Skip to main content

Timing of Cortical Contusions in Human Brain Injury

Morphological Parameters for a Forensic Wound-Age Estimation

  • Chapter
Forensic Pathology Reviews

Part of the book series: Forensic Pathology Reviews ((FPR,volume 1))

Summary

Information on the course of destructive and reactive morphological changes following traumatic brain injury (TBI) is the basis used in forensic wound-age estimation. Several studies have already examined the temporal course of the wound-healing process in the central nervous system (CNS) by use of conventional histological and by enzyme histochemical or immunohistological techniques. The earliest appearance of a parameter is of particular interest as it determines the minimum age of a lesion showing a positive reaction for it. If morphological changes occur regularly during a particular postinfliction interval, the absence of this parameter in an unknown lesion indicates a wound age of less or more than the corresponding time interval established in published series. Cortical contusions are characterized by early morphological changes such as hemorrhages or microscopically visible signs of neuronal degeneration, followed by the phase of local cellular reactions. Immunohistochemical studies on the time-dependent course of the inflammatory response revealed evidence of neutrophil accumulations (CD15) at the lesion site as early as 10 minutes after the injury, whereas different leukocyte subtypes (LCA, UCHL-1, CD3) could be detected first about 1–4 days after the injury. Clearing processes are induced by phagocytic mononuclear cells (macrophages, microglia cells) as early as a few hours but peak during the first week after the trauma. The phase of reactive gliosis is characterized by hypertrophy and proliferation of astroglial cells accompanied by neovascularization and deposition of a dense fibrous glial scar at the lesion site. In addition to the findings of several histological studies using conventional stainings, the demonstration of time-related changes in the astroglial immunoreactivity can provide further information on the age of a cortical contusion. It could be demonstrated that a significantly increased number of glial fibrillary acidic protein-positive astrocytes adjacent to the damaged area indicates a wound age of at least 1 day. Injury-induced glial staining reactions could be observed, at the earliest, after a postinfliction interval of 22 hours for vimentin, 3 hours for αl-antichymotrypsin, and 7 days for tenascin. Regarding the vascular response to brain injury, a significantly increased immunoreactivity could be detected in human cortical contusions after a postinfliction interval of at least 3 hours for factor VIII, after 1.6 days for tenascin, and after 6.8 days for thrombomodulin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hausmann R (2002) Die Altersbestimmung von Hirnkontusionen bei gedecktem Schädel-Hirn-Trauma des Menschen. Arbeitsmethoden der medizinischen und naturwissenschaftlichen Kriminalistik. Schmidt-Römhild, Lübeck.

    Google Scholar 

  2. Spatz H (1951) Von der Morphologie der Gehirnkontusionen (besonders der Rindenprellungsherde). Munch Med Wschr 93, 1.

    Google Scholar 

  3. Cervós-Navarro J, Lafuente JV (1991) Traumatic brain injuries: structural changes. J Neurol Sci 103, 3 - 14.

    Article  Google Scholar 

  4. Oehmichen M, Raff G (1980) Timing of cortical contusion. Correlation between histomorphological alterations and post-traumatic interval. Z Rechtsmed 84, 79-94.

    Google Scholar 

  5. Peters G (1943) Über gedeckte Gehirnverletzungen (Rindenkontusionen) im Tierversuch. Zentralbi Neurochir 8, 172 - 208.

    Google Scholar 

  6. Unterharnscheidt F (1963) Die gedeckten Schäden des Gehirns. Experimentelle Untersuchungen mit einmaliger, wiederholter und gehäufter Gewalteinwirkung auf den Schädel. Monographien aus dem Gesamtgebiet der Neurologie und Psychiatrie, Heft 103. Springer, Berlin, Göttingen, Heidelberg.

    Google Scholar 

  7. Postmantur RM, Hayes RL, Dixon CE, Taft WC (1994) Neurofilament 68 and neurofilament 200 decrease after traumatic brain injury ( TBI ). J Neurotrauma 11, 533-545.

    Google Scholar 

  8. Huh JW, Laurer HL, Raghupathi R, Helfaer MA, Saatman KE (2002) Rapid loss and partial recovery of neurofilament immunostaining following focal brain injury in mice. Exp Neurol 175, 198 - 208.

    Article  CAS  PubMed  Google Scholar 

  9. Saatman KE, Bozyczko-Coyne D, Marcy V, Siman R, McIntosh TK (1996) Prolonged calpain-mediated spectrin breakdown occurs regionally following experimental brain injury in the rat. J Neuropathol Exp Neurol 55, 850 - 860.

    Article  CAS  PubMed  Google Scholar 

  10. Hicks RR, Smith DH, McIntosh TK (1995) Temporal response and effects of excitatory amino acid antagonism on microtubule-associated protein 2 immunoreactivity following experimental brain injury in rats. Brain Res 678, 151 - 160.

    Article  CAS  PubMed  Google Scholar 

  11. Taft WC, Yang K, Dixon CE, Clifton GL, Hayes RL (1993) Hypothermia attenuates the loss of hippocampal microtubule-associated protein 2 (MAP2) following traumatic brain injury. J Cereb Blood Flow Metab 13, 796 - 802.

    Article  CAS  PubMed  Google Scholar 

  12. Taft WC, Yang K, Dixon CE, Hayes RL (1992) Microtubule-associated protein 2 levels decrease in hippocampus following traumatic brain injury. J Neurotrauma 9, 281 - 290.

    Article  CAS  PubMed  Google Scholar 

  13. Postmantur RM, Kampfl A, Liu SJ, Heck K, Taft WC, Clifton GL, et al. (1996) Cytoskeletal derangements of cortical neuronal processes three hours after traumatic brain injury in rats: an immunofluorescence study. J Neuropath Experimental Neurol 55, 68 - 80.

    Article  Google Scholar 

  14. Povlishock JT (1997) The pathogenesis and implications of axonal injury in traumatically injured animal and human brain. In Oehmichen M, König HG, eds., Neurotraumatology: Biomechanic aspects, cytologic and molecular mechanisms. Schmidt-Römhild, Lübeck, pp. 175 - 185.

    Google Scholar 

  15. Bresnahan, JC (1978) An electron microscopic analysis of axonal alterations following blunt contusion of the spinal cord of the rhesus monkey ( Macaca mulatta ). J Neurol Sci 37, 59-812.

    Google Scholar 

  16. Oehmichen M, Meißner C, Schmidt V, Pedal I, König HG (1997) Axonal injury (AI) in a forensic-neuropathological material. In Oehmichen M, König HG, eds., Neurotraumatology: Biomechanic aspects, cytologic and molecular mechanisms. Schmidt-Römhild, Lübeck, pp. 203 - 224.

    Google Scholar 

  17. Oehmichen M, Meißner C, Schmidt V, Pedal I, König HG, Saternus KS (1998) Axonal injury - A diagnostic tool in forensic neuropathology? A Review. Forensic Sci Int 95, 67 - 83.

    Article  CAS  PubMed  Google Scholar 

  18. Gentleman SM, Nash AJ, Sweeting CJ, Graham DI, Roberts GW (1993) (3-Amyloid precursor protein (13-APP) as a marker of axonal injury in traumatic brain injury. Neuroscience Letters 160, 139 - 144.

    Google Scholar 

  19. Sheriff FE, Bridges LR, Sivaloganatham S (1994) Early detection of axonal injury after human head trauma using immunocytochemistry for ß-amyloid protein. Acta Neuropathol 87, 55 - 62.

    Article  Google Scholar 

  20. Koo EH, Sisoda SS, Archer DR (1990) Precursor of amyloid protein in Alzheimer disease undergoes fast anterograde axonal transport. Proc Natl Acad Sci U S A 87, 1561 - 1565.

    Article  CAS  PubMed  Google Scholar 

  21. Blumbergs PC, Scott G, Manavis J, Wainwright H, Simpson DA, McLean AJ (1995) Topography of axonal injury as defined by amyloid precursor protein and the sector scoring method in mild and severe closed head injury. J Neurotrauma 12, 656 - 571.

    Article  Google Scholar 

  22. McKenzie KJ, McLellan DR, Gentleman SM, Maxwell WL, Gennarelli TA, Graham DI (1996) Is ß-APP a marker of axonal damage in short-surviving head injury? Acta Neuropathol 92, 608 - 613.

    Article  CAS  PubMed  Google Scholar 

  23. Russo T, Faraonio R, Minopoli G, De Candia P, Renzis SD, Zambrano N (1998) FE65 and the protein network centered around the cytosolic domain of the Alzheimer’s (3-amyloid precursor protein. FEBS Lett 434, 1 - 7.

    Article  CAS  PubMed  Google Scholar 

  24. Iino M, Nakatome M, Ogura Y, Fujimura H, Kuroki H, Inoue H, et al. (2003) Real-time PCR quantitation of FE65 a (3-amyloid precursor protein-binding protein after traumatic brain injury in rats. Int J Legal Med 117, 153 - 159.

    PubMed  Google Scholar 

  25. Andersson PB, Perry VH, Gordon S (1992) The acute inflammatory response to lipopolysaccharide in CNS parenchyma differs from that in other body tissues. Neuroscience 48, 169 - 186.

    Article  CAS  PubMed  Google Scholar 

  26. Holmin S, Mathiesen T, Shetye J, Biberfeld P (1995) Intracerebral inflammatory response to experimental brain contusion. Acta Neurochir Wien 132, 110 - 119.

    Article  CAS  PubMed  Google Scholar 

  27. Persson L (1976) Cellular reaction to small cerebral stab wounds in the rat frontal lobe. An ultrastructural study. Virch Arch B Cell Pathol Mol Pathol 22, 21 - 37.

    CAS  Google Scholar 

  28. Biagas KV, Uhl MW, Schiding JK, Nemoto EM, Kochanek PM (1992) Assessment of posttraumatic polymorphonuclear leucocyte accumulation in rat brain using tissue myeloperoxidase assay and vinblastin treatment. J Neurotrauma 4, 363 - 371.

    Article  Google Scholar 

  29. Clark RS, Schiding JK, Kaczorowski SL, Marion DW, Kochanek PM (1994) Neutrophil accumulation after traumatic brain injury in rats: comparison of weight drop and controlled cortical impact model. J Neurotrauma 11, 499 - 506.

    Article  CAS  PubMed  Google Scholar 

  30. Horner HC, Setler PE, Fritz LC, Hines D (1992) Characterization of leucocyte infiltration in traumatic brain injury in the rat. Soc Neurosci Abstr 18, 173.

    Google Scholar 

  31. Schoettler RJ, Kochanek PM, Magargee MT, Uhl MW, Nemoto EM (1990) Early polymorphonuclear leucocyte accumulation correlates with development of post-traumatic cerebral edema in rats. J Neurotrauma 7, 207 - 217.

    Article  Google Scholar 

  32. Perry VH, Andersson PB, Gordon S (1993) Macrophages and inflammation in the central nervous system. Trends Neurosci 16, 268 - 273.

    Article  CAS  PubMed  Google Scholar 

  33. Taupin V, Toulmond S, Serrano A, Benavides J, Zavala F (1993) Increase in IL-6, IL-1 and TNF levels in rat brain following traumatic lesion. Influence of pre-and post-traumatic treatment with Ro5 4864, a peripheral-type (p site) benzodiazepine ligand. J Neuroimmunol 42, 177 - 186.

    Article  CAS  PubMed  Google Scholar 

  34. Oehmichen M, Eisenmenger W, Raff G, Berghaus G (1986) Brain macrophages in human cortical contusions as an indicator of survival period. Forensic Sci Int30, 281 - 301.

    Google Scholar 

  35. Peters (1955) Die gedeckten Gehirn-und Rückenmarkverletzungen. In Lubarsch O, Henke F, Rössle R, eds., Handbuch der speziellen pathologischen Anatomie und Histologie, vol. XIIIJ3. In Scholz W, ed., Nervensystem. Springer, Berlin Göttingen Heidelberg, pp. 84 - 94.

    Google Scholar 

  36. Hausmann R, Kaiser A, Lang C, Bohnert M, Betz P (1999) A quantitative immunohistochemical study on the time-dependent course of acute inflammatory cellular response to human brain injury. Int J Legal Med 112, 227 - 232.

    Article  CAS  PubMed  Google Scholar 

  37. Wekerle H, Linington C, Lassman H (1986) Cellular immune reactivity within the CNS. Trends Neurosci 9, 271 - 277.

    Article  Google Scholar 

  38. Nissl F (1899) Über einige Beziehungen zwischen Nervenzellerkrankungen und gliösen Erscheinungen bei verschiedenen Psychosen. Arch Psych 32, 1 - 21.

    Article  Google Scholar 

  39. Rio-Hortega P (1932) Microglia. In Penfield W, ed., Cytology and cellular pathology of the nervous system. Paul P Hocker, New York, pp. 481 - 584.

    Google Scholar 

  40. Oehmichen M (1974) Cytokinetic studies on the origin of the cells of the cerebrospinal fluid. J Neurol Sci 22, 165 - 176.

    Article  CAS  PubMed  Google Scholar 

  41. Oehmichen M (1982) Functional properties of microglia. In Smith WT, Cavanagh JB, eds., Recent advances in neuropathology, vol. 2. Churchill Livingstone, Edinburgh, London, New York, pp. 83 - 107.

    Google Scholar 

  42. Meyermann R, Engel S, Wehner HD, Schlüsener HI (1997) Microglial reactions in severe closed head injury. In Oehmichen M, König HG, eds., Neurotraumatology: biomechanic aspects, cytologic and molecular mechanisms. Schmidt-Römhild, Lübeck, pp. 261 - 278.

    Google Scholar 

  43. Suzumura A, Marunouchi T, Yamamoto H (1991) Morphological transformation of microglia in vitro. Brain Res 545, 301 - 306.

    Article  CAS  PubMed  Google Scholar 

  44. Graeber MB, von Eitzen U, Grasbon-Frodl E, Egensperger R, Kösel S (1997) Microglia: a sensor of pathology in the human CNS. In Oehmichen M, König HG, eds., Neurotraumatology: biomechanic aspects, cytologic and molecular mechanisms. Schmidt-Römhild, Lübeck, pp. 239 - 259.

    Google Scholar 

  45. Akiyama H, McGeer PL (1990) Brain microglia constitutively express 13-2 integrins. J Neuroimmunol 30, 81 - 93.

    Article  CAS  PubMed  Google Scholar 

  46. Perry VH, Brown MC, Gordon S (1987) The macrophage response to central and peripheral nerve injury. J Exp Med 165, 1218 - 1223.

    Article  CAS  PubMed  Google Scholar 

  47. Hayes GM, Woodroofe MN, Cuzner ML (1987) Microglia are the major cell type expression MHC II in human white matter. J Neurol Sci 80, 25 - 37.

    Article  CAS  PubMed  Google Scholar 

  48. Steininger B, van de Meide PH (1988) Rat ependyma and microglia cells express class II MHC antigens after intravenous infusion of recombinant gamma interferon. J Neuroimmunol 19, 111 - 118.

    Article  Google Scholar 

  49. Carmichael AE (1929) Microglia: an experimental study in rabbits after intracerebral injection of blood. J Neurol Psychopathol 9, 209 - 216.

    Article  CAS  PubMed  Google Scholar 

  50. Hammes EM (1944) Reaction of the meninges to blood. Arch Neurol Psychiat 52, 505 - 514.

    Article  Google Scholar 

  51. Macklin CC, Macklin MT (1920) A study of brain repair in the rat by use of trypan blue, with special reference to the vital staining of the macrophages. Arch Neurol Psychiat (Chic) 3, 353 - 393.

    Article  Google Scholar 

  52. Masuda Y (1969) Histological and histochemical study of cortical lesion of brain with special reference to the alteration in compressed area. Jap J Leg Med 23, 139 - 169.

    CAS  PubMed  Google Scholar 

  53. Nevin NC (1967) Neuropathological changes in white matter following head injury. J Neuropath Exp Neurol 26, 77 - 84.

    Article  CAS  PubMed  Google Scholar 

  54. Baggenstoss AH, Kernohan JW, Drapiewski JF (1943) The healing process in wounds of the brain. Am J Clin Pathol 13, 333 - 348.

    Google Scholar 

  55. Eisenmenger W (1977) Zur histologischen und histochemischen Altersbestimmung gedeckter Hirnrindenverletzungen. Med. Habil., München.

    Google Scholar 

  56. Hallermann W, Illchmann-Christ D (1943) Über eigenartige Strangulationsbefunde. Z Ges Gerichtl Med 38, 97 - 128.

    Google Scholar 

  57. Krauland W (1973) Über die Zeitbestimmung von Schädelhirnverletzungen. Beitr Gerichtl Med 30, 226 - 251.

    CAS  PubMed  Google Scholar 

  58. Lindenberg R, Freytag E (1957) Morphology of cortical contusions. Arch Pathol 63, 23 - 42.

    Google Scholar 

  59. Rautenbach M (1968) Der diagnostische Wert liquorzytologischer Untersuchungen bei perinatalen Hirnblutungen. Wiss Z Humboldt-Univers Math Nat R 17, 552 - 553.

    Google Scholar 

  60. Strassmann G (1949) Formation of hemosiderin after traumatic and spontaneous cerebral hemorrhages. Arch Pathol (Chic) 47, 205 - 210.

    CAS  Google Scholar 

  61. Giulian D, Chen J, Ingeman JE, George JK, Noponen M (1989) The role of mononuclear phagocytes in wound healing after traumatic injury to adult mammalian brain. J Neurosci 9, 4416 - 4429.

    CAS  PubMed  Google Scholar 

  62. Hogan B (1981) Laminin and epithelial cell attachement. Nature 290, 737 - 738.

    Article  CAS  PubMed  Google Scholar 

  63. Moffett CW, Paden CM (1994) Microglia in the rat neurohypophysis increase expression of class I major histocompatibility antigens following central nervous system injury. J Neuroimmunol 50, 139 - 151.

    Article  CAS  PubMed  Google Scholar 

  64. Aihara N, Hall JJ, Pitts LH, Fukuda K, Noble U (1995) Altered immunoexpression of microglia and macrophages after mild head injury. J Neurotrauma 12, 53 - 63.

    Article  CAS  PubMed  Google Scholar 

  65. Hausmann R, Betz P (2002) The course of MIB-1 expression by cerebral macrophages following human brain injury. Legal Med 4, 79 - 83.

    Article  CAS  PubMed  Google Scholar 

  66. Eisenmenger W, Nerlich A, Glück G (1988) Die Bedeutung des Kollagens bei der Wundaltersbestimmung. Z Rechtsmed 100, 79 - 100.

    Article  CAS  PubMed  Google Scholar 

  67. Colmant HJ (1962) Enzymhistochemi sche Befunde an der elektiven Parenchymnekrose des Rattengehirns. In Jakob H, ed., IV. Int Kongr Neuropathol, München, Vol. 1. Thieme, Stuttgart, pp. 89 - 95.

    Google Scholar 

  68. Sellier K, Unterharnscheidt F (1963) Mechanik and Pathomorphologie der Hirnschäden nach stumpfer Gewalteinwirkung auf den Schädel. Hefte Unfallheilkd, Heft 76. Springer, Berlin, Göttingen, Heidelberg.

    Google Scholar 

  69. Eddlestone M, Mucke L (1993) Molecular profile of reactive astrocytes; implications for their role in neurologic diseases. Neuroscience 54, 15 - 36.

    Article  Google Scholar 

  70. Eng LF, Ghirnikar RS (1994) GFAP and astrogliosis. Brain Pathol 4, 229 - 237.

    Article  CAS  PubMed  Google Scholar 

  71. Eng LF (1988) Glial fibrillary acidic protein (GFAP): the major protein of glial intermediate filaments in differentiated astrocytes. J Neuroimmunol 8, 203 - 214.

    Article  Google Scholar 

  72. Li R, Fujitani N, Jing-Tao J, Kimura H (1998) Immunohistochemical indicators of early brain injury: an experimental study using the fluid-percussion model in cats. Am J Forensic Med Pathol 19, 129 - 136.

    Article  CAS  PubMed  Google Scholar 

  73. Herrera DG, Cuello AC (1992) Glial fibrillary acidic protein immunoreactivity following cortical devascularizing lesion. Neuroscience 49, 781 - 791.

    Article  CAS  PubMed  Google Scholar 

  74. Hozumi I, Chiu FC, Norton WT (1990) Biochemical and immunocytochemical changes in glial fibrillary acid protein after stab wounds. Brain Res 524, 61 71.

    Google Scholar 

  75. Bignami A, Dahl D (1976) The astroglial response to stabbing. Immunofluorescense studies with antibodies to astrocyte-specific protein ( GFA) in mammalian and submammalian vertebrates. Neuropathol Appl Neurobiol 2, 99-110.

    Google Scholar 

  76. Oblinger MM, Singh LD (1993) Reactive astrocytes in neonate brain upregulate intermediate filament gene expression in response to axonal injury. Int J Dev Neurosci 11, 149 - 156.

    Article  CAS  PubMed  Google Scholar 

  77. Takamiya Y, Kohsaka S, Toya S, Otani M, Tsukada Y (1988) Immunohistochemical studies on the proliferation of reactive astrocytes and the expression of cytoskeletal proteins following brain injury in rats. Dev Brain Res 466, 201 - 210.

    Article  CAS  Google Scholar 

  78. Cheng HW, Jiang T, Brown SA, Pasinetti GM, Finch CE, McNeill TH (1994) Response of striatal astrocytes to neuronal deafferentation: an immunocytochemical and ultrastructural study. Neuroscience 62, 425 - 439.

    Article  CAS  PubMed  Google Scholar 

  79. Kinoshita A, Yamada K, Hayakawa T (1991) Wound healing following stab injury on rat cerebral cortex. Neurol Res 13, 184 - 188.

    CAS  PubMed  Google Scholar 

  80. Calvo JL, Carbonell AL, Boya J (1991) Co-expression of glial fibrillary acidic protein and vimentin in reactive astrocytes following brain injury in rats. Brain Res 566, 333 - 336.

    Article  CAS  PubMed  Google Scholar 

  81. Hausmann R, Rieß R, Fieguth A, Betz P (2000) Immunohistochemical investigations on the course of astroglial GFAP expression following human brain injury. Int J Legal Med 113, 70 - 75.

    Article  CAS  PubMed  Google Scholar 

  82. Hausmann R, Betz P (2001) Course of glial immunoreactivity for vimentin, tenascin and al-antichymotrypsin after traumatic injury to human brain. Int J Legal Med 114, 338 - 342.

    Article  CAS  PubMed  Google Scholar 

  83. Schiffer D, Giordana MT, Cavalla P, Vigliani MC, Attanasio A (1993) Immunohistochemistry of glial reaction after injury in the rat: double staining and markers of cell proliferation. Int J Devl Neurosci 11, 269 - 280.

    Article  CAS  Google Scholar 

  84. Yamamoto C, Kawana E (1990) Immunohistochemical detection of laminin and vimentin in the thalamic VB nucleus after ablation of somatosensory cortex in the rat. Okajimas Folia Anat Jpn 67, 21 - 29.

    CAS  PubMed  Google Scholar 

  85. Aufderheide E, Eklom P (1988) Tenascin during gut development: appearance in the mesenchyme, shift in molecular forms and dependence on epithelialmesenchymal interactions. J Cell Biol 107, 2341 - 2349.

    Article  CAS  PubMed  Google Scholar 

  86. Chiquet-Ehrismann R, Mackie EJ, Pearson CA, Sakakura T (1986) Tenascin: an extracellular matrix protein involved in tissue interactions during fetal development and oncogenesis. Cell 98, 131 - 139.

    Article  Google Scholar 

  87. Inaguma Y, Kusakabe M, Mackie EJ, Pearson CA, Chiquet-Ehrismann R, Sakakura T (1988) Epithelial induction of stromal tenascin in the mouse mammary gland: from embryogenesis to carcinogenesis. Dev Biol 128, 245 - 255.

    Article  CAS  PubMed  Google Scholar 

  88. Mackie EJ, Thesleff I, Chiquet-Ehrismann R (1987) Tenascin is associated with chondrogenic and osteogenic differentiation in vivo and promotes chondrogenesis in vitro. J Cell Biol 105, 2569 - 2579.

    Article  CAS  PubMed  Google Scholar 

  89. Maier A, Mayne R (1987) Distribution of connective tissue proteins in chick muscle spindles as revealed by monoclonal antibodies: a unique distribution of brachionectin/tenascin. Am J Anat 180, 226 - 236.

    Article  CAS  PubMed  Google Scholar 

  90. Brodkey JA, Laywell ED, O’Brien TF, Faissner A, Stefansson K, Dorries HU, et al. (1995) Focal brain injury and upregulation of a developmentally regulated extracellular matrix protein. J Neurosurg 82, 106 - 112.

    Article  CAS  PubMed  Google Scholar 

  91. Laywell ED, Dörries U, Bartsch U, Faissner A, Schachner M, Steindler DA (1992) Enhanced expression of the developmentally regulated extracellular matrix molecule tenascin following adult brain injury. Proc Natl Acad Sci U S A 89, 2634 - 2638.

    Article  CAS  PubMed  Google Scholar 

  92. Abraham CR, Selkoe DJ, Potter H (1988) Immunochemical identification of the serine protease inhibitor alphal -antichymotrypsin in the brain amyloid deposits of Alzheimer’s disease. Cell 52, 487 - 501.

    Article  CAS  PubMed  Google Scholar 

  93. Abraham CR, Kanemaru K, Mucke L (1993) Expression of cathepsin G-like and (1-antichymotrypsin-like proteins in reactive astrocytes. Brain Res 621, 222 - 232.

    Article  CAS  PubMed  Google Scholar 

  94. Shoji M, Hirai S, Yamaguchi H, Harigaya Y, Ishiguro K, Matsubara E (1991) A comparative study of beta-protein and alphal-antichymotrypsin immunostaining in the Alzheimer brain. Am J Pathol 138, 247 - 257.

    CAS  PubMed  Google Scholar 

  95. Pasternack JM, Abraham CR, Van Dyke BJ, Potter H, Younkin SG (1989) Astrocytes in Alzheimer’ s disease gray matter express alphal-antichymotrypsin mRNA. Am J Pathol 135, 827 - 833.

    CAS  PubMed  Google Scholar 

  96. Abraham CR, Shirahama T, Potter H (1990) Alpha1-antichymotrypsin is associated coley with amyloid deposits containing the beta-protein. Amyloid and cell localization of alphal-antichymotrypsin. Neurobiol Aging 11, 123-129.

    Google Scholar 

  97. Miyake T, Okada M, Kitamura T (1992) Reactive proliferation of astrocytes studied by immunohistochemistry for proliferating cell nuclear antigen. Brain Res 590, 300 - 302.

    Article  CAS  PubMed  Google Scholar 

  98. Hattori T, Fukuda M, Kitamura T, Fujita S (1988) Quantitative studies on proliferative changes of reactive astrocytes in mouse cerebral cortex. Brain Res 451, 133 - 138.

    Article  PubMed  Google Scholar 

  99. Miyake T, Hattori T, Fukuda M, Kitamura T (1989) Reactions of S-100-positive glia after injury of mouse cerebral cortex. Brain Res 489, 31 - 40.

    Article  CAS  PubMed  Google Scholar 

  100. Orihara Y, Nakasono I (2002) Induction of apolipoprotein E after traumatic brain injury in forensic autopsy cases. Int J Legal Med 116, 92 - 98.

    Google Scholar 

  101. Hausmann R, Betz P (2000) The time course of the vascular response to human brain injury—an immunohistochemical study. Int J Legal Med 113, 288 - 292.

    Article  CAS  PubMed  Google Scholar 

  102. Finklestein SP, Apostolides PJ, Caday CG, Prosser J, Philips MF, Klagsbrun M (1988) Increased basic fibroblast growth factor (bFGF) immunoreactivity at the site of focal brain wounds. Brain Res 460, 253 - 259.

    Article  CAS  PubMed  Google Scholar 

  103. Smits A, Kato M, Westermark B, Nister M, Heldin CH, Funa K (1991) Neurotrophic activity of platelet-derived growth factor (PDGF): rat neuronal cells possess functional PDGF beta-type receptor and respond to PDGF. Proc Natl Acad Sci USA 88, 8159 - 8163.

    Article  CAS  PubMed  Google Scholar 

  104. DeKosky ST, Goss JR, Miller PD, Styren SC, Kochanek PM, Marions D (1994) Upregulation of nerve growth factor following cortical trauma. Exp Neurol 130, 173 - 177.

    Article  CAS  PubMed  Google Scholar 

  105. Nichols NR, Laping NJ, Day JR, Finch CE (1991) Increases in transforming growth factor-ß mRNA in hippocampus during response to entorhinal cortex lesions in intact and adrenalectomized rats. J Neurosci Res 28, 134 - 139.

    Article  CAS  PubMed  Google Scholar 

  106. Frautschy SA, Walicke PA, Baird A (1991) Localization of basic fibroblast growth factor and its mRNA after CNS injury. Brain Res 553, 291 - 299.

    Article  CAS  PubMed  Google Scholar 

  107. Reilly JF, Kumari VG (1996) Alterations in fibroblast growth factor receptor expression following brain injury. Exp Neurol 140, 139 - 150.

    Article  CAS  PubMed  Google Scholar 

  108. Takayama S, Sasahara M, lihara K, Handa J, Hazama F (1994) Platelet-derived growth factor B-chain-like immunoreactivity in injured rat brain. Brain Res 653, 131 - 140.

    Article  CAS  PubMed  Google Scholar 

  109. Davis GE, Varon S, Engvall E, Manthorpe M (1985) Substratum-binding neuritepromoting factors: relationship to laminin. Trends Neurosci 8, 528 - 532.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hausmann, R. (2004). Timing of Cortical Contusions in Human Brain Injury. In: Tsokos, M. (eds) Forensic Pathology Reviews. Forensic Pathology Reviews, vol 1. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-786-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-786-4_3

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-550-7

  • Online ISBN: 978-1-59259-786-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics