Skip to main content

Melanocyte Distribution and Function in Human Skin

Effects of Ultraviolet Radiation

  • Chapter
From Melanocytes to Melanoma

Abstract

Catalytic entities involved in melanin synthesis (including tyrosinase [TYR], tyrosinase-related protein 1 [TYRP1], and dopachrome tautomerase [DCT]) and structural proteins important to the integrity of melanosomes (including GP100/Pmel17) play active roles in the maintenance of the function and structure of those organelles produced by melanocytes. Constitutive skin pigmentation is regulated by a number of distinct factors (including melanocyte dendricity, transport of melanosomes to dendrites, and transfer of melanosomes to keratinocytes and their subsequent distribution) and can be affected by paracrine factors (from neighboring keratinocytes and fibroblasts) and the environment, including ultraviolet (UV) radiation, that regulate melanocyte proliferation and function. Because UV is inherently associated with photocarcinogenesis in the skin, including melanoma, we discuss melanocyte density and function, melanin content and distribution, DNA damage (measured by 6,4-phytoproducts [64PP] and cyclobutane pyrimidine dimers [CPD]) and apoptosis (measured by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling [TUNEL] staining) in response to UV in three different types of skin. In sum, UV-induced DNA damage in the lower epidermis is not effectively prevented in light/fair skin and UV-induced apoptosis is not seen in light skin after low doses of UV. These observations suggest that the combination of decreased DNA damage and more efficient removal of UV-damaged cells plays an important role in the decreased photocarcinogenesis seen in darker skin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bennett DC, Lamoreux ML. The color loci of mice—a genetic century. Pigment Cell Res 2003;16:333–344.

    Article  PubMed  CAS  Google Scholar 

  2. Bourquelot E, Bertrand A. Le bleuissement et le noircissement des champignons. Comp Rend Soc Biol 1895;2:582–584.

    Google Scholar 

  3. Bertrand G. Sur une novelle oxydase, ou ferment soluble oxydant, d’origine vegetale. Comp Rend Acad Sci Paris 1896;122:1215–1217.

    CAS  Google Scholar 

  4. Bloch B. Chemische untersuchungen uber das specifische pigmentbildende ferment der haut, die dopaoxydase. Zeits Physiol Chem 1916;98:227–254.

    Google Scholar 

  5. Bloch B, Schaaf F. Pigment studien. Biochem Zeits 1925;162:181–206.

    Google Scholar 

  6. Lerner AB, Fitzpatrick TB, Calkins E, Summerson WH. Mammalian tyrosinase: preparation and properties. J Biol Chem 1949;178:185–195.

    CAS  PubMed  Google Scholar 

  7. Lerner AB, Fitzpatrick TB. Biochemistry of melanin formation. Physiol Rev 1950;30:91–126.

    PubMed  CAS  Google Scholar 

  8. Raper HS. XIV. The tyrosinase-tyrosine reaction. VI. Production from tyrosine of 5,6-dihydroxyindole and 5,6-dihydroxyindole-2-carboxylic acid—the precursors of melanin. Biochem J 1927;21:89–96.

    PubMed  CAS  Google Scholar 

  9. Mason HS. Structure of melanins. In: Gordon M, ed. Pigment Cell Biology. Academic, New York, NY: 1959, pp. 563–582.

    Google Scholar 

  10. Mason HS. The structure of melanin. In: Montagna W, Hu F, eds. Advances in Biology of the Skin. Vol VIII, The Pigmentary System. Pergamon, Oxford, UK, 1967: pp. 293–312.

    Google Scholar 

  11. Riley PA. The evolution of melanogenesis. In: Zeise L, Chedekel MR, Fitzpatrick TB, eds. Melanin: Its Role in Human Photoprotection. Valdenmar, Overland Park, Kansas, 1995: pp. 1–10.

    Google Scholar 

  12. Land EJ, Riley PA. Spontaneous redox reactions of dopaquinone and the balance between the eumelanic and phaeomelanic pathways. Pigment Cell Res 2000;13:273–277.

    Article  PubMed  CAS  Google Scholar 

  13. Kaidbey KH, Agin PP, Sayre RM, Kligman AM. Photoprotection by melanin—a comparison of black and Caucasian skin. J Amer Acad Dermatol 1979;1:249–260.

    Article  CAS  Google Scholar 

  14. Chedekel MR. Photophysics and photochemistry of melanin. In: Zeise L, Chedekel MR, Fitzpatrick TB, eds. Melanin: Its Role in Human Photoprotection. Valdenmar, Overland Park, Kansas, 1995: pp. 11–22.

    Google Scholar 

  15. Jimbow K, Reszka K, Schmitz S, Salopek T, Thomas P. Distribution of eu-and pheomelanins in human skin and melanocytic tumors, and their photoprotective vs. phototoxic properties. In: Zeise L, Chedekel MR, Fitzpatrick TB, eds. Melanin: Its Role in Human Photoprotection. Valdenmar, Overland Park, Kansas, 1995: pp. 155–176.

    Google Scholar 

  16. Kushimoto T, Basrur V, Matsunaga J, et al. A new model for melanosome biogenesis based on the purification and mapping of early melanosomes. Proc Natl Acad Sci USA 2001;98:10,698–10,703.

    Article  PubMed  CAS  Google Scholar 

  17. Basrur V, Yang F, Kushimoto T, et al. Proteomic analysis of early melanosomes: identification of novel melanosomal proteins. J Prot Res 2003;2:69–79.

    Article  CAS  Google Scholar 

  18. Hearing VJ, King RA. Determinants of skin color: melanocytes and melanization. In: Levine N, ed. Pigmentation and Pigmentary Abnormalities. CRC, New York, NY, 1993: pp. 3–32.

    Google Scholar 

  19. Spritz RA, Hearing VJ. Genetic disorders of pigmentation. In: Hirschhorn K, Harris H, eds. Advances in Human Genetics. Plenum, New York, NY, 1994: pp. 1–45.

    Google Scholar 

  20. King RA, Hearing VJ, Oetting WS. Abnormalities of pigmentation. In: Rimoin DL, Connor JM, Pyeritz RE, eds. Emery and Rimoin’s Principles and Practice of Medical Genetics. 3rd ed. Churchill Livingstone, New York, NY, 1997: pp. 1171–1203.

    Google Scholar 

  21. Halaban R. The regulation of normal melanocyte proliferation. Pigment Cell Res 2000;13:4–14.

    Article  PubMed  CAS  Google Scholar 

  22. Abdel-Malek ZA, Scott MC, Suzuki I, et al. The melanocortin-1 receptor is a key regulator of human cutaneous pigmentation. Pigment Cell Res 2000;13(suppl 8):156–162.

    Article  PubMed  Google Scholar 

  23. Tada A, Pereira E, Beitner-Johnson D, Kavanagh R, Abdel-Malek ZA. Mitogen-and ultraviolet-B-induced signaling pathways in normal human melanocytes. J Invest Dermatol 2002;118:316–322.

    Article  PubMed  CAS  Google Scholar 

  24. Imokawa G, Yada Y, Morisaki N, Kimura M. Biological characterization of human fibroblast-derived mitogenic factors for human melanocytes. Biochem J 1998;330:1235–1239.

    PubMed  CAS  Google Scholar 

  25. Imokawa G. Autocrine and paracrine regulation of melanocytes in human skin and in pigmentary disorders. Pigment Cell Res 2004;17:96–110.

    Article  PubMed  CAS  Google Scholar 

  26. Yamaguchi Y, Itami S, Watabe H, et al. Mesenchymal-epithelial interactions in the skin: increased expression of dickkopf1 by palmoplantar fibroblasts inhibits melanocyte growth and differentiation. J Cell Biol 2004;165:275–285.

    Article  PubMed  CAS  Google Scholar 

  27. Chang HY, Chi JT, Dudoit S, et al. Diversity, topographic differentiation, and positional memory in human fibroblasts. Proc Natl Acad Sci USA 2002;99:12,877–12,882.

    Article  PubMed  CAS  Google Scholar 

  28. Yamaguchi Y, Itami S, Tarutani M, Hosokawa K, Miura H, Yoshikawa K. Regulation of keratin 9 in nonpalmoplantar keratinocytes by palmoplantar fibroblasts through epithelial-mesenchymal interactions. J Invest Dermatol 1999;112:483–488.

    Article  PubMed  CAS  Google Scholar 

  29. Yamaguchi Y, Kubo T, Tarutani M, et al. Epithelial-mesenchymal interactions in wounds: treatment of palmoplantar wounds by nonpalmoplantar pure epidermal sheet grafts. Arch Dermatol 2001;137:621–628.

    PubMed  CAS  Google Scholar 

  30. Yamaguchi Y, Yoshikawa K. Cutaneous wound healing; an update. J Dermatol 2001;28:521–534.

    PubMed  CAS  Google Scholar 

  31. Kippenberger S, Bernd A, Bereiter-Hahn J, Ramirez-Bosca A, Kaufmann R. The mechanism of melanocyte dendrite formation: the impact of differentiating keratinocytes. Pigment Cell Res 1998;11:34–37.

    Article  PubMed  CAS  Google Scholar 

  32. Yoon TJ, Hearing VJ. Co-culture of mouse epidermal cells for studies of pigmentation. Pigment Cell Res 2003;16:159–163.

    Article  PubMed  Google Scholar 

  33. Lei TC, Virador V, Vieira WD, Hearing VJ. A melanocyte-keratinocyte co-culture model to assess regulators of pigmentation in vitro. Anal Biochem 2002;305:260–268.

    Article  PubMed  CAS  Google Scholar 

  34. Scott G, Cassidy L. Rac1 mediates dendrite formation in response to melanocyte stimulating hormone and ultraviolet light in a murine melanoma model. J Invest Dermatol 1998;111:243–250.

    Article  PubMed  CAS  Google Scholar 

  35. Scott G. Rac and Rho: the story behind melanocyte dendrite formation. Pigment Cell Res 2002;15:322–330.

    Article  PubMed  CAS  Google Scholar 

  36. Wu X, Hammer JA III. Making sense of melanosome dynamics in mouse melanocytes. Pigment Cell Res 2000;13:241–247.

    Article  PubMed  CAS  Google Scholar 

  37. Wu X, Wang F, Rao K, Sellers JR, Hammer JA. Rab27a is an essential component of melanosome receptor for myosin Va. Mol Biol Cell 2002;13:1735–1749.

    Article  PubMed  CAS  Google Scholar 

  38. Rogers SL, Gelfand VI. Membrane trafficking, organelle transport, and the cytoskeleton. Curr Opin Cell Biol 2000;12:57–62.

    Article  PubMed  CAS  Google Scholar 

  39. Deacon SW, Gelfand VI. Of yeast, mice, and men: Rab proteins and organelle transport. J Cell Biol 2001;152:F21–F23.

    Article  PubMed  CAS  Google Scholar 

  40. Deacon SW, Serpinskaya AS, Vaughan PS, et al. Dynactin is required for bidirectional organelle transport. J Cell Biol 2003;160:297–301.

    Article  PubMed  CAS  Google Scholar 

  41. Gross SP, Tuma MC, Deacon SW, Serpinskaya AS, Reilein AR, Gelfand VI. Interactions and regulation of molecular motors in Xenopus melanophores. J Cell Biol 2002;156:855–865.

    Article  PubMed  CAS  Google Scholar 

  42. Goldstein LS, Yang Z. Microtubule-based transport systems in neurons: the roles of kinesins and dyneins. Ann Rev Neurosci 2000;23:39–71.

    Article  PubMed  CAS  Google Scholar 

  43. Vancoillie G, Lambert J, Haeghen YV, et al. Colocalization of dynactin subunits P150Glued and P50 with melanosomes in normal human melanocytes. Pigment Cell Res 2000;13:449–457.

    Article  PubMed  CAS  Google Scholar 

  44. Aspengren S, Wallin M. A role for spectrin in dynactin-dependent melanosome transport in Xenopus laevis melanophores. Pigment Cell Res 2004;17:295–301.

    Article  PubMed  CAS  Google Scholar 

  45. Yamamoto O, Bhawan J. Three modes of melanosome transfers in Caucasian facial skin: hypothesis based on an ultrastructural study. Pigment Cell Res 1994;7:158–169.

    Article  PubMed  CAS  Google Scholar 

  46. Seiberg M, Paine C, Sharlow E, et al. Inhibition of melanosome transfer results in skin lightening. J Invest Dermatol 2000;115:162–167.

    Article  PubMed  CAS  Google Scholar 

  47. Seiberg M. Keratinocyte-melanocyte interactions during melanosome transfer. Pigment Cell Res 2001;14:236–242.

    Article  PubMed  CAS  Google Scholar 

  48. Scott G, Leopardi S, Printup S, Madden BC. Filopodia are conduits for melanosome transfer to keratinocytes. J Cell Sci 2002;115:1441–1451.

    PubMed  CAS  Google Scholar 

  49. Virador V, Muller J, Wu X, et al. Influence of α-melanocyte stimulating hormone and ultraviolet radiation on the transfer of melanosomes to keratinocytes. FASEB J 2 2002;16:105–107.

    CAS  Google Scholar 

  50. Tadokoro T, Kobayashi N, Beer JZ, et al. The biochemistry of melanogenesis and its regulation by ultraviolet radiation. In: Ortonne JP, Ballotti R, eds. Mechanisms of Suntanning. Martin Dunitz Publishing, London, UK, 2002: pp. 67–78.

    Google Scholar 

  51. Tadokoro T, Yamaguchi Y, Zmudzka BZ, Beer JZ, Hearing VJ. Physiological regulation of melanocyte proliferation and differentiation in human skin of different racial/ethnic groups in response to ultraviolet radiation. J Invest Dermatol 2005;124:1326–1332.

    Article  PubMed  CAS  Google Scholar 

  52. Hakozaki T, Minwalla L, Zhuang J, et al. The effect of niacinamide on reducing cutaneous pigmentation and suppression of melanosome transfer. Brit J Dermatol 2002;147:20–31.

    Article  CAS  Google Scholar 

  53. Sakuraba K, Hayashi N, Kawashima M, Imokawa G. Down-regulated PAR-2 is associated in part with interrupted melanosome transfer in pigmented basal cell epithelioma. Pigment Cell Res 2004;17:371–378.

    Article  PubMed  CAS  Google Scholar 

  54. Babiarz-Magee L, Chen N, Seiberg M, Lin CB. The expression and activation of protease-activated receptor-2 correlate with skin color. Pigment Cell Res 2004;17:241–251.

    Article  PubMed  CAS  Google Scholar 

  55. Ichii-Jones F, Lear JT, Heagerty AHM, et al. Susceptibility to melanoma: influence of skin type and polymorphism in the melanocyte stimulating hormone receptor gene. J Invest Dermatol 1998;111:218–221.

    Article  PubMed  CAS  Google Scholar 

  56. Funasaka Y, Chakraborty AK, Hayashi Y, et al. Modulation of melanocyte-stimulating hormone receptor expression on normal human melanocytes: evidence for a regulatory role of ultraviolet B, interleukin-1α, interleukin-1β, endothelin-1 and tumour necrosis factor-α. Brit J Dermatol 1998;139:216–224.

    Article  CAS  Google Scholar 

  57. Lu D, Haskell-Luevano C, Vage DI, Cone RD. Functional variants of the MSH receptor (MC1-R), agouti, and their effects on mammalian pigmentation. In: Spiegel AM, ed. Contemporary Endocrinology: G Proteins, Receptors and Disease. Humana, Totawa, NJ, 1999: pp. 231–259.

    Google Scholar 

  58. Rees JL. The melanocortin 1 receptor (MC1R): more than just red hair. Pigment Cell Res 2000;13:135–140.

    Article  PubMed  CAS  Google Scholar 

  59. Flanagan N, Healy E, Ray A, et al. Pleiotropic effects of the melanocortin 1 receptor (MC1R) gene on human pigmentation. Hum Mol Gen 2000;9:2531–2537.

    Article  PubMed  CAS  Google Scholar 

  60. Sturm RA. Skin colour and skin cancer—MC1R, the genetic link. Melanoma Res 2002;12:405–416.

    Article  PubMed  CAS  Google Scholar 

  61. Tadokoro T, Kobayashi N, Zmudzka BZ, et al. UV-induced DNA damage and melanin content in human skin differing in racial/ethnic origin and photosensitivity. FASEB J 2003;17:1177–1179.

    PubMed  CAS  Google Scholar 

  62. Whiteman DC, Parsons PG, Green AC. Determinants of melanocyte density in adult human skin. Arch Dermatol Res 1999;291:511–516.

    Article  PubMed  CAS  Google Scholar 

  63. Stierner U, Rosdahl IK, Augustsson A, Kågedal B. UVB irradiation induces melanocyte increase in both exposed and shielded human skin. J Invest Dermatol 1989;92:561–564.

    Article  PubMed  CAS  Google Scholar 

  64. Tachibana M. MITF: a stream flowing for pigment cells. Pigment Cell Res 2000;13:230–240.

    Article  PubMed  CAS  Google Scholar 

  65. Shibahara S, Takeda K, Yasumoto K, et al. Microphthalmia-associated transcription factor (MITF): multiplicity in structure, function and regulation. J Invest Dermatol 2001;(suppl 6):99–104.

    Google Scholar 

  66. Yasumoto K, Takeda K, Saito H, Watanabe K, Takahashi K, Shibahara S. Microphthalmia-associated transcription factor interacts with LEF-1, a mediator of Wnt signaling. EMBO J 2002;21:2703–2714.

    Article  PubMed  CAS  Google Scholar 

  67. Du J, Miller AJ, Widlund HR, Horstmann MA, Ramaswamy S, Fisher DE. MLANA/MART1 and SILV/PMEL17/GP100 are transcriptionally regulated by MITF in melanocytes and melanoma. Amer J Path 2003;163:333–343.

    PubMed  CAS  Google Scholar 

  68. Sakai C, Ollmann M, Kobayashi T, et al. Modulation of murine melanocyte function in vitro by agouti signal protein. EMBO J 1997;16:3544–3552.

    Article  PubMed  CAS  Google Scholar 

  69. Abdel-Malek ZA, Scott MC, Furumura M, et al. The melanocortin 1 receptor is the principal mediator of the effects of agouti signaling protein on mammalian melanocytes. J Cell Sci 2001;114:1019–1024.

    PubMed  CAS  Google Scholar 

  70. Hausser KW, Vahle W. Die Abhaengigkeit des Lichterythems und der Pigmentbildung von der Schwingungszahl (Wellenlaenge) der erregenden Strahlung. Strahlentherapie 1922;13:41–71.

    Google Scholar 

  71. Miescher G. Untersuchungen ueber die Bedeutung des Pigments fuer den UV. Lichtschutz der Haut. Strahlentherapie 1932;435:201–216.

    Google Scholar 

  72. Hausser KW. Ueber die spezifische Wirkung des langwelligen ultravioletten Lichts auf die menschliche Haut. Strahlentherapie 1938;62:315–322.

    Google Scholar 

  73. Hamperl H, Henschke U, Schulze R. Vergleich de Hautreaktion beim Bestrahlungserythem und bei der direkten Pigmentierung. Virchows Arch [Pathol Anat] 1939;304:19–33.

    Article  CAS  Google Scholar 

  74. Quevedo WCJ, Holstein TJ. General biology of mammalian pigmentation. In: Nordlund JJ, Boissy RE, Hearing VJ, King RA, Oetting WS, eds. The Pigmentary System: Physiology and Pathophysiology. 1st ed. Oxford Univ Press, New York, NY, 1998: pp. 43–58.

    Google Scholar 

  75. Alaluf S, Atkins D, Barrett K, Blount M, Carter N, Heath A. The impact of epidermal melanin on objective measurements of human skin colour. Pigment Cell Res 2002;15:119–126.

    Article  PubMed  CAS  Google Scholar 

  76. Thong H-Y, Jee S-H, Sun C-C, Boissy RE. The patterns of melanosome distribution in keratinocytes of human skin as one determining factor of skin colour. Brit J Dermatol 2003;149:498–505.

    Article  Google Scholar 

  77. Matsumura Y, Ananthaswamy HN. Molecular mechanisms of photocarcinogenesis. Front Biosci 2002;7:765–783.

    Article  Google Scholar 

  78. Wei Q, Lee JE, Gershenwald JE, et al. Repair of UV light-induced DNA damage and risk of cutaneous malignant melanoma. J Natl Cancer Inst 2003;95:308–315.

    Article  PubMed  CAS  Google Scholar 

  79. Preston DS, Stern RS. Nonmelanoma cancers of the skin. New Eng J Med 1992;327:1649–1662.

    Article  PubMed  CAS  Google Scholar 

  80. Halder RM, Bridgeman-Shah S. Skin cancer in African Americans. Cancer 1995;75:667–673.

    Article  PubMed  CAS  Google Scholar 

  81. English DR, Armstrong BK, Kricker A, Fleming C. Sunlight and cancer. Cancer Causes Control 1997;8:271–283.

    Article  PubMed  CAS  Google Scholar 

  82. Gilchrest BA, Eller MS, Geller AC, Yaar M. The pathogenesis of melanoma induced by ultraviolet radiation. New Eng J Med 1999;340:1341–1348.

    Article  PubMed  CAS  Google Scholar 

  83. Szabo G, Gerald AB, Pathak MA, Fitzpatrick TB. Racial differences in the fate of melanosomes in human epidermis. Nature 1969;222:1081.

    Article  PubMed  CAS  Google Scholar 

  84. Kobayashi N, Nakagawa A, Muramatsu T, et al. Supranuclear melanin caps reduce ultraviolet induced DNA photoproducts in human epidermis. J Invest Dermatol 1998;110:806–810.

    Article  PubMed  CAS  Google Scholar 

  85. Yamaguchi Y, Takahashi K, Zmudzka BZ, et al. Response of human skin to ultraviolet radiation: melanin-containing cells in the upper epidermis protect against DNA damage in the lower epidermis and increase the rate of apoptosis. Submitted.

    Google Scholar 

  86. Wikonkal NM, Brash DE. Ultraviolet radiation signature mutations in photocarcinogenesis. J Invest Dermatol 1999;4:6–10.

    Article  CAS  Google Scholar 

  87. Yoon TJ, Lei TC, Yamaguchi Y, Batzer J, Wolber R, Hearing VJ. Reconstituted 3-dimensional human skin as a novel in vitro model for studies of pigmentation. Anal Biochem 2003;318:260–269.

    Article  PubMed  CAS  Google Scholar 

  88. Anderson RR, Parrish JA. Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation. Science 1983;220:524–527.

    Article  PubMed  CAS  Google Scholar 

  89. Song S, Lambert PF. Different responses of epidermal and hair follicular cells to radiation correlate with distinct patterns of p53 and p21 induction. Amer J Path 1999;155:1121–1127.

    PubMed  CAS  Google Scholar 

  90. Takeuchi S, Zhang W, Wakamatsu K, et al. Melanin acts as a potent UVB photosensitizer to cause a novel mode of cell death in murine skin. Proc Natl Acad Sci USA 2004;101:15,076–15,081.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, N.J.

About this chapter

Cite this chapter

Yamaguchi, Y., Hearing, V.J. (2006). Melanocyte Distribution and Function in Human Skin. In: Hearing, V.J., Leong, S.P.L. (eds) From Melanocytes to Melanoma. Humana Press. https://doi.org/10.1007/978-1-59259-994-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-994-3_6

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-459-3

  • Online ISBN: 978-1-59259-994-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics