microtubule-associated proteins. Curr Biol 1991;3:52–58.

    CAS  Google Scholar 

  79. Goedert M. Tau protein and the neurofibrillary pathology of Alzheimer’s disease. Ann N Y Acad Sci 1996;777:121–131.

    Article  PubMed  CAS  Google Scholar 

  80. Parysek LM, Wolosewick JJ, Olmsted JB. MAP 4: a microtubule-associated protein specific for a subset of tissue microtubules. J Cell Biol 1984;99:2287–2296.

    Article  PubMed  CAS  Google Scholar 

  81. Bulinski JC, McGraw TE, Gruber D, Nguyen HL, Sheetz MP. Overexpression of MAP4 inhibits organelle motility and trafficking in vivo. J Cell Sci 1997; 110:3055–3064.

    PubMed  CAS  Google Scholar 

  82. Murofushi H, Kotani S, Aizawa H, Hisanaga S, Hirokawa N, Sakai H. (1986) Purification and characterization of a 190-kD microtubule-associated protein from bovine adrenal cortex. J Cell Biol 1997;103:1911–1919.

    Article  Google Scholar 

  83. Yoshida T, Imanaka-Yoshida K, Murofushi H, Tanaka J, Ito H, Inagaki M. Microinjection of intact MAP-4 and fragments induces changes of the cytoskeleton in PtK2 cells. Cell Motil Cytoskeleton 1996;33:252–262.

    Article  PubMed  CAS  Google Scholar 

  84. Nguyen HL, Gruber D, Bulinski JC. Microtubule-associated protein 4 (MAP4) regulates assembly, protomer-polymer partitioning and synthesis of tubulin in cultured cells. J Cell Sci 1999;112:1813–1824.

    PubMed  CAS  Google Scholar 

  85. Ookata K, Hisanaga S, Bulinski JC, et al. Cyclin B interaction with microtubule-associated protein 4 (MAP4) targets p34cdc2 kinase to microtubules and is a potential regulator of M-phase microtubule dynamics. J Cell Biol 1995; 128:849–886.

    Article  PubMed  CAS  Google Scholar 

  86. Kitazawa H, Iida J, Uchida A, et al. Ser787 in the proline-rich region of human MAP4 is a critical phosphorylation site that reduces its activity to promote tubulin polymerization. Cell Struct Funct 2000;25:33–39.

    Article  PubMed  CAS  Google Scholar 

  87. Chang W, Gruber D, Chari S, et al. Phosphorylation of MAP4 affects microtubule properties and cell cycle progression. J Cell Sci 2001;114:2879–2887.

    PubMed  CAS  Google Scholar 

  88. Chapin SJ, Bulinski JC. Cellular microtubules heterogeneous in their content of microtubule-associated protein 4 (MAP4). Cell Motil Cytoskel 1994;27:133–149.

    Article  CAS  Google Scholar 

  89. Tokuraku K, Katsuki M, Nakagawa H, Kotani S. A new model for microtubule-associated protein (MAP)-induced microtubule assembly. The Pro-rich region of MAP4 promotes nucleation of microtubule assembly in vitro. Eur J Biochem 1999;259:158–166.

    Article  PubMed  CAS  Google Scholar 

  90. Wang XM, Peloquin JG, Zhai Y, Bulinski JC, Borisy GG. Removal of MAP4 from microtubules in vivo produces no observable phenotype at the cellular level. J Cell Biol 1996; 132:345–357.

    Article  PubMed  CAS  Google Scholar 

  91. Kavallaris M, Tait AS, Walsh BJ, et al. Multiple microtubule alterations are associated with Vinca alkaloid resistance in human leukemia cells. Cancer Res 2001;61:5803–5809.

    PubMed  CAS  Google Scholar 

  92. Murphy M, Hinman A, Levine AJ. Wild-type p53 negatively regulates the expression of a microtubule-associated protein. Genes Dev 1996;10:2971–2980.

    Article  PubMed  CAS  Google Scholar 

  93. Zhang CC, Yang JM, White E, Murphy M, Levine A, Hait WN. The role of MAP4 expression in the sensitivity to paclitaxel and resistance to vinca alkaloids in p53 mutant cells. Oncogene 1998;16: 1617–1624.

    Article  PubMed  CAS  Google Scholar 

  94. Zhang CC, Yang J-M, Bash-Babula J, et al. DNA damage increases sensitivity to Vinca alkaloids and decreases sensitivity to taxanes through p53-dependent repression of microtubule-associated protein 4. Cancer Res 1999;59:3663–3670.

    PubMed  CAS  Google Scholar 

  95. Bash-Babula J, Toppmeyer D, Labassi M, et al. A Phase I/pilot study of sequential doxorubicin/ vinorelbine: effects on p53 and microtubule-associated protein 4. Clin Cancer Res 2002;8: 1057–1064.

    PubMed  CAS  Google Scholar 

  96. Bosc C, Andrieux A, Job D. STOP proteins. Biochemistry 2003;42:12,125–12,132.

    Article  PubMed  CAS  Google Scholar 

  97. Andrieux A, Salin PA, Vernet M, et al. The suppression of brain cold-stable microtubules in mice induces synaptic defects associated with neuroleptic-sensitive behavioral disorders. Genes Dev 2002; 16:2350–2364.

    Article  PubMed  CAS  Google Scholar 

  98. Guillaud L, Bosc C, Fourest-Lieuvin A, et al. STOP proteins are responsible for the high degree of microtubule stabilization observed in neuronal cells. J Cell Biol 1998;142:167–179.

    Article  PubMed  CAS  Google Scholar 

  99. Su LK, Burrell M, Hill DE, et al. APC binds to the novel protein EB1. Cancer Res 1995;55: 2972–2977.

    PubMed  CAS  Google Scholar 

  100. Bu W, Su LK. Regulation of microtubule assembly by human EB1 family proteins. Oncogene 2001; 20:3185–3192.

    Article  PubMed  CAS  Google Scholar 

  101. Schuyler SC, Pellman D. Microtubule plus-end-tracking proteins: The end is just the beginning. Cell 2001;105:421–424.

    Article  PubMed  CAS  Google Scholar 

  102. Schroer TA. Microtubules don and doff their caps: dynamic attachments at plus and minus ends. Curr Opin Cell Biol 2001; 13:92–96.

    Article  PubMed  CAS  Google Scholar 

  103. Bu W, Su LK. Characterization of functional domains of human EB1 family proteins. J Biol Chem 2003;278:49,721–49,731.

    Article  PubMed  CAS  Google Scholar 

  104. Morrison EE, Askham JM. EB 1 immunofluorescence reveals an increase in growing astral microtubule length and number during anaphase in NRK-52E cells. Eur J Cell Biol 2001;80:749–753.

    Article  PubMed  CAS  Google Scholar 

  105. Mimori-Kiyosue Y Shiina N, Tsukita S. The dynamic behavior of the APC-binding protein EB 1 on the distal ends of microtubules. Curr Biol 2000;10:865–868.

    Article  PubMed  CAS  Google Scholar 

  106. Minami Y Sakai H. Effects of microtubule-associated proteins on network formation by neurofilament-induced polymerization of tubulin. FEBS Lett 1986;195:68–72.

    Article  PubMed  CAS  Google Scholar 

  107. Morrison EE, Wardleworth BN, Askham JM, Markham AF, Meredith DM. EB1, a protein which interacts with the APC tumour suppressor, is associated with the microtubule cytoskeleton throughout the cell cycle. Oncogene 1998;17:3471–3477.

    Article  PubMed  CAS  Google Scholar 

  108. Nakamura M, Zhou XZ, Lu KP. Critical role for the EB1 and APC interaction in the regulation of microtubule polymerization. Curr Biol 2001;11:1062–1067.

    Article  PubMed  CAS  Google Scholar 

  109. Tirnauer JS, Bierer BE. EB1 proteins regulate microtubule dynamics, cell polarity, and chromosome stability. J Cell Biol 2000; 149:761–766.

    Article  PubMed  CAS  Google Scholar 

  110. Louie RK, Bahmanyar S, Siemers KA, et al. Adenomatous polyposis coli and EB1 localize in close proximity of the mother centriole and EB 1 is a functional component of centrosomes. J Cell Sci 2004;117:1117–1128.

    Article  PubMed  CAS  Google Scholar 

  111. Tirnauer JS, Canman JC, Salmon ED, Mitchison TJ. EB1 targets to kinetochores with attached, polymerizing microtubules. Mol Biol Cell 2002;13:4308–4316.

    Article  PubMed  CAS  Google Scholar 

  112. Carvalho P, Tirnauer JS, Pellman D. Surfing on microtubule ends. Trends Cell Biol 2003;13:229–237.

    Article  PubMed  CAS  Google Scholar 

  113. Perez F, Diamantopoulos GS, Stalder R, Kreis TE. CLIP-170 highlights growing microtubule ends in vivo. Cell 1999;96:517–527.

    Article  PubMed  CAS  Google Scholar 

  114. Pierre P, Scheel J, Rickard JE, Kreis TE. CLIP-170 links endocytic vesicles to microtubules. Cell 1992;70:887–900.

    Article  PubMed  CAS  Google Scholar 

  115. Rickard JE, Kreis TE. Identification of a novel nucleotide-sensitive microtubule-binding protein in HeLa cells. J Cell Biol 1990;110:1623–1633.

    Article  PubMed  CAS  Google Scholar 

  116. Waterman-Storer CM, Desai A, Bulinski JC, Salmon ED. Fluorescent speckle microscopy, a method to visualize the dynamics of protein assemblies in living cells. Curr Biol 1998;8:1227–1230.

    Article  PubMed  CAS  Google Scholar 

  117. Li S, Finley J, Liu ZJ, et al. Crystal structure of the cytoskeleton-associated protein glycine-rich (CAP-Gly) domain. J Biol Chem 2002;277:48,596–48,601.

    Article  PubMed  CAS  Google Scholar 

  118. Akhmanova A, Hoogenraad CC, Drabek K, et al. Clasps are CLIP−115 and −170 associating proteins involved in the regional regulation of microtubule dynamics in motile fibroblasts. Cell 2001;104: 923–935.

    Article  PubMed  CAS  Google Scholar 

  119. Coquelle FM, Caspi M, Cordelieres FP, et al. LIS1, CLIP-170’s key to the dynein/dynactin pathway. Mol Cell Biol 2002;22:3089–3102.

    Article  PubMed  CAS  Google Scholar 

  120. Ohkura H, Garcia MA, Toda T. Dis1/TOG universal microtubule adaptors — one MAP for all? J Cell Sci2001;114:3805–3812.

    PubMed  CAS  Google Scholar 

  121. Charrasse S, Schroeder M, Gauthier-Rouviere C, et al. The TOGp protein is a new human micro-tubule-associated protein homologous to the Xenopus XMAP215. J Cell Sci 1998;111 (Pt 10): 1371–1383.

    PubMed  CAS  Google Scholar 

  122. Giodini A, Kallio MJ, Wall NR, et al. Regulation of microtubule stability and mitotic progression by survivin. Cancer Res 2002;62:2462–2467.

    PubMed  CAS  Google Scholar 

  123. Mollinedo F, Gajate C. Microtubules, microtubule-interfering agents and apoptosis. Apoptosis 2003;8:413–450.

    Article  PubMed  CAS  Google Scholar 

  124. Mirza A, McGuirk M, Hockenberry TN, et al. Human survivin is negatively regulated by wild-type p53 and participates in p53-dependent apoptotic pathway. Oncogene 2002;21:2613–2622.

    Article  PubMed  CAS  Google Scholar 

  125. Hanash SM, Baier LJ, McCurry L, Schwartz SA. Lineage-related polypeptide markers in acute lymphoblastic leukemia detected by two-dimensional gel electrophoresis. Proc Natl Acad Sci USA 1986;83:807–811.

    Article  PubMed  CAS  Google Scholar 

  126. Melhem RF, Zhu XX, Hailat N, Strahler JR, Hanash SM. Characterization of the gene for a proliferation-related phosphoprotein (oncoprotein 18) expressed in high amounts in acute leukemia. J Biol Chem 1991;266:17,747–17,753.

    PubMed  CAS  Google Scholar 

  127. Sobel A, Tashjian AH Jr. Distinct patterns of cytoplasmic protein phosphorylation related to regulation of synthesis and release of prolactin by GH cells. J Biol Chem 1983;258:10,312–10,324.

    PubMed  CAS  Google Scholar 

  128. Sobel A. Stathmin: a relay phosphoprotein for multiple signal transduction? Trends Biochem Sci 1991;16:301–305.

    Article  PubMed  CAS  Google Scholar 

  129. Belmont L, Mitchison T. Identification of a protein that interacts with tubulin dimers and increases the catastrophe rate of microtubules. Cell 1996;84:623–631.

    Article  PubMed  CAS  Google Scholar 

  130. Bieche I, Maucuer A, Laurendeau I, et al. Expression of stathmin family genes in human tissues: non-neural-restricted expression for SCLIP. Genomics 2003;81:400–410.

    Article  PubMed  CAS  Google Scholar 

  131. Ozon S, Maucuer A, Sobel A. The stathmin family — molecular and biological characterization of novel mammalian proteins expressed in the nervous system. Eur J Biochem 1997;248:794–806.

    Article  PubMed  CAS  Google Scholar 

  132. Charbaut E, Curmi PA, Ozon S, Lachkar S, Redeker V, Sobel A. Stathmin family proteins display specific molecular and tubulin binding properties. J Biol Chem 2001;276:16,146–16,154.

    Article  PubMed  CAS  Google Scholar 

  133. Curmi PA, Andersen SS, Lachkar S, et al. The stathmin/.tubulin interaction in vitro. J Biol Chem 1997;272:25,029–25,036.

    Article  PubMed  CAS  Google Scholar 

  134. Jourdain L, Curmi P, Sobel A, Pantaloni D, Carlier MF. Stathmin:a tubulin-sequestering protein which forms a ternary T2S complex with two tubulin molecules. Biochemistry 1997;36: 10,817–10,821.

    Article  PubMed  CAS  Google Scholar 

  135. Wallon G, Rappsilber J, Mann M, Serrano L. Model for stathmin/Op18 binding to tubulin. EMBO J 2000; 19:213–222.

    Article  PubMed  CAS  Google Scholar 

  136. Gigant B, Curmi PA, Martin-Barbey C, et al. The 4 A X-ray structure of a tubulin:stathmin-like domain complex. Cell 2000;102:809–816.

    Article  PubMed  CAS  Google Scholar 

  137. Ravelli RBG, Gigant B, Curmi PA, et al. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature 2004;428:198–202.

    Article  PubMed  CAS  Google Scholar 

  138. Larsson N, Marklund U, Gradin HM, Wandzioch E, Cassimeris L, Gullberg M. Control of microtubule dynamics by oncoprotein 18: dissection of the regulatory role of multisite phosphorylation during mitosis. Mol Cell Biol 1997; 17:5530–5539.

    PubMed  CAS  Google Scholar 

  139. Horwitz SB, Shen H-J, He L, et al. The microtubule-destabilising activity of metablastin (p19) is controlled by phosphorylation. J Biol Chem 1997;13:8129–8132.

    Google Scholar 

  140. Lawler S. Microtubule dynamics: if you need a shrink try stathmin/Op18. Curr Biol 1998;8: R212–R214.

    Article  PubMed  CAS  Google Scholar 

  141. Andersen SS. Balanced regulation of microtubule dynamics during the cell cycle: a contemporary view [published erratum appears in Bioessays 1999 Apr;21(4):363]. Bioessays 1999;21:53–60.

    Article  PubMed  CAS  Google Scholar 

  142. Howell B, Larsson N, Gullberg M, Cassimeris L. Dissociation of the tubulin-sequestering and microtubule catastrophe-promoting activities of oncoprotein 18/stathmin. Mol Biol Cell 1999; 10:105–118.

    PubMed  CAS  Google Scholar 

  143. Howell B, Deacon H, Cassimeris L. Decreasing oncoprotein 18/stathmin levels reduces microtubule catastrophes and increases microtubule polymer in vivo. J Cell Sci 1999;112 (Pt 21):3713–3722.

    PubMed  CAS  Google Scholar 

  144. Marklund U, Larsson N, Gradin HM, Brattsand G, Gullberg M. Oncoprotein 18 is a phosphorylation-responsive regulator of microtubule dynamics. EMBO J 1996;15:5290–5298.

    PubMed  CAS  Google Scholar 

  145. Roos G, Brattsand G, Landberg G, Marklund U, Gullberg M. Expression of oncoprotein 18 in human leukemias and lymphomas. Leukemia 1993;7:1538–1546.

    PubMed  CAS  Google Scholar 

  146. Brattsand G, Roos G, Marklund U, et al. Quantitative analysis of the expression and regulation of an activation-regulated phosphoprotein (oncoprotein 18) in normal and neoplastic cells. Leukemia 1993;7:569–579.

    PubMed  CAS  Google Scholar 

  147. Hailat N, Strahler J, Melhem R, et al. N-myc gene amplification in neuroblastoma is associated with altered phosphorylation of a proliferation related polypeptide (Op18). Oncogene 1990;5:1615–1618.

    PubMed  CAS  Google Scholar 

  148. Curmi PA, Nogues C, Lachkar S, et al. Overexpression of stathmin in breast carcinomas points out to highly proliferative tumours. Br J Cancer 2000;82:142–150.

    Article  PubMed  CAS  Google Scholar 

  149. Melhem R, Hailat N, Kuick R, Hanash SM. Quantitative analysis of Op18 phosphorylation in childhood acute leukemia. Leukemia 1997;11:1690–1695.

    Article  PubMed  CAS  Google Scholar 

  150. Misek DE, Chang CL, Kuick R, et al. Transforming properties of a Q18-E mutation of the microtubule regulator Op18. Cancer Cell 2002;2:217–228.

    Article  PubMed  CAS  Google Scholar 

  151. Alli E, Bash-Babula J, Yang J-M, Hait WN. Effect of stathmin on the sensitivity to antimicrotubule drugs in human breast cancer. Cancer Res 2002;62:6864–6869.

    PubMed  CAS  Google Scholar 

  152. Martello LA, Verdier-Pinard P, Shen H-J, He L, Orr G A, Horwitz SB. Elevated levels of microtubule destabilizing factors in a Taxol-resistant/dependent A549 cell line with an α-tubulin mutation. Cancer Res 2003;63:1207–1213.

    PubMed  CAS  Google Scholar 

  153. Goncalves A, Braguer D, Kamath K, et al. Resistance to Taxol in lung cancer cells associated with increased microtubule dynamics. Proc Natl Acad Sci USA 2001;98:11,737–11,742.

    Article  PubMed  CAS  Google Scholar 

  154. Murphy M, Ahn J, Walker KK, et al. Transcriptional repression by wild-type p53 utilizes histone deacetylases, mediated by interaction with mSin3a. Genes Dev 1999;13:2490–2501.

    Article  PubMed  CAS  Google Scholar 

  155. Johnsen JI, Aurelio ON, Kwaja Z, et al. p53-mediated negative regulation of stathmin/Op18 expression is associated with G2/M cell-cycle arrest. Int J Cancer 2000;88:685–691.

    Article  PubMed  CAS  Google Scholar 

  156. Iancu C, Mistry SJ, Arkin S, Atweh GF. Taxol and anti-stathmin therapy: a synergistic combination that targets the mitotic spindle. Cancer Res 2000;60:3537–3541.

    PubMed  CAS  Google Scholar 

  157. Iancu C, Mistry SJ, Arkin S, Wallenstein S, Atweh GF. Effects of stathmin inhibition on the mitotic spindle. J Cell Sci 2001;114:909–916.

    PubMed  CAS  Google Scholar 

  158. Nishio K, Nakamura T, Koh Y, Kanzawa F, Tamura T, Saijo N. Oncoprotein 18 overexpression increases the sensitivity to vindesine in the human lung carcinoma cells. Cancer 2001;91:1494–1499.

    Article  PubMed  CAS  Google Scholar 

  159. McNally FJ. Modulation of microtubule dynamics during the cell cycle. Curr Opin Cell Biol 1996;8:23–29.

    Article  PubMed  CAS  Google Scholar 

  160. McNally FJ, Thomas S. Katanin is responsible for the M-phase microtubule-severing activity in Xenopus eggs. Mol Biol Cell 1998;9:1847–1861.

    PubMed  CAS  Google Scholar 

  161. Ahmad FJ, Yu W, McNally FJ, Baas PW. An essential role for katanin in severing microtubules in the neuron. J Cell Biol 1999;145:305–315.

    Article  PubMed  CAS  Google Scholar 

  162. Desai A, Hyman A. Microtubule cytoskeleton: No longer an also Ran. Curr Biol 1999;9:R704–R707.

    Article  PubMed  CAS  Google Scholar 

  163. Walczak CE, Mitchison TJ, Desai A. XKCM1: a Xenopus kinesin-related protein that regulates microtubule dynamics during mitotic spindle assembly. Cell 1996;84:37–47.

    Article  PubMed  CAS  Google Scholar 

  164. Walczak CE. Microtubule dynamics and tubulin interacting proteins. Curr Opin Cell Biol 2000;12:52–56.

    Article  PubMed  CAS  Google Scholar 

  165. Rieder CL, Salmon ED. The vertebrate cell kinetochore and its roles during mitosis. Trends Cell Biol 1998;8:310–318.

    Article  PubMed  CAS  Google Scholar 

  166. Hunter AW, Caplow M, Coy DL, et al. The kinesin-related protein MCAK is a microtubule depolymerase that forms an ATP-hydrolyzing complex at microtubule ends. Mol Cell 2003;11:445–457.

    Article  PubMed  CAS  Google Scholar 

  167. Lan W, Zhang X, Kline-Smith SL, et al. Aurora B phosphorylates centromeric MCAK and regulates its localization and microtubule depolymerization activity. Curr Biol 2004; 14:273–286.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, Totowa, NJ

About this chapter

Cite this chapter

Kavallaris, M., Don, S., Verrills, N.M. (2008). Microtubule-Associated Proteins and Microtubule-Interacting Proteins. In: Fojo, T. (eds) The Role of Microtubules in Cell Biology, Neurobiology, and Oncology. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-336-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-336-3_4

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-294-0

  • Online ISBN: 978-1-59745-336-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics