Skip to main content

DNA Topoisomerases as Targets for the Chemotherapeutic Treatment of Cancer

  • Chapter
Checkpoint Responses in Cancer Therapy

Part of the book series: Cancer Drug Discovery and Development• ((CDD&D))

Abstract

DNA topoisomerases are ubiquitous enzymes that play important roles in a variety of critical nuclear processes. These enzymes control the topological structure of DNA in the cell, regulate under- and overwinding of the double helix, and remove knots and tangles from the genetic material. In order to perform their critical cellular functions, topoisomerases generate DNA strand breaks as requisite intermediates in their catalytic cycles. Consequently, while these enzymes are essential to cell survival, they also have the potential to fragment the genome. The DNA cleavage activity of topoisomerases has been exploited to generate some of the most important drugs currently used to treat human malignancies. This article will familiarize the reader with many aspects of topoisomerase enzymology and cell biology, their interactions with anticancer drugs, and the cellular consequences of topoisomerase-mediated DNA strand breaks. It also will discuss the checkpoint functions and repair pathways that are triggered in response to topoisomerase-generated DNA damage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Ishikawa K, Ishii H, Saito T. DNA damage-dependent cell cycle checkpoints and genomic stabilityDNA Cell Biol 2006;25:406–411.

    Article  PubMed  CAS  Google Scholar 

  2. Nakanishi M, Shimada M, Niida HGenetic instability in cancer cells by impaired cell cycle checkpoints Cancer Sci 2006;97:984–989.

    Article  PubMed  CAS  Google Scholar 

  3. Chabner B, Longo D, edsCancer Chemotherapy and Biotherapy: Principles and Practice 4th ed Philadelphia: Lippincott; 2006.

    Google Scholar 

  4. Schilsky RLMethotrexate: An Effective Agent for Treating Cancer and Building CareersThe Polyglutamate EraOncologist 1996;1:244–247.

    PubMed  Google Scholar 

  5. Miura S, Yoshimura Y, Satoh H, Izuta SThe antitumor mechanism of 1-(2-deoxy-2-fluoro-4-thio-beta-D-arabinofuranosyl)-cytosine: effects of its triphosphate on mammalian DNA polymerasesJpn J Cancer Res 2001;92:562–567.

    PubMed  CAS  Google Scholar 

  6. Povirk LF, Shuker DEDNA damage and mutagenesis induced by nitrogen mustardsMutat Res 1994;318:205–226.

    PubMed  CAS  Google Scholar 

  7. Zorbas H, Keppler BKCisplatin damage: are DNA repair proteins saviors or traitors to the cell? Chembiochem 2005;6:1157–1166.

    Article  PubMed  CAS  Google Scholar 

  8. Povirk LFDNA damage and mutagenesis by radiomimetic DNA-cleaving agents: bleomycin, neocarzinostatin and other enediynesMutat Res 1996;355:71–89.

    PubMed  Google Scholar 

  9. Baldwin EL, Osheroff NEtoposide, topoisomerase II and cancerCurr Med Chem Anti-Canc Agents 2005;5:363–372.

    Article  CAS  Google Scholar 

  10. Yang XH, Zou LCheckpoint and coordinated cellular responses to DNA damageResults Probl Cell Differ 2006;42:65–92.

    Article  PubMed  CAS  Google Scholar 

  11. Houtgraaf JH, Versmissen J, van der Giessen WJA concise review of DNA damage checkpoints and repair in mammalian cellsCardiovasc Revasc Med 2006;7:165–172.

    Article  PubMed  Google Scholar 

  12. Watson JD, Crick FHCMolecular structure of nucleic acids. A structure for deoxyribose nucleic acidNature 1953;171:737–738.

    Article  PubMed  CAS  Google Scholar 

  13. Cozzarelli NR, Wang JCDNA Topology and its Biological Effects. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 1990.

    Google Scholar 

  14. Kanaar R, Cozzarelli NRRoles of supercoiled DNA structure in DNA transactionsCurr Opin Struct Biol 1992;2:369–379.

    Article  CAS  Google Scholar 

  15. Schvartzman JB, Stasiak AA topological view of the repliconEMBO Rep 2004;5:256–261.

    Article  PubMed  CAS  Google Scholar 

  16. Nitiss JLInvestigating the biological functions of DNA topoisomerases in eukaryotic cellsBiochim Biophys Acta 1998;1400:63–81.

    PubMed  CAS  Google Scholar 

  17. Wang JCCellular roles of DNA topoisomerases: a molecular perspectiveNat Rev Mol Cell Biol 2002;3:430–440.

    Article  PubMed  CAS  Google Scholar 

  18. Brill SJ, DiNardo S, Voelkel-Meiman K, Sternglanz RDNA topoisomerase activity is required as a swivel for DNA replication and for ribosomal RNA transcriptionNci Monographs 1987;4:11–15.

    PubMed  Google Scholar 

  19. Kim RA, Wang JCFunction of DNA topoisomerases as replication swivels in Saccharomyces cerevisiaeJ Mol Biol 1989;208:257–267.

    Google Scholar 

  20. Peter BJ, Ullsperger C, Hiasa H, Marians KJ, Cozzarelli NRThe structure of supercoiled intermediates in DNA replicationCell 1998;94:819–827.

    Article  PubMed  CAS  Google Scholar 

  21. Zechiedrich EL, Khodursky AB, Cozzarelli NRTopoisomerase IV, not gyrase, decatenates products of site-specific recombination in Escherichia coliGenes Dev 1997;11:2580–2592.

    Article  PubMed  CAS  Google Scholar 

  22. Sherratt DJ, Soballe B, Barre FX, Filipe S, Lau I, Massey T, Yates JRecombination and chromosome segregationPhilos Trans R Soc Lond B Biol Sci 2004;359:61–69.

    Article  PubMed  CAS  Google Scholar 

  23. Osheroff NDNA Topoisomerases Biochim Biophys Acta 1998;1400.

    Google Scholar 

  24. {\tra2Champoux JJDNA topoisomerases: structure, function, and mechanismAnnu Rev Biochem 2001;70:369–413.}

    Google Scholar 

  25. Wilstermann AM, Osheroff NStabilization of eukaryotic topoisomerase II-DNA cleavage complexesCurr Top Med Chem 2003;3:321–338.

    Google Scholar 

  26. Velez-Cruz R, Osheroff NDNA Topoisomerases: Type II. In: Lennarz W and Lane MD, eds. Encyclopedia of Molecular Biology. San Diego: Elsevier Science; 2004:806–811.

    Google Scholar 

  27. Pommier YTopoisomerase I inhibitors: camptothecins and beyondNat Rev Cancer 2006;6:789–802.

    Article  PubMed  CAS  Google Scholar 

  28. Berger JM, Gamblin SJ, Harrison SC, Wang JCStructure and mechanism of DNA topoisomerase IINature 1996;379:225–232.

    Article  PubMed  CAS  Google Scholar 

  29. Wang JCMoving one DNA double helix through another by a type II DNA topoismerase: the story of a simple molecular machineQuart Rev Biophys 1998;31:107–144.

    Article  CAS  Google Scholar 

  30. Sabourin M, Osheroff NTopoisomerases. In: Creighton TE, ed. Encyclopedia of Molecular MedicineNew York: John Wiley and Sons, Inc.; 2002:3192–3197.

    Google Scholar 

  31. Stewart L, Redinbo MR, Qiu X, Hol WG, Champoux JJA model for the mechanism of human topoisomerase IScience 1998;279:1534–1541.

    Article  PubMed  CAS  Google Scholar 

  32. Leppard JB, Champoux JJHuman DNA topoisomerase I: relaxation, roles, and damage controlChromosoma 2005;114:75–85.

    Article  PubMed  CAS  Google Scholar 

  33. Srivenugopal KS, Lockshon D, Morris DREscherichia coli DNA topoisomerase III: purification and characterization of a new type I enzymeBiochemistry 1984;23:1899–1906.

    Article  PubMed  CAS  Google Scholar 

  34. Oakley TJ, Hickson IDDefending genome integrity during S-phase: putative roles for RecQ helicases and topoisomerase IIIDNA Repair (Amst) 2002;1:175–207.

    Article  CAS  Google Scholar 

  35. Heyer WD, Ehmsen KT and Solinger JAHolliday junctions in the eukaryotic nucleus: resolution in sight? Trends Biochem Sci 2003;28:548–557.

    Google Scholar 

  36. Laursen LV, Bjergbaek L, Murray JM, Andersen AH. RecQ helicases and topoisomerase III in cancer and agingBiogerontology 2003;4:275–287.

    Google Scholar 

  37. Champoux JJ, Dulbecco RAn activity from mammalian cells that untwists superhelical DNA–a possible swivel for DNA replication (polyoma-ethidium bromide-mouse-embryo cells-dye binding assay)Proc Natl Acad Sci U S A 1972;69:143–146.

    Article  PubMed  CAS  Google Scholar 

  38. Rowe TC, Rusche JR, Brougham MJ, Holloman WKPurification and properties of a topoisomerase from Ustilago maydisJ Biol Chem 1981;256:10354–10361.

    PubMed  CAS  Google Scholar 

  39. Wang JCType I DNA TopoisomerasesEnzymes 1981:331–344.

    Google Scholar 

  40. Attardi DG, De Paolis A, Tocchini-Valentini GPPurification and characterization of Xenopus laevis type I topoisomeraseJ Biol Chem 1981;256:3654–3661.

    PubMed  CAS  Google Scholar 

  41. Larsen AK, Gobert C DNA topoisomerase I in oncology: Dr Jekyll or Mr Hyde? Pathol Oncol Res 1999;5:171–178.

    Article  PubMed  CAS  Google Scholar 

  42. Morham SG, Kluckman KD, Voulomanos N, Smithies O. Targeted disruption of the mouse topoisomerase I gene by camptothecin selectionMol Cell Biol 1996;16:6804–6809.

    PubMed  CAS  Google Scholar 

  43. Zhang CX, Chen AD, Gettel NJ, Hsieh TSEssential functions of DNA topoisomerase I in Drosophila melanogasterDev Biol 2000;222:27–40.

    Article  PubMed  CAS  Google Scholar 

  44. Zhang H, Barcelo JM, Lee B, Kohlhagen G, Zimonjic DB, Popescu NC, Pommier YHuman mitochondrial topoisomerase IProc Natl Acad Sci USA 2001;98:10608–10613.

    Article  PubMed  CAS  Google Scholar 

  45. Roca JThe path of the DNA along the dimer interface of topoisomerase IIJ Biol Chem 2004;279:25783–25788.

    Article  PubMed  CAS  Google Scholar 

  46. Liu LF, Rowe TC, Yang L, Tewey KM, Chen GLCleavage of DNA by mammalian DNA topoisomerase IIJ Biol Chem 1983;258:15365–15370.

    Google Scholar 

  47. Sander M, Hsieh TDouble strand DNA cleavage by type II DNA topoisomerase from Drosophila melanogasterJ Biol Chem 1983;258:8421–8428.

    PubMed  CAS  Google Scholar 

  48. Osheroff N, Shelton ER, Brutlag DLDNA topoisomerase II from Drosophila melanogasterRelaxation of supercoiled DNAJ Biol Chem 1983;258:9536–9543.

    PubMed  CAS  Google Scholar 

  49. Osheroff NRole of the divalent cation in topoisomerase II-mediated reactionsBiochemistry 1987;26:6402–6406.

    Article  PubMed  CAS  Google Scholar 

  50. Osheroff N, Zechiedrich ELCalcium-promoted DNA cleavage by eukaryotic topoisomerase II: trapping the covalent enzyme-DNA complex in an active formBiochemistry 1987;26:4303–4309.

    Article  PubMed  CAS  Google Scholar 

  51. Osheroff NEukaryotic topoisomerase II. Characterization of enzyme turnoverJ Biol Chem 1986;261:9944–9950.

    PubMed  CAS  Google Scholar 

  52. Lindsley JE, Wang JCProteolysis patterns of epitopically labeled yeast DNA topoisomerase II suggest an allosteric transition in the enzyme induced by ATP bindingProc Natl Acad Sci USA 1991;88:10485–10489.

    Article  PubMed  CAS  Google Scholar 

  53. Lindsley JE and Wang JCOn the coupling between ATP usage and DNA transport by yeast DNA topoisomerase IIJ Biol Chem 1993;268:8096–8104.

    PubMed  CAS  Google Scholar 

  54. Drake FH, Zimmerman JP, McCabe FL, Bartus HF, Per SR, Sullivan DM, Ross WE, Mattern MR, Johnson RK, Crooke ST, Mirabelli CKPurification of topoisomerase II from amsacrine-resistant P388 leukemia cells. Evidence for two forms of the enzymeJ Biol Chem 1987;262:16739–16747.

    PubMed  CAS  Google Scholar 

  55. Drake FH, Hofmann GA, Bartus HF, Mattern MR, Crooke ST, Mirabelli CKBiochemical and pharmacological properties of p170 and p180 forms of topoisomerase IIBiochemistry 1989;28:8154–8160.

    Google Scholar 

  56. Tsai-Pflugfelder M, Liu LF, Liu AA, Tewey KM, Whang-Peng J, Knutsen T, Huebner K, Croce CM, Wang JCCloning and sequencing of cDNA encoding human DNA topoisomerase II and localization of the gene to chromosome region 17q21–22Proc Natl Acad Sci USA 1988;85:7177–7181.

    Article  PubMed  CAS  Google Scholar 

  57. Jenkins JR, Ayton P, Jones T, Davies SL, Simmons DL, Harris AL, Sheer D, Hickson IDIsolation of cDNA clones encoding the beta isozyme of human DNA topoisomerase II and localisation of the gene to chromosome 3p24Nucleic Acids Res 1992;20:5587–5592.

    Article  PubMed  CAS  Google Scholar 

  58. Tan KB, Dorman TE, Falls KM, Chung TD, Mirabelli CK, Crooke ST, Mao JTopoisomerase II alpha and topoisomerase II beta genes: characterization and mapping to human chromosomes 17 and 3, respectivelyCancer Res 1992;52:231–234.

    PubMed  CAS  Google Scholar 

  59. Austin CA, Marsh KLEukaryotic DNA topoisomerase IIbetaBioEssays 1998;20:215–226.

    Article  PubMed  CAS  Google Scholar 

  60. Heck MM, Earnshaw WCTopoisomerase II: A specific marker for cell proliferationJ Cell Biol 1986;103:2569–2581.

    Article  PubMed  CAS  Google Scholar 

  61. Hsiang YH, Wu HY, Liu LFProliferation-dependent regulation of DNA topoisomerase II in cultured human cellsCancer Res 1988;48:3230–3235.

    PubMed  CAS  Google Scholar 

  62. Woessner RD, Mattern MR, Mirabelli CK, Johnson RK, Drake FHProliferation- and cell cycle-dependent differences in expression of the 170 kilodalton and 180 kilodalton forms of topoisomerase II in NIH-3T3 cellsCell Growth Diff 1991;2:209–214.

    PubMed  CAS  Google Scholar 

  63. Grue P, Grasser A, Sehested M, Jensen PB, Uhse A, Straub T, Ness W, Boege FEssential mitotic functions of DNA topoisomerase IIʱ are not adopted by topoisomerase IIʲ in human H69 cellsJ Biol Chem 1998;273:33660–33666.

    Article  PubMed  CAS  Google Scholar 

  64. Heck MM, Hittelman WN, Earnshaw WCDifferential expression of DNA topoisomerases I and II during the eukaryotic cell cycleProc Natl Acad Sci USA 1988;85:1086–1090.

    Article  PubMed  CAS  Google Scholar 

  65. Kimura K, Saijo M, Ui M, Enomoto TGrowth state- and cell cycle-dependent fluctuation in the expression of two forms of DNA topoisomerase II and possible specific modification of the higher molecular weight form in the M phaseJ Biol Chem 1994;269:1173–1176.

    PubMed  CAS  Google Scholar 

  66. Bauman ME, Holden JA, Brown KA, Harker WG, Perkins SLDifferential immunohistochemical staining for DNA topoisomerase II alpha and beta in human tissues and for DNA topoisomerase II beta in non-Hodgkin’s lymphomasMod Pathol 1997;10:168–175.

    PubMed  CAS  Google Scholar 

  67. Christensen MO, Larsen MK, Barthelmes HU, Hock R, Andersen CL, Kjeldsen E, Knudsen BR, Westergaard O, Boege F, Mielke CDynamics of human DNA topoisomerases IIalpha and IIbeta in living cellsJ Cell Biol 2002;157:31–44.

    Article  PubMed  CAS  Google Scholar 

  68. Chen M, Beck WTDNA topoisomerase II expression, stability, and phosphorylation in two VM-26-resistant human leukemic CEM sublinesOncol Res 1995;7:103–111.

    PubMed  CAS  Google Scholar 

  69. Yang X, Li W, Prescott ED, Burden SJ, Wang JCDNA topoisomerase IIbeta and neural developmentScience 2000;287:131–134.

    Article  PubMed  CAS  Google Scholar 

  70. Isaacs RJ, Davies SL, Sandri MI, Redwood C, Wells NJ, Hickson IDPhysiological regulation of eukaryotic topoisomerase IIBiochim Biophys Acta 1998;1400:121–137.

    PubMed  CAS  Google Scholar 

  71. Dereuddre S, Delaporte C, Jacquemin-Sablon ARole of topoisomerase II beta in the resistance of 9-OH-ellipticine-resistant Chinese hamster fibroblasts to topoisomerase II inhibitorsCancer Res 1997;57:4301–4308.

    PubMed  CAS  Google Scholar 

  72. Sakaguchi A, Kikuchi AFunctional compatibility between isoform alpha and beta of type II DNA topoisomeraseJ Cell Sci 2004;117:1047–1054.

    Article  PubMed  CAS  Google Scholar 

  73. Haince JF, Rouleau M, Poirier GGTranscription. Gene expression needs a break to unwind before carrying onScience 2006;312:1752–1753.

    Google Scholar 

  74. Ju BG, Lunyak VV, Perissi V, Garcia-Bassets I, Rose DW, Glass CK, Rosenfeld MGA topoisomerase IIbeta-mediated dsDNA break required for regulated transcriptionScience 2006;312:1798–1802.

    Article  PubMed  CAS  Google Scholar 

  75. Kaufmann SH. Cell death induced by topoisomerase-targeted drugs: more questions than answersBiochim Biophys Acta 1998;1400:195–211.

    Google Scholar 

  76. Kaufmann SH, Gore SD, Miller CB, Jones RJ, Zwelling LA, Schneider E, Burke PJ, Karp JETopoisomerase II and the response to antileukemic therapyLeukemia Lymph 1998;29:217–237.

    Article  CAS  Google Scholar 

  77. Rowley JDThe critical role of chromosome translocations in human leukemiasAnn Rev Genet 1998;32:495–519.

    Article  PubMed  CAS  Google Scholar 

  78. Felix CASecondary leukemias induced by topoisomerase-targeted drugsBiochim Biophys Acta 1998;1400:233–255.

    PubMed  CAS  Google Scholar 

  79. Sordet O, Khan QA, Kohn KW, Pommier YApoptosis induced by topoisomerase inhibitorsCurr Med Chem Anti-Canc Agents 2003;3:271–290.

    Article  CAS  Google Scholar 

  80. Kreuzer KN, McEntee K, Geballe AP, Cozzarelli NRLambda transducing phages for the nalA gene of Escherichia coli and conditional lethal nalA mutationsMol Gen Genet 1978;167:129–137.

    Article  PubMed  CAS  Google Scholar 

  81. Bjornsti M-A, Benedetti P, Viglianti GA, Wang JC. Expression of human DNA topoisomerase I in yeast cells lacking DNA topoisomerase I: restoration of sensitivity of the cells to the antitumor drug camptothecinCancer Res 1989;49:6318–6323.

    PubMed  CAS  Google Scholar 

  82. Pommier Y, Pourquier P, Fan Y, Strumberg DMechanism of action of eukaryotic DNA topoisomerase I and drugs targeted to the enzymeBiochim Biophys Acta 1998;1400:83–106.

    PubMed  CAS  Google Scholar 

  83. Li TK, Liu LFTumor cell death induced by topoisomerase-targeting drugsAnnu Rev Pharmacol Toxicol 2001;41:53–77.

    Article  PubMed  Google Scholar 

  84. Meng LH, Liao ZY, Pommier YNon-camptothecin DNA topoisomerase I inhibitors in cancer therapyCurr Top Med Chem 2003;3:305–320.

    Article  PubMed  CAS  Google Scholar 

  85. Hsiang YH, Liu LFIdentification of mammalian DNA topoisomerase I as an intracellular target of the anticancer drug camptothecinCancer Res 1988;48:1722–1726.

    PubMed  CAS  Google Scholar 

  86. Osheroff NEffect of antineoplastic agents on the DNA cleavage/religation reaction of eukaryotic topoisomerase II: inhibition of DNA religation by etoposideBiochemistry 1989;28:6157–6160.

    Article  PubMed  CAS  Google Scholar 

  87. Staker BL, Hjerrild K, Feese MD, Behnke CA, Burgin AB, Jr, Stewart L. The mechanism of topoisomerase I poisoning by a camptothecin analogProc Natl Acad Sci U S A 2002;99:15387–15392.

    Article  PubMed  CAS  Google Scholar 

  88. Robinson MJ, Martin BA, Gootz TD, McGuirk PR, Moynihan M, Sutcliffe JA, Osheroff NEffects of quinolone derivatives on eukaryotic topoisomerase II. A novel mechanism for enhancement of enzyme-mediated DNA cleavageJ Biol Chem 1991;266:14585–14592.

    PubMed  CAS  Google Scholar 

  89. Kingma PS, Osheroff NSpontaneous DNA damage stimulates topoisomerase II-mediated DNA cleavageJ Biol Chem 1997;272:7488–7493.

    Article  PubMed  CAS  Google Scholar 

  90. Cline SD, Jones WR, Stone MP, Osheroff NDNA abasic lesions in a different light: solution structure of an endogenous topoisomerase II poisonBiochemistry 1999;38:15500–15507.

    Article  PubMed  CAS  Google Scholar 

  91. Cline SD, Osheroff NCytosine arabinoside (araC) lesions are position-specific topoisomerase II poisons and stimulate DNA cleavage mediated by the human type II enzymesJ Biol Chem 1999;274:29740–29743.

    Article  PubMed  CAS  Google Scholar 

  92. Velez-Cruz R, Riggins JN, Daniels JS, Cai H, Guengerich FP, Marnett LJ, Osheroff NExocyclic DNA lesions stimulate DNA cleavage mediated by human topoisomerase II alpha in vitro and in cultured cellsBiochemistry 2005;44:3972–3981.

    Article  PubMed  CAS  Google Scholar 

  93. Wall ME, Wani MCCamptothecin and taxol: discovery to clinic–thirteenth Bruce FCain Memorial Award LectureCancer Res 1995;55:753–760.

    PubMed  CAS  Google Scholar 

  94. Garcia-Carbonero R, Supko JGCurrent perspectives on the clinical experience, pharmacology, and continued development of the camptothecinsClin Cancer Res 2002;8:641–661.

    PubMed  CAS  Google Scholar 

  95. Burke TG, Mi ZPreferential binding of the carboxylate form of camptothecin by human serum albuminAnal Biochem 1993;212:285–287.

    Article  PubMed  CAS  Google Scholar 

  96. Burke TG, Mi ZThe structural basis of camptothecin interactions with human serum albumin: impact on drug stabilityJ Med Chem 1994;37:40–46.

    Article  PubMed  CAS  Google Scholar 

  97. Bailly CHomocamptothecins: potent topoisomerase I inhibitors and promising anticancer drugsCrit Rev Oncol Hematol 2003;45:91–108.

    Article  PubMed  Google Scholar 

  98. Osheroff NDiflomotecanIpsenIDrugs 2004;7:257–263.

    PubMed  CAS  Google Scholar 

  99. Yamashita Y, Fujii N, Murakata C, Ashizawa T, Okabe M, Nakano HInduction of mammalian DNA topoisomerase I mediated DNA cleavage by antitumor indolocarbazole derivativesBiochemistry 1992;31:12069–12075.

    Article  PubMed  CAS  Google Scholar 

  100. Antony S, Jayaraman M, Laco G, Kohlhagen G, Kohn KW, Cushman M, Pommier YDifferential induction of topoisomerase I-DNA cleavage complexes by the indenoisoquinoline MJ-III-65 (NSC 706744) and camptothecin: base sequence analysis and activity against camptothecin-resistant topoisomerases ICancer Res 2003;63:7428–7435.

    PubMed  CAS  Google Scholar 

  101. Li TK, Houghton PJ, Desai SD, Daroui P, Liu AA, Hars ES, Ruchelman AL, LaVoie EJ, Liu LF Characterization of ARC-111 as a novel topoisomerase I-targeting anticancer drugCancer Res 2003;63:8400–8407.

    PubMed  CAS  Google Scholar 

  102. Hande KRClinical applications of anticancer drugs targeted to topoisomerase IIBiochim Biophys Acta 1998;1400:173–184.

    PubMed  CAS  Google Scholar 

  103. Hande KREtoposide: four decades of development of a topoisomerase II inhibitorEur J Cancer 1998;34:1514–1521.

    Article  PubMed  CAS  Google Scholar 

  104. Ross W, Rowe T, Glisson B, Yalowich J, Liu LRole of topoisomerase II in mediating epipodophyllotoxin-induced DNA cleavageCancer Res 1984;44:5857–5860.

    PubMed  CAS  Google Scholar 

  105. Chen GL, Yang L, Rowe TC, Halligan BD, Tewey KM, Liu LFNonintercalative antitumor drugs interfere with the breakage-reunion reaction of mammalian DNA topoisomerase IIJ Biol Chem 1984;259:13560–13566.

    PubMed  CAS  Google Scholar 

  106. Yang L, Rowe TC, Nelson EM, Liu LFIn vivo mapping of DNA topoisomerase II-specific cleavage sites on SV40 chromatinCell 1985;41:127–132.

    Article  PubMed  CAS  Google Scholar 

  107. Nitiss JLUsing yeast to study resistance to topoisomerase II-targeting drugsCancer Chemother Pharmacol 1994;34:S6–13.

    Article  PubMed  CAS  Google Scholar 

  108. Burden DA, Osheroff NMechanism of action of eukaryotic topoisomerase II and drugs targeted to the enzymeBiochim Biophys Acta 1998;1400:139–154.

    PubMed  CAS  Google Scholar 

  109. Jensen PB, Sorensen BS, Sehested M, Grue P, Demant EJ, Hansen HHTargeting the cytotoxicity of topoisomerase II-directed epipodophyllotoxins to tumor cells in acidic environmentsCancer Res 1994;54:2959–2963.

    PubMed  CAS  Google Scholar 

  110. Sissi C, Palumbo MThe quinolone family: from antibacterial to anticancer agentsCurr Med Chem Anticancer Agents 2003;3:439–450.

    Article  PubMed  CAS  Google Scholar 

  111. Mitscher LABacterial topoisomerase inhibitors: quinolone and pyridone antibacterial agentsChem Rev 2005;105:559–592.

    Article  PubMed  CAS  Google Scholar 

  112. Robicsek A, Jacoby GA, Hooper DCThe worldwide emergence of plasmid-mediated quinolone resistanceLancet Infect Dis 2006;6:629–640.

    Article  PubMed  CAS  Google Scholar 

  113. Constantinou A, Mehta R, Runyan C, Rao K, Vaughan A, Moon RFlavonoids as DNA topoisomerase antagonists and poisons: structure-activity relationshipsJ Nat Prod 1995;58:217–225.

    Article  PubMed  CAS  Google Scholar 

  114. Strick R, Strissel PL, Borgers S, Smith SL, Rowley JDDietary bioflavonoids induce cleavage in the MLL gene and may contribute to infant leukemiaProc Natl Acad Sci U S A 2000;97:4790–4795.

    Article  PubMed  CAS  Google Scholar 

  115. Martin-Cordero C, Lopez-Lazaro M, Pinero J, Ortiz T, Cortes F, Ayuso MJGlucosylated isoflavones as DNA topoisomerase II poisonsJ Enzyme Inhib 2000;15:455–460.

    Article  PubMed  CAS  Google Scholar 

  116. Galati G, O’Brien PJPotential toxicity of flavonoids and other dietary phenolics: significance for their chemopreventive and anticancer propertiesFree Radic Biol Med 2004;37:287–303.

    Article  PubMed  CAS  Google Scholar 

  117. Adlercreutz H, Markkanen H, Watanabe SPlasma concentrations of phyto-oestrogens in Japanese menLancet 1993;342:1209–1210.

    Article  PubMed  CAS  Google Scholar 

  118. Lamartiniere CAProtection against breast cancer with genistein: a component of soyAm J Clin Nutr 2000;71:1705S–1709S.\vvsp{-2}

    Google Scholar 

  119. Sarkar FH, Adsule S, Padhye S, Kulkarni S, Li YThe role of genistein and synthetic derivatives of isoflavone in cancer prevention and therapyMini Rev Med Chem 2006;6:401–407.

    Article  PubMed  CAS  Google Scholar 

  120. Siddiqui IA, Adhami VM, Saleem M, Mukhtar HBeneficial effects of tea and its polyphenols against prostate cancerMol Nutr Food Res 2006;50:130–143.

    Article  PubMed  CAS  Google Scholar 

  121. Ross JA, Potter JD, Robison LLInfant leukemia, topoisomerase II inhibitors, and the MLL geneJournal of the National Cancer Institute 1994;86(22):1678–1680.

    Article  PubMed  CAS  Google Scholar 

  122. Ross JA, Potter JD, Reaman GH, Pendergrass TW, Robison LLMaternal exposure to potential inhibitors of DNA topoisomerase II and infant leukemia (United States): a report from the Children’s Cancer GroupCancer causes & control : CCC 1996;7:581–590.

    Article  PubMed  CAS  Google Scholar 

  123. Ross JADietary flavonoids and the MLL gene: A pathway to infant leukemia? Proc Natl Acad Sci U S A 2000;97:4411–4413.

    Article  PubMed  CAS  Google Scholar 

  124. Spector LG, Xie Y, Robison LL, Heerema NA, Hilden JM, Lange B, Felix CA, Davies SM, Slavin J, Potter JD, Blair CK, Reaman GH, Ross JAMaternal diet and infant leukemia: the DNA topoisomerase II inhibitor hypothesis: a report from the children’s oncology groupCancer Epidemiol Biomarkers Prev 2005;14:651–655.

    Article  PubMed  CAS  Google Scholar 

  125. Shen Y, Shen HM, Shi CY, Ong CNBenzene metabolites enhance reactive oxygen species generation in HL60 human leukemia cellsHum Exp Toxicol 1996;15:422–427.

    Article  PubMed  CAS  Google Scholar 

  126. Kuo ML, Shiah SG, Wang CJ, Chuang SESuppression of apoptosis by Bcl-2 to enhance benzene metabolites-induced oxidative DNA damage and mutagenesis: A possible mechanism of carcinogenesisMol Pharmacol 1999;55:894–901.

    PubMed  CAS  Google Scholar 

  127. Lovern MR, Cole CE, Schlosser PMA review of quantitative studies of benzene metabolismCrit Rev Toxicol 2001;31:285–311.

    Article  PubMed  CAS  Google Scholar 

  128. Rappaport SM, Waidyanatha S, Qu Q, Shore R, Jin X, Cohen B, Chen LC, Melikian AA, Li G, Yin S, Yan H, Xu B, Mu R, Li Y, Zhang X, and Li KAlbumin adducts of benzene oxide and 1,4-benzoquinone as measures of human benzene metabolismCancer Res 2002;62:1330–1337.

    PubMed  CAS  Google Scholar 

  129. Prescott LFParacetamol: past, present, and futureAm J Ther 2000;7:143–147.

    PubMed  CAS  Google Scholar 

  130. Bender RP, Lindsey RH, Jr., Burden DA, Osheroff NN-acetyl-p-benzoquinone imine, the toxic metabolite of acetaminophen, is a topoisomerase II poisonBiochemistry 2004;43:3731–3739.

    Article  PubMed  CAS  Google Scholar 

  131. Ross DThe role of metabolism and specific metabolites in benzene-induced toxicity: evidence and issuesJ Toxicol Environ Health A 2000;61:357–372.

    Article  PubMed  CAS  Google Scholar 

  132. Lindsey RH, Jr., Bromberg KD, Felix CA, Osheroff N1,4-Benzoquinone is a topoisomerase II poisonBiochemistry 2004;43:7563–7574.

    Article  PubMed  CAS  Google Scholar 

  133. Lindsey RH, Jr., Bender RP, Osheroff NEffects of benzene metabolites on DNA cleavage mediated by human topoisomerase II alpha: 1,4-hydroquinone is a topoisomerase II poisonChem Res Toxicol 2005;18:761–770.

    Article  PubMed  CAS  Google Scholar 

  134. Bender RP, Lehmler HJ, Robertson LW, Ludewig G, Osheroff NPolychlorinated Biphenyl Quinone Metabolites Poison Human Topoisomerase IIalpha: Altering Enzyme Function by Blocking the N-Terminal Protein GateBiochemistry 2006;45:10140–10152.

    Article  PubMed  CAS  Google Scholar 

  135. Wang H, Mao Y, Chen AY, Zhou N, LaVoie EJ, Liu LFStimulation of topoisomerase II-mediated DNA damage via a mechanism involving protein thiolationBiochemistry 2001;40:3316–3323.

    Article  PubMed  CAS  Google Scholar 

  136. Pourquier P, Waltman JL, Urasaki Y, Loktionova NA, Pegg AE, Nitiss JL, Pommier YTopoisomerase I-mediated cytotoxicity of N-methyl-N’-nitro-N-nitrosoguanidine: trapping of topoisomerase I by the O6-methylguanineCancer Res 2001;61:53–58.

    PubMed  CAS  Google Scholar 

  137. Pourquier P, Pommier YTopoisomerase I-mediated DNA damageAdv Cancer Res 2001;80:189–216.

    Article  PubMed  CAS  Google Scholar 

  138. Pommier Y, Redon C, Rao VA, Seiler JA, Sordet O, Takemura H, Antony S, Meng L, Liao Z, Kohlhagen G, Zhang H, Kohn KWRepair of and checkpoint response to topoisomerase I-mediated DNA damageMutat Res 2003;532:173–203.

    PubMed  CAS  Google Scholar 

  139. Pommier Y, Barcelo JM, Rao VA, Sordet O, Jobson AG, Thibaut L, Miao ZH, Seiler JA, Zhang H, Marchand C, Agama K, Nitiss JL, Redon CRepair of topoisomerase I-mediated DNA damageProg Nucleic Acid Res Mol Biol 2006;81:179–229.

    Article  PubMed  CAS  Google Scholar 

  140. Kingma PS, Osheroff NThe response of eukaryotic topoisomerases to DNA damageBiochim Biophys Acta 1998;1400:223–232.

    PubMed  CAS  Google Scholar 

  141. Sabourin M, Osheroff NSensitivity of human type II topoisomerases to DNA damage: stimulation of enzyme-mediated DNA cleavage by abasic, oxidized and alkylated lesionsNucleic Acids Res 2000;28:1947–1954.

    Article  PubMed  CAS  Google Scholar 

  142. Khan QA, Kohlhagen G, Marshall R, Austin CA, Kalena GP, Kroth H, Sayer JM, Jerina DM, Pommier YPosition-specific trapping of topoisomerase II by benzo[a]pyrene diol epoxide adducts: implications for interactions with intercalating anticancer agentsProc Natl Acad Sci U S A 2003;100:12498–12503.

    Article  PubMed  CAS  Google Scholar 

  143. Sordet O, Khan QA, Pommier YApoptotic topoisomerase I-DNA complexes induced by oxygen radicals and mitochondrial dysfunctionCell Cycle 2004;3:1095–1097.

    PubMed  CAS  Google Scholar 

  144. Pourquier P, Kohlhagen G, Urasaki Y, Pommier YInduction of topoisomerase I cleavage complexes by staurosporin in apoptotic leukemia cells: Could topoisomerase I act as an apoptotic endonuclease? Proc Am Assoc Cancer Res 2001:303.

    Google Scholar 

  145. Solovyan VT, Bezvenyuk ZA, Salminen A, Austin CA, Courtney MJ. The role of topoisomerase II in the excision of DNA loop domains during apoptosisJ Biol Chem 2002;277:21458–21467.

    Article  PubMed  CAS  Google Scholar 

  146. Belyaev IYDNA loop organization and DNA fragmentation during radiation-induced apoptosis in human lymphocytesRadiats Biol Radioecol 2005;45:541–548.

    PubMed  CAS  Google Scholar 

  147. Felix CALeukemias related to treatment with DNA topoisomerase II inhibitorsMedical & Pediatric Oncology 2001;36:525–535.

    Article  CAS  Google Scholar 

  148. Smith MA, Rubinstein L, Anderson JR, Arthur D, Catalano PJ, Freidlin B, Heyn R, Khayat A, Krailo M, Land VJ, Miser J, Shuster J, Vena DSecondary leukemia or myelodysplastic syndrome after treatment with epipodophyllotoxinsJ Clin Oncol 1999;17:569–577.

    PubMed  CAS  Google Scholar 

  149. Felix CA, Kolaris CP, and Osheroff NTopoisomerase II and the etiology of chromosomal translocationsDNA Repair (Amst) 2006;5:109–1108.

    Article  CAS  Google Scholar 

  150. Mistry AR, Felix CA, Whitmarsh RJ, Mason A, Reiter A, Cassinat B, Parry A, Walz C, Wiemels JL, Segal MR, Ades L, Blair IA, Osheroff N, Peniket AJ, Lafage-Pochitaloff M, Cross NC, Chomienne C, Solomon E, Fenaux P, Grimwade DDNA topoisomerase II in therapy-related acute promyelocytic leukemiaN Engl J Med 2005;352:1529–1538.

    Article  PubMed  CAS  Google Scholar 

  151. Hess JLMLL: a histone methyltransferase disrupted in leukemiaTrends Mol Med 2004;10:500–507.

    Article  PubMed  CAS  Google Scholar 

  152. Hess JLMechanisms of transformation by MLLCrit Rev Eukaryot Gene Expr 2004;14:235–254.

    Article  PubMed  CAS  Google Scholar 

  153. Tenney K, Shilatifard AA COMPASS in the voyage of defining the role of trithorax/MLL-containing complexes: linking leukemogensis to covalent modifications of chromatinJ Cell Biochem 2005;95:429–436.

    Article  PubMed  CAS  Google Scholar 

  154. Lappin TR, Grier DG, Thompson A, Halliday HLHOX genes: seductive science, mysterious mechanismsUlster Med J 2006;75:23–31.

    PubMed  Google Scholar 

  155. Li ZY, Liu DP, Liang CCNew insight into the molecular mechanisms of MLL-associated leukemiaLeukemia 2005;19:183–190.

    Article  PubMed  CAS  Google Scholar 

  156. Felix CA, Lange BJLeukemia in infantsOncologist 1999;4:225–240.

    PubMed  CAS  Google Scholar 

  157. Smith MTChromosome damage from biological reactive intermediates of benzene and 1,3-butadiene in leukemiaAdv Exp Med Biol 2001;500:279–287.

    PubMed  CAS  Google Scholar 

  158. Larson RA, Wang Y, Banerjee M, Wiemels J, Hartford C, Le Beau MM, and Smith MTPrevalence of the inactivating 609C–>T polymorphism in the NAD(P)H:quinone oxidoreductase (NQO1) gene in patients with primary and therapy-related myeloid leukemiaBlood 1999;94:803–807.

    PubMed  CAS  Google Scholar 

  159. Smith MTBenzene, NQO1, and genetic susceptibility to cancerProc Natl Acad Sci U S A 1999;96:7624–7626.

    Article  PubMed  CAS  Google Scholar 

  160. Smith MT, Wang Y, Kane E, Rollinson S, Wiemels JL, Roman E, Roddam P, Cartwright R, and Morgan GLow NAD(P)H:quinone oxidoreductase 1 activity is associated with increased risk of acute leukemia in adultsBlood 2001;97:1422–1426.

    Article  PubMed  CAS  Google Scholar 

  161. Smith MT, Wang Y, Skibola CF, Slater DJ, Lo Nigro L, Nowell PC, Lange BJ, and Felix CALow NAD(P)H:quinone oxidoreductase activity is associated with increased risk of leukemia with MLL translocations in infants and childrenBlood 2002;100:4590–4593.

    Google Scholar 

  162. Wiemels JL, Pagnamenta A, Taylor GM, Eden OB, Alexander FE, Greaves MFA lack of a functional NAD(P)H:quinone oxidoreductase allele is selectively associated with pediatric leukemias that have MLL fusions. United Kingdom Childhood Cancer Study InvestigatorsCancer Res 1999;59:4095–4099.

    PubMed  CAS  Google Scholar 

  163. Lindsey RH, Bender RP, Osheroff NStimulation of topoisomerase II-mediated DNA cleavage by benzene metabolitesChem Biol Interact 2005;153–154:197–205.

    Article  CAS  Google Scholar 

  164. Aplan PDChromosomal translocations involving the MLL gene: molecular mechanismsDNA Repair (Amst) 2006;5:1265–1272.

    Article  CAS  Google Scholar 

  165. Felix CA, Lange BJ, Hosler MR, Fertala J, Bjornsti M-AChromosome band 11q23 translocation breakpoints are DNA topoisomerase II cleavage sitesCancer Res 1995;55:4287–4292.

    PubMed  CAS  Google Scholar 

  166. Lovett BD, Lo Nigro L, Rappaport EF, Blair IA, Osheroff N, Zheng N, Megonigal MD, Williams WR, Nowell PC, Felix CANear-precise interchromosomal recombination and functional DNA topoisomerase II cleavage sites at MLL and AF-4 genomic breakpoints in treatment-related acute lymphoblastic leukemia with t(4;11) translocationProc Natl Acad Sci U S A 2001;98:9802–9807.

    Article  PubMed  CAS  Google Scholar 

  167. Lovett BD, Strumberg D, Blair IA, Pang S, Burden DA, Megonigal MD, Rappaport EF, Rebbeck TR, Osheroff N, Pommier YG, Felix CAEtoposide metabolites enhance DNA topoisomerase II cleavage near leukemia-associated MLL translocation breakpointsBiochemistry 2001;40:1159–1170.

    Article  PubMed  CAS  Google Scholar 

  168. Super HJ, McCabe NR, Thirman MJ, Larson RA, Le Beau MM, Pedersen-Bjergaard J, Philip P, Diaz MO, Rowley JDRearrangements of the MLL gene in therapy-related acute myeloid leukemia in patients previously treated with agents targeting DNA-topoisomerase IIBlood 1993;82:3705–3711.

    PubMed  CAS  Google Scholar 

  169. Andersen MK, Christiansen DH, Jensen BA, Ernst P, Hauge G, Pedersen-Bjergaard JTherapy-related acute lymphoblastic leukaemia with MLL rearrangements following DNA topoisomerase II inhibitors, an increasing problem: report on two new cases and review of the literature since 1992. Br J Haematol 2001;114:539–543.

    Article  PubMed  CAS  Google Scholar 

  170. Betti CJ, Villalobos MJ, Jiang Q, Cline E, Diaz MO, Loredo G, Vaughan ATCleavage of the MLL gene by activators of apoptosis is independent of topoisomerase II activityLeukemia 2005;19:2289–2295.

    Article  PubMed  CAS  Google Scholar 

  171. Hars ES, Lyu YL, Lin CP, Liu LFRole of apoptotic nuclease caspase-activated DNase in etoposide-induced treatment-related acute myelogenous leukemiaCancer Res 2006;66:8975–8979.

    Article  PubMed  CAS  Google Scholar 

  172. Betti CJ, Villalobos MJ, Diaz MO, Vaughan ATApoptotic triggers initiate translocations within the MLL gene involving the nonhomologous end joining repair systemCancer Res 2001;61:4550–4555.

    PubMed  CAS  Google Scholar 

  173. Betti CJ, Villalobos MJ, Diaz MO, Vaughan ATApoptotic stimuli initiate MLL-AF9 translocations that are transcribed in cells capable of divisionCancer Res 2003;63:1377–1381.

    PubMed  CAS  Google Scholar 

  174. Vaughan AT, Betti CJ, Villalobos MJ, Premkumar K, Cline E, Jiang Q, Diaz MOSurviving apoptosis: a possible mechanism of benzene-induced leukemiaChem Biol Interact 2005;153–154:179–185.

    Google Scholar 

  175. Shiloh YATM and ATR: networking cellular responses to DNA damageCurr Opin Genet Dev 2001;11:71–77.

    Article  PubMed  CAS  Google Scholar 

  176. Abraham RTCell cycle checkpoint signaling through the ATM and ATR kinasesGenes Dev 2001;15:2177–2196.

    Article  PubMed  CAS  Google Scholar 

  177. Abraham RTCheckpoint signaling: epigenetic events sound the DNA strand-breaks alarm to the ATM protein kinaseBioessays 2003;25:627–630.

    Google Scholar 

  178. Bakkenist CJ, Kastan MBDNA damage activates ATM through intermolecular autophosphorylation and dimer dissociationNature 2003;421:499–506.

    Article  PubMed  CAS  Google Scholar 

  179. Blasina A, Price BD, Turenne GA, McGowan CHCaffeine inhibits the checkpoint kinase ATMCurr Biol 1999;9(19):1135–1138.

    Article  PubMed  CAS  Google Scholar 

  180. Kornbluth S, Smythe C, Newport JWIn vitro cell cycle arrest induced by using artificial DNA templatesMol Cell Biol 1992;12:3216–3223.

    PubMed  CAS  Google Scholar 

  181. Zou L, Cortez D, Elledge SJRegulation of ATR substrate selection by Rad17-dependent loading of Rad9 complexes onto chromatinGenes Dev 2002;16:198–208.

    Article  PubMed  CAS  Google Scholar 

  182. Carr AMDNA structure dependent checkpoints as regulators of DNA repairDNA Repair (Amst) 2002;1:983–994.

    Article  CAS  Google Scholar 

  183. Cortez DUnwind and slow down: checkpoint activation by helicase and polymerase uncouplingGenes Dev 2005;19:1007–1012.

    Article  PubMed  CAS  Google Scholar 

  184. Sogo JM, Lopes M, Foiani MFork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defectsScience 2002;297:599–602.

    Article  PubMed  CAS  Google Scholar 

  185. McGowan CH, Russell PThe DNA damage response: sensing and signalingCurr Opin Cell Biol 2004;16:629–633.

    Article  PubMed  CAS  Google Scholar 

  186. Liu Q, Guntuku S, Cui XS, Matsuoka S, Cortez D, Tamai K, Luo G, Carattini-Rivera S, DeMayo F, Bradley A, Donehower LA,, Elledge SJChk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpointGenes Dev2000;14:1448–1459.

    Google Scholar 

  187. Harrison JC, Haber JESurviving the breakup: the DNA damage checkpointAnnu Rev Genet 2006;40:209–235.

    Article  PubMed  CAS  Google Scholar 

  188. Lavin MF, Shiloh YThe genetic defect in ataxia-telangiectasiaAnnu Rev Immunol 1997;15:177–202.

    Article  PubMed  CAS  Google Scholar 

  189. Rotman G and Shiloh YATM: a mediator of multiple responses to genotoxic stressOncogene 1999;18:6135–6144.

    Article  CAS  Google Scholar 

  190. Bott L, Thumerelle C, Cuvellier JC, Deschildre A, Vallee L,Sardet AAtaxia-telangiectasia: a reviewArch Pediatr 2006;13:293–298.

    Article  PubMed  CAS  Google Scholar 

  191. Brown EJ, Baltimore DATR disruption leads to chromosomal fragmentation and early embryonic lethalityGenes Dev 2000;14:397–402.

    Google Scholar 

  192. de Klein A, Muijtjens M, van Os R, Verhoeven Y, Smit B, Carr AM, Lehmann AR, Hoeijmakers JHTargeted disruption of the cell-cycle checkpoint gene ATR leads to early embryonic lethality in miceCurr Biol 2000;10:479–482.

    Article  PubMed  Google Scholar 

  193. Cliby WA, Lewis KA, Lilly KK, Kaufmann SHS phase and G2 arrests induced by topoisomerase I poisons are dependent on ATR kinase functionJ Biol Chem 2002;277:1599–1606.

    Article  PubMed  CAS  Google Scholar 

  194. Costanzo V, Shechter D, Lupardus PJ, Cimprich KA, Gottesman M, Gautier JAn ATR- and Cdc7-dependent DNA damage checkpoint that inhibits initiation of DNA replicationMol Cell 2003;11:203–213.

    Google Scholar 

  195. Siu WY, Lau A, Arooz T, Chow JP, Ho HT, Poon RYTopoisomerase poisons differentially activate DNA damage checkpoints through ataxia-telangiectasia mutated-dependent and -independent mechanismsMol Cancer Ther 2004;3:621–632.

    PubMed  CAS  Google Scholar 

  196. Ho CC, Siu WY, Chow JP, Lau A, Arooz T, Tong HY, Ng IO, Poon RYThe relative contribution of CHK1 and CHK2 to Adriamycin-induced checkpointExp Cell Res 2005;304:1–15.

    Article  PubMed  CAS  Google Scholar 

  197. Flatten K, Dai NT, Vroman BT, Loegering D, Erlichman C, Karnitz LM, Kaufmann SHThe role of checkpoint kinase 1 in sensitivity to topoisomerase I poisonsJ Biol Chem 2005;280:14349–14355.

    Article  PubMed  CAS  Google Scholar 

  198. Martensson S, Nygren J, Osheroff N, Hammarsten OActivation of DNA-dependent protein kinase by drug and radiation-induced DNA strand breaksRadiat Res 2003:in press.

    Google Scholar 

  199. Vance JR, Wilson TEYeast Tdp1 and Rad1-Rad10 function as redundant pathways for repairing Top1 replicative damageProc Natl Acad Sci U S A 2002;99:13669–13674.

    Article  PubMed  CAS  Google Scholar 

  200. Neale MJ, Pan J, Keeney SEndonucleolytic processing of covalent protein-linked DNA double-strand breaksNature 2005;436:1053–1057.

    Article  PubMed  CAS  Google Scholar 

  201. Deng C, Brown JA, You D, Brown JMMultiple endonucleases function to repair covalent topoisomerase I complexes in Saccharomyces cerevisiaeGenetics 2005;170:591–600.

    Article  PubMed  CAS  Google Scholar 

  202. Zhang A, Lyu YL, Lin CP, Zhou N, Azarova AM, Wood LM, Liu LFA protease pathway for the repair of topoisomerase II-DNA covalent complexesJ Biol Chem 2006.

    Google Scholar 

  203. Desai SD, Zhang H, Rodriguez-Bauman A, Yang JM, Wu X, Gounder MK, Rubin EH, Liu LFTranscription-dependent degradation of topoisomerase I-DNA covalent complexesMol Cell Biol 2003;23:2341–2350.

    Article  PubMed  CAS  Google Scholar 

  204. Hammarsten O, DeFazio LG, Chu GActivation of DNA-dependent protein kinase by single-stranded DNA endsJ Biol Chem 2000;275:1541–1550.

    Article  PubMed  CAS  Google Scholar 

  205. Yang SW, Burgin AB, Jr., Huizenga BN, Robertson CA, Yao KC, Nash HAA eukaryotic enzyme that can disjoin dead-end covalent complexes between DNA and type I topoisomerasesProc Natl Acad Sci USA 1996;93:11534–11539.

    Article  PubMed  CAS  Google Scholar 

  206. Barthelmes HU, Habermeyer M, Christensen MO, Mielke C, Interthal H, Pouliot JJ, Boege F, Marko DTDP1 overexpression in human cells counteracts DNA damage mediated by topoisomerases I and IIJ Biol Chem 2004;279:55618–55625.

    Article  PubMed  CAS  Google Scholar 

  207. Nitiss KC, Malik M, He X, White SW, Nitiss JLTyrosyl-DNA phosphodiesterase (Tdp1) participates in the repair of Top2-mediated DNA damageProc Natl Acad Sci U S A 2006;103:8953–8958.

    Article  PubMed  CAS  Google Scholar 

  208. Raymond AC, Burgin AB, JrTyrosyl-DNA phosphodiesterase (Tdp1) (3’-phosphotyrosyl DNA phosphodiesterase)Methods Enzymol 2006;409:511–524.

    Article  PubMed  CAS  Google Scholar 

  209. Connelly JC, Leach DRRepair of DNA covalently linked to proteinMol Cell 2004;13:307–316.

    Article  PubMed  CAS  Google Scholar 

  210. El-Khamisy SF, Caldecott KWDNA single-strand break repair and spinocerebellar ataxia with axonal neuropathy-1Neuroscience 2006;145:1260–1266.

    Article  PubMed  CAS  Google Scholar 

  211. Interthal H, Chen HJ, Kehl-Fie TE, Zotzmann J, Leppard JB, Champoux JJSCAN1 mutant Tdp1 accumulates the enzyme–DNA intermediate and causes camptothecin hypersensitivityEmbo J 2005;24:2224–2233.

    Article  PubMed  CAS  Google Scholar 

  212. Miao ZH, Agama K, Sordet O, Povirk L, Kohn KW, Pommier YHereditary ataxia SCAN1 cells are defective for the repair of transcription-dependent topoisomerase I cleavage complexesDNA Repair (Amst) 2006;5:1489–1494.

    Article  CAS  Google Scholar 

  213. Takashima HMolecular genetics of inherited neuropathiesRinsho Shinkeigaku 2006;46:1–18.

    PubMed  Google Scholar 

  214. Sabourin M, Nitiss JL, Nitiss KC, Tatebayash H, Ikeda H, Osheroff NYeast recombination pathways triggered by topoisomerase II-mediated DNA breaksNucl Acids Res 2003;313:4373–4384.

    Article  CAS  Google Scholar 

  215. Valerie K, Povirk LFRegulation and mechanisms of mammalian double-strand break repairOncogene 2003;22:5792–5812

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bender, R.P., Osheroff, N. (2008). DNA Topoisomerases as Targets for the Chemotherapeutic Treatment of Cancer. In: Dai, W. (eds) Checkpoint Responses in Cancer Therapy. Cancer Drug Discovery and Development•. Humana Press. https://doi.org/10.1007/978-1-59745-274-8_3

Download citation

Publish with us

Policies and ethics