Skip to main content

Cardiovascular Deficits After Lesions of C1 Adrenergic Neurons With a Saporin-Based Immunotoxin

  • Chapter
Molecular Neurosurgery With Targeted Toxins

Abstract

Central nervous system (CNS) adrenergic neurons are located exclusively in the medulla oblongata (1). The metabolism of CNS adrenaline, its turnover rate, and its pharmacology were intensely studied in the late 1970s (reviewed in ref. 2). Since then, the study of CNS adrenergic neurons has been the purview of integrative physiologists interested in stress, autonomic regulations, and the neural control of blood pressure and glucose. The CNS contains three clusters of adrenergic neurons: C1, C2, and C3 (1). The main focus of this chapter is on the C1 neurons, especially those with spinal projections that are most important for sympathetic control and blood pressure regulation (36).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hokfelt T, Fuxe K, Goldstein M, Johansson O. Immunohistochemical evidence for the existence of adrenaline neurons in the rat brain. Brain Res 1974;66:235–251.

    Article  CAS  Google Scholar 

  2. Fuller RW. Pharmacology of brain epinephrine neurons. Annu Rev Pharmacol Toxicol 1982;22:31–55.

    Article  PubMed  CAS  Google Scholar 

  3. Ross CA, Ruggiero DA, Joh TH, Park DH, Reis DJ. Adrenaline synthesizing neurons in the rostral ventrolateral medulla: a possible role in tonic vasomotor control. Brain Res 1983;273:356–361.

    Article  PubMed  CAS  Google Scholar 

  4. Dampney RAL. Functional organization of central pathways regulating the cardiovascular system. Physiol Rev 1994;74:323–364.

    PubMed  CAS  Google Scholar 

  5. Guyenet PG. Neural structures that mediate sympathoexcitation during hypoxia. Respir Physiol 2000;121:147–162.

    Article  PubMed  CAS  Google Scholar 

  6. Sun MK. Pharmacology of reticulospinal vasomotor neurons in cardiovascular regulation. Pharmacol Rev 1996;48:465–494.

    PubMed  CAS  Google Scholar 

  7. Jonsson G, Fuxe K, Hokfelt T, Goldstein M. Resistance of central phenylethanolamine-n-methyl transferase containing neurons to 6-hydroxydopamine. Medical Biol 1976;54:421–426.

    CAS  Google Scholar 

  8. Schreihofer AM, Stornetta RL, Guyenet PG. Regulation of sympathetic tone and arterial pressure by rostral ventrolateral medulla after depletion of Cl cells in rat. J Physiol (Lond) 2000;529:221–236.

    Article  CAS  Google Scholar 

  9. Schreihofer AM, Guyenet PG. Sympathetic reflexes after depletion of bulbospinal catecholaminergic neurons with anti-DβH-saporin. Am J Physiol Regul Integr Comp Physiol 2000;279:R729–R742.

    PubMed  CAS  Google Scholar 

  10. Madden CJ, Ito S, Rinaman L, Wiley RG, Sved AF. Lesions of the C1 catecholaminergic neurons of the ventrolateral medulla in rats using anti-DβHsaporin. Am J Physiol Regul Integr Comp Physiol 1999;277:R1063–R1075.

    CAS  Google Scholar 

  11. Phillips JK, Goodchild AK, Dubey R, et al. Differential expression of catecholamine biosynthetic enzymes in the rat ventrolateral medulla. J Comp Neurol 2001;432:20–34.

    Article  PubMed  CAS  Google Scholar 

  12. Peter D, Liu YJ, Sternini C, De Giorgio R, Brecha N, Edwards RH. Differential expression of two vesicular monoamine transporters. J Neurosci 1995;15:6179–6188.

    PubMed  CAS  Google Scholar 

  13. Ross CA, Armstrong DM, Ruggiero DA, Pickel VM, Joh TH, Reis DJ. Adrenaline neurons in the rostral ventrolateral medulla innervate thoracic spinal cord: a combined immunocytochemical and retrograde transport demonstration. Neurosci Lett 1981;25:257–262.

    Article  PubMed  CAS  Google Scholar 

  14. Milner TA, Morrison SF, Abate C, Reis DJ. Phenylethanolamine Nmethyltransferase-containing terminals synapse directly on sympathetic preganglionic neurons in the rat. Brain Res 1988;448:205–222.

    Article  PubMed  CAS  Google Scholar 

  15. Sved AF. PNMT-containing catecholaminergic neurons are not necessarily adrenergic. Brain Res 1989;481:113–118.

    Article  PubMed  CAS  Google Scholar 

  16. Tucker DC, Saper CB, Ruggiero DA, Reis DJ. Organization of central adrenergic pathways: I. Relationships of ventrolateral medullary projections to the hypothalamus and spinal cord. J Comp Neurol 1987;259:591–603.

    Article  PubMed  CAS  Google Scholar 

  17. Chan RKW, Sawchenko PE. Organization and transmitter specificity of medullary neurons activated by sustained hypertension: implications for understanding baroreceptor reflex circuitry. J Neurosci 1998;18:371–387.

    PubMed  CAS  Google Scholar 

  18. Cunningham ET, Jr., Bohn MC, Sawchenko PE. Organization of adrenergic inputs to the paraventricular and supraoptic nuclei of the hypothalamus in the rat. J Comp Neurol 1990;292:651–667.

    Article  PubMed  Google Scholar 

  19. Jansen ASP, Wessendorf MW, Loewy AD. Transneuronal labeling of CNS neuropeptide and monoamine neurons after pseudorabies virus injections into the stellate ganglion. Brain Res 1995;683:1–24.

    Article  PubMed  CAS  Google Scholar 

  20. Dun SL, Ng YK, Brailoiu GC, Ling EA, Dun NJ. Cocaine-and amphetamine-regulated transcript peptide-immunoreactivity in adrenergic C1 neurons projecting to the intermediolateral cell column of the rat. J Chem Neuroanat 2002;23:123–132.

    Article  PubMed  CAS  Google Scholar 

  21. Stornetta RL, Schreihofer AM, Pelaez NM, Sevigny CP, Guyenet PG. Preproenkephalin mRNA is expressed by C1 and non-C1 barosensitive bulbospinal neurons in the rostral ventrolateral medulla of the rat. J Comp Neurol 2001;435:111–126.

    Article  PubMed  CAS  Google Scholar 

  22. Stornetta RL, Akey PJ, Guyenet PG. Location and electrophysiological characterization of rostral medullary adrenergic neurons that contain neuropeptide Y mRNA in rat. J Comp Neurol 1999;415:482–500.

    Article  PubMed  CAS  Google Scholar 

  23. Lorang D, Amara SG, Simerly RB. Cell-type-specific expression of catecholamine transporters in the rat brain. J Neurosci 1994;14:4903–4914.

    PubMed  CAS  Google Scholar 

  24. Glinka Y, Gassen M, Youdim MB. Mechanism of 6-hydroxydopamine neurotoxicity. J Neural Trans Suppl 1997;50:55–66.

    CAS  Google Scholar 

  25. Reis DJ, Ross CA, Ruggiero DA, Granata AR, Joh TH. Role of adrenaline neurons of ventrolateral medulla (the C1 group) in the tonic and phasic control of arterial pressure. Clin Exp Hypertension Part A Theory Pract 1984;6:221–241.

    CAS  Google Scholar 

  26. Blessing WW. The Lower Brainstem and Bodily Homeostasis. New York: Oxford University Press; 1997.

    Google Scholar 

  27. Brown DL, Guyenet PG. Electrophysiological study of cardiovascular neurons in the rostral ventrolateral medulla in rats. Circ Res 1985;56:359–369.

    PubMed  CAS  Google Scholar 

  28. Barman SM, Gebber GL. Axonal projection patterns of ventrolateral medullospinal sympathoexcitatory neurons. J Neurophys 1985;53:1551–1566.

    CAS  Google Scholar 

  29. Schreihofer AM, Guyenet PG. Identification of C1 presympathetic neurons in rat rostral ventrolateral medulla by juxtacellular labeling in vivo. J Comp Neurol 1997;387:524–536.

    Article  PubMed  CAS  Google Scholar 

  30. Lipski J, Kanjhan R, Kruszewska B, Rong WF. Properties of presympathetic neurones in the rostral ventrolateral medulla in the rat: an intracellular study “in vivo.” J Physiol (Lond) 1996;490:729–744.

    CAS  Google Scholar 

  31. Lipski J, Kanjhan R, Kruszewska B, Smith M. Barosensitive neurons in the rostral ventrolateral medulla of the rat in vivo: morphological properties and relationship to C1 adrenergic neurons. Neuroscience 1995;69:601–618.

    Article  PubMed  CAS  Google Scholar 

  32. Huangfu D, Hwang LJ, Riley TA, Guyenet PG. Role of serotonin and catecholamines in sympathetic responses evoked by stimulation of rostral medulla. Am J Physiol Regul Integr Comp Physiol 1994;266:R338–R352.

    CAS  Google Scholar 

  33. Morrison SF, Callaway J, Milner TA, Reis DJ. Glutamate in the spinal sympathetic intermediolateral nucleus: localization by light and electron microscopy. Brain Res 1989;503:5–15.

    Article  PubMed  CAS  Google Scholar 

  34. Morrison SF, Callaway J, Milner TA, Reis DJ. Rostral ventrolateral medulla—a source of the glutamatergic innervation of the sympathetic intermediolateral nucleus. Brain Res 1991;562:126–135.

    Article  PubMed  CAS  Google Scholar 

  35. Aston-Jones G, Rajkowski J, Kubiak P, Valentino RJ, Shipley MT. Role of the locus coeruleus in emotional activation. Prog Brain Res 1996;107:379–402.

    Article  PubMed  CAS  Google Scholar 

  36. Larsen PJ, Mikkelsen JD. Functional identification of central afferent projections conveying information of acute “stress” to the hypothalamic paraventricular nucleus. J Neurosci 1995;15:2609–2627.

    PubMed  CAS  Google Scholar 

  37. Ericsson A, Kovacs KJ, Sawchenko PE. A functional anatomical analysis of central pathways subserving the effects of interleukin-1 on stress-related neuroendocrine neurons. J Neurosci 1994;14:897–913.

    PubMed  CAS  Google Scholar 

  38. Chan RKW, Sawchenko PE. Spatially and temporally differentiated patterns of c-fos expression in the brainstem catecholaminergic cell groups induced by cardiovascular challenges in the rat. J Comp Neurol 1994;34:433–460.

    Article  Google Scholar 

  39. Inokuchi H, Yoshimura M, Polosa C, Nishi S. Adrenergic receptors (α1 and α2) modulate different potassium conductances in sympathetic preganglionic neurons. Can J Physiol Pharmacol 1992;70(suppl):S92–S97.

    PubMed  CAS  Google Scholar 

  40. Jansen ASP, Nguyen XV, Karpitskiy V, Mettenleiter TC, Loewy AD. Central command neurons of the sympathetic nervous system: basis of the fight-or flight response. Science 1995;270:644–646.

    Article  PubMed  CAS  Google Scholar 

  41. Wiley RG, Kline RH. Neuronal lesioning with axonally transported toxins. J Neurosci Methods 2000;103:73–82.

    Article  PubMed  CAS  Google Scholar 

  42. Wrenn CC, Picklo MJ, Lappi DA, Robertson D, Wiley RG. Central noradrenergic lesioning using anti-DBH-saporin: anatomical findings. Brain Res 1996;74:175–184.

    Article  Google Scholar 

  43. Ritter S, Bugarith K, Dinh TT. Immunotoxic destruction of distinct catecholamine subgroups produces selective impairment of glucoregulatory responses and neuronal activation. J Comp Neurol 2001;432:197–216.

    Article  PubMed  CAS  Google Scholar 

  44. Blessing WW, Lappi DA, Wiley RG. Destruction of locus coeruleus neuronal perikarya after injection of anti-dopamine-β-hydroxylase immunotoxin into the olfactory bulb of the rat. Neurosci Lett 1998;243:85–88.

    Article  PubMed  CAS  Google Scholar 

  45. Wang H, Germanson T.P., Guyenet PG. Depressor and tachypneic responses to chemical stimulation of the ventral respiratory group are reduced by ablation of neurokinin-1 receptor-expressing neurons. J Neurosci 2002;22:3755–3764.

    PubMed  CAS  Google Scholar 

  46. Huangfu D, Goodwin WB, Guyenet PG. Sympatholytic effect of tricyclic antidepressants: site and mechanism of action in anesthetized rats. Am J Physiol Regul Integr Comp Physiol 1995;268:R1429–R1441.

    CAS  Google Scholar 

  47. Rentero N, Bruandet N, Quintin L. Rostral ventrolateral medulla catechol involvement upon sino-aortic deafferentation—an in vivo voltammetric study. Life Sci 2000;68:177–189.

    Article  PubMed  CAS  Google Scholar 

  48. Gray PA, Janczewski WA, Mellen N, McCrimmon DR, Feldman JL. Normal breathing requires pre-Bötzinger complex neurokinin-1 receptor-expressing neurons. Nat Neurosci 2001;4:927–930.

    Article  PubMed  CAS  Google Scholar 

  49. Sved AF, Cano G, Card JP. Neuroanatomical specificity of the circuits controlling sympathetic outflow to different targets. Clin Exp Pharmacol Physiol 2001;28:115–119.

    Article  PubMed  CAS  Google Scholar 

  50. Byrum CE, Guyenet PG. Afferent and efferent connections of the A5 noradrenergic cell group in the rat. J Comp Neurol 1987;261:529–542.

    Article  PubMed  CAS  Google Scholar 

  51. Dampney RAL, Coleman MJ, Fontes MAP, et al. Central mechanisms underlying short-and long-term regulation of the cardiovascular system. Clin Exp Pharmacol Physiol 2002;29:261–268.

    Article  PubMed  CAS  Google Scholar 

  52. Horiuchi J, Potts PD, Polson JW, Dampney RAL. Distribution of neurons projecting to the rostral ventrolateral medullary pressor region that are activated by sustained hypotension. Neuroscience 1999;89:1319–1329.

    Article  PubMed  CAS  Google Scholar 

  53. Dampney RAL, Li Y-W, Hirooka Y, Potts P, Polson JW. Use of c-fos functional mapping to identify the central baroreceptor reflex pathway: advantages and limitations. Clin Exp Hypertension 1995;17:197–208.

    CAS  Google Scholar 

  54. Takamori S, Rhee JS, Rosenmund C, Jahn R. Identification of differentiationassociated brain-specific phosphate transporter as a second vesicular glutamate transporter (VGLUT2). J Neurosci 2001;21:NIL7–NIL12.

    Google Scholar 

  55. Stornetta RL, Sevigny CP, Guyenet PG. Vesicular glutamate transporter DNPI/ VGLUT2 mRNA is present in C1 and several other groups of brainstem catecholaminergic neurons. J Comp Neurol 2002;444:191–206.

    Article  PubMed  CAS  Google Scholar 

  56. Guyenet PG. Role of the ventral medulla oblongata in blood pressure regulation. In: Loewy AD, Spyer KM, eds. Central Regulation of Autonomic Functions. New York: Oxford University Press; 1990:145–167.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Guyenet, P.G., Stornetta, R.L., Schreihofer, A.M. (2005). Cardiovascular Deficits After Lesions of C1 Adrenergic Neurons With a Saporin-Based Immunotoxin. In: Wiley, R.G., Lappi, D.A. (eds) Molecular Neurosurgery With Targeted Toxins. Humana Press. https://doi.org/10.1007/978-1-59259-896-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-896-0_9

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-199-8

  • Online ISBN: 978-1-59259-896-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics