Skip to main content

ABC Transporter Proteins and Cellular Drug Resistance

P-Glycoprotein and Analogous Transporters

  • Chapter
Cellular Drug Delivery

Abstract

Mammalian cells possess a natural battery of defense mechanisms against xenobiotic assault. A class of proteins actively transports an extensive array of structurally unrelated large lipophilic compounds from the cell, providing what is often known as multiple drug resistance (MDR) (1). MDR is characterized by active efflux or pumping of xenobiotics and pharmaceuticals via transmembrane proteins acting as hydrophobic “vacuum cleaners” (2,3). The MDR1 gene encodes a 170 kD integral plasma membrane phosphorylated glycoprotein, P-glycoprotein (P-gp), which is the best known and most extensively studied among these transporters, and which thus far has the largest substrate list. The gross structural features of P-gp are shared by a large family of membrane transporters known as adenosine 5’-triphosphate (ATP)-binding cassette (ABC) transporters, which evidently act as ATP-driven pumps that remove xenobiotics from the interior of cells. Expression of P-gp in normal human tissues—particularly within the cellular membranes of the gastrointestinal tract, liver, blood–brain barrier (BBB), adrenal glands, and kidneys—suggests that the protein plays a role in cellular protection as well as in secretion (1–4). Although the primary function of this protein is unknown, its ability to confer resistance to a wide variety of structurally and chemically unrelated compounds remains impressive. Indeed, the substrate list for this transporter reveals that P-gp shares a similar tolerance or acceptance for chemicals as cytochrome P450 3A4 (CYP3A4), the predominant intestinal and hepatic cytochrome P450 oxygenase enzyme, and may even prove to be more extensive in its substrate recognition and as an avenue of drug elimination (5).

yea, at that very moment Consideration, like an angel, came And whipp’d the offending Adam out of him, Leaving his body as a paradise, To envelop and contain celestial spirits...

King Henry V

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pastan I, Gottesman M. Multiple-drug resistance in human cancer. N Engl J Med 1987; 316 (22): 1388–1393.

    Article  PubMed  CAS  Google Scholar 

  2. Gottesman MM, Pastan I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem 1993; 62: 385–427.

    Article  PubMed  CAS  Google Scholar 

  3. Gottesman MM, Pastan I, Ambudkar SV. P-glycoprotein and multidrug resistance. Curr Opin Genet Dev 1996; 6: 610–617.

    Article  PubMed  CAS  Google Scholar 

  4. Ambudkar SV, Dey S, Hrycyna CA, et al. Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu Rev Pharmacol Toxicol 1999; 39: 361–398.

    Article  PubMed  CAS  Google Scholar 

  5. Fisher GA, Lum BL, Hausdorff J, Sikic BI. Pharmacological considerations in the modulation of multidrug resistance. Eur J Cancer 1996; 32A (6): 1082–1088.

    Article  Google Scholar 

  6. Siegsmund MJ, Cardarelli C, Aksentijevich I, et al. Ketoconazole effectively reverses multidrug resistance in highly resistant KB cells. J Urol 1994; 151: 485–491.

    PubMed  CAS  Google Scholar 

  7. Wang E-J, Lew K, Barecki, ME, et al. Quantitative distinctions of active site molecular recognition by P-glycoprotein and cytochrome P450 3A4. Chemical Res Tox 2001; 14 (12): 1596–1603.

    Article  CAS  Google Scholar 

  8. Monahan BP, Ferguson CL, Killeavy ES, et al. Torsades de pointes occurring in association with terfenadine use. JAMA 1990; 264 (21): 2788–2790.

    Article  PubMed  CAS  Google Scholar 

  9. Neuvonen PJ, Kantola T, Kivisto KT. Simvastatin but not pravastatin is very susceptible to interaction with the CYP3A4 inhibitor itraconazole. Clin Pharmacol Ther 1998; 63 (3): 332–341.

    Article  PubMed  CAS  Google Scholar 

  10. Brinkmann U, Eichelbaum M. Polymorphisms in the ABC drug transporter gene MDR1. Pharmacogenomics J 2001; 1 (1): 59–64.

    Article  PubMed  CAS  Google Scholar 

  11. Kerb R, Hoffmeyer S, Brinkmann U. ABC drug transporters: hereditary polymorphisms and pharmacological impact in MDR1, MRP1 and MRP2. Pharmacogenomics 2001; 2 (1): 51–64.

    Article  PubMed  CAS  Google Scholar 

  12. Hoffmeyer S, Burk O, von Richter O, et al. Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with Pglycoprotein expression and activity in vivo. Proc Natl Acad Sci USA 2000; 28: 97.

    Google Scholar 

  13. Eytan GD, Regev R, Assaraf YG. Functional reconstitution of P-glycoprotein reveals an apparent near stoichiometric drug transport to ATP hydrolysis. J Biol Chem 1996; 271: 3172–3178.

    Article  PubMed  CAS  Google Scholar 

  14. Ambudkar SV, Cardarelli CO, Pashinsky E, Stein WD. Relation between the turnover number for vinblastine transport and for vinblastine-stimulated ATP hydrolysis by human P-glycoprotein. J Biol Chem 1997; 272: 21160–21166.

    Article  PubMed  CAS  Google Scholar 

  15. Stein WD. Kinetics of the multidrug transporter (P-glycoprotein) and its reversal. Physiol Rev 1997; 77: 545–590.

    PubMed  CAS  Google Scholar 

  16. Shapiro AB, Ling V. Stoichiometry of coupling of rhodamine 123 transport to ATP hydrolysis by P-glycoprotein. Eur J Biochem 1998; 254: 189–193.

    Article  PubMed  CAS  Google Scholar 

  17. Wang E-J, Casciano CN, Clement RP, Johnson WW. Two transport binding sites of P-glycoprotein are unequal yet contingent: initial rate kinetic analysis by ATP hydrolysis demonstrates intersite dependency. Biochim Biophys Acta 2000; 1481: 63–74.

    Article  PubMed  CAS  Google Scholar 

  18. Sauna ZE, Ambudkar SV. Evidence for a requirement for ATP hydrolysis at two distinct steps during a single turnover of the catalytic cycle of human P-glycoprotein. Proc Natl Acad Sci USA 2000; 97: 2515–2520.

    Article  PubMed  CAS  Google Scholar 

  19. Sauna ZE, Ambudkar SV. Characterization of the catalytic cycle of ATP hydrolysis by human P-glycoprotein: The two ATP hydrolysis events in a single catalytic cycle are kinetically similar but affect different functional outcomes. J Biol Chem 2001; 276: 11653–11661.

    Article  PubMed  CAS  Google Scholar 

  20. Senior AE, Bhagat S. P-glycoprotein shows strong catalytic cooperativity between the two nucleotide sites. Biochemistry 1998; 37: 831–856.

    Article  PubMed  CAS  Google Scholar 

  21. Shapiro AB, Ling V. Extraction of Hoechst 33342 from the cytoplasmic leaflet of the plasma membrane by P-glycoprotein. Eur J Biochem 1997; 250: 122–129.

    Article  PubMed  CAS  Google Scholar 

  22. Dey S, Ramachandra M, Pastan I, Gottesman MM. Evidence for two nonidentical drug-interaction sites in the human P-glycoprotein. Proc Natl Acad Sci USA 1997; 94: 10594–10599.

    Article  PubMed  CAS  Google Scholar 

  23. Sharom FJ, Liu R, Qu Q, Romsicki Y. Exploring the structure and function of the P-glycoprotein multidrug transporter using fluorescence spectroscopic tools. Semin Cell Dev Biol 2001; 12 (3): 257–265.

    Article  PubMed  CAS  Google Scholar 

  24. Shapiro AB, Ling V. Positively cooperative sites for drug transport by P-glycoprotein with distinct drug specificities. Eur J Biochem 1997; 250: 130–137.

    Article  PubMed  CAS  Google Scholar 

  25. Wang E-J, Casciano CN, Clement RP, Johnson WW. Cooperativity in the inhibition of Pglycoprotein-mediated daunorubicin transport: evidence for half-of-the-sites reactivity. “ Arch Biochem Biophys 2000; 383 (1): 91–98.

    Article  PubMed  CAS  Google Scholar 

  26. Wang G, Pincheira R, Zhang J-T. Dissection of drug-binding-induced conformational changes in P-glycoprotein. Eur J Biochem 1998; 255: 383–390.

    Article  PubMed  CAS  Google Scholar 

  27. Pascaud C, Garrigos M, Orlowski S. Multidrug resistance transporter P-glycoprotein has distinct but interacting binding sites for cytotoxic drugs and reversing agents. Biochem J 1998; 333: 351–358.

    PubMed  CAS  Google Scholar 

  28. Hrycyna CA, Ramachandra M, Ambudkar SV, et al. Mechanism of action of human Pglycoprotein ATPase activity. Photochemical cleavage during a catalytic transition state using orthovanadate reveals cross-talk between the two ATP sites. J Biol Chem 1998; 273: 16631–16634.

    Article  PubMed  CAS  Google Scholar 

  29. Loo TW, Clarke DM. Covalent modification of human P-glycoprotein mutants containing a single cysteine in either nucleotide-binding fold abolishes drug-stimulated ATPase activity. J Biol Chem 1995; 270: 22957–22961.

    Article  PubMed  CAS  Google Scholar 

  30. Wang EJ, Casciano CN, Clement RP, Johnson WW. Active transport of fluorescent P-glycoprotein substrates: evaluation as markers and interaction with inhibitors. Biochem Biophys Res Commun 2001; 289 (2): 580–585.

    Article  PubMed  CAS  Google Scholar 

  31. Schinkel AH, Smit JJ, van Tellingen O, et al. Disruption of the mouse mdrla P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 1994; 77 (4): 491–502.

    Article  PubMed  CAS  Google Scholar 

  32. Schinkel AH, Mayer U, Wagenaar E, et al. Normal viability and altered pharmacokinetics in mice lacking mdrl-type (drug-transporting) P-glycoproteins. Proc Natl Acad Sci USA 1997; 94 (8): 4028–4033.

    Article  PubMed  CAS  Google Scholar 

  33. Mayer U, Wagenaar E, Dorobek B, et al. Full blockade of intestinal P-glycoprotein and extensive inhibition of blood-brain barrier P-glycoprotein by oral treatment of mice with PSC833. J Clin Invest 1997; 100 (10): 2430–2436.

    Article  PubMed  CAS  Google Scholar 

  34. Fricker G, Drewe J, Huwyler J, et al. Relevance of p-glycoprotein for the enteral absorption of cyclosporin A: in vitro-in vivo correlation. Br J Pharmacol 1996; 118 (7): 1841–1847.

    Article  PubMed  CAS  Google Scholar 

  35. Doan KM, Humphreys JE, Webster LO, et al. Passive permeability and P-glycoprotein-mediated efflux differentiate central nervous system (CNS) and non-CNS marketed drugs. J Pharmacol Exp Ther 2002; 303 (3): 1029–1037.

    Article  CAS  Google Scholar 

  36. Kennedy T. Managing the drug discovery/development interface. Drug Disc Today 1997; 2 (10): 436–444.

    Article  Google Scholar 

  37. Gonzalez O, Colombo T, De Fusco M, et al. Changes in doxorubicin distribution and toxicity in mice pretreated with the cyclosporin analogue SDZ PSC 833. Cancer Chemother Pharmacol 1995; 36 (4): 335–340.

    Article  PubMed  CAS  Google Scholar 

  38. van Asperen J, van Tellingen O, van der Valk MA, et al. Enhanced oral absorption and decreased elimination of paclitaxel in mice cotreated with cyclosporin A. Clin Cancer Res 1998; 4 (10): 2293–2297.

    PubMed  Google Scholar 

  39. Ito K, Kusuhara H, Sugiyama Y. Effects of intestinal CYP3A4 and P-glycoprotein on oral drug absorption-theoretical approach. Pharm Res 1999; 16: 225–231.

    Article  PubMed  CAS  Google Scholar 

  40. Hochman JH, Chiba M, Nishime J, et al. Influence of P-glycoprotein on the transport and metabolism of indinavir in Caco-2 cells expressing cytochrome P-450 3A4. J Pharmacol Exp Ther 2000; 292 (1): 310–318.

    PubMed  CAS  Google Scholar 

  41. Hochman JH, Chiba M, Yamazaki M, et al. P-glycoprotein-mediated efflux of indinavir metabolites in Caco-2 cells expressing cytochrome P450 3A4. J Pharmacol Exp Ther 2001; 298 (1): 323–330.

    PubMed  CAS  Google Scholar 

  42. Thummel KE, O’Shea D, Paine MF, et al. Oral first-pass elimination of midazolam involves both gastrointestinal and hepatic CYP3A-mediated metabolism. Clin Pharmacol Ther 1996; 59 (5): 491–502.

    Article  PubMed  CAS  Google Scholar 

  43. Wu CY, Benet LZ, Hebert MF, et al. Differentiation of absorption and first-pass gut and hepatic metabolism in humans: studies with cyclosporine. Clin Pharmacol Ther 1995; 58 (5): 492–497.

    Article  PubMed  CAS  Google Scholar 

  44. Lee CG, Gottesman MM, Cardarelli CO, et al. HIV-1 protease inhibitors are substrates for the MDR1 multidrug transporter. Biochemistry 1998; 37 (11): 3594–3601.

    Article  PubMed  CAS  Google Scholar 

  45. Mayer U, Wagenaar E, Beijnen JH, et al. Substantial excretion of digoxin via the intestinal mucosa and prevention of long-term digoxin accumulation in the brain by the mdr la P-glycoprotein. Br J Pharmacol 1996; 119 (5): 1038–1044.

    Article  PubMed  CAS  Google Scholar 

  46. Sparreboom A, van Asperen J, Mayer U, et al. Limited oral bioavailability and active epithelial excretion of paclitaxel (Taxol) caused by P-glycoprotein in the intestine. Proc Natl Acad Sci USA 1997; 94 (5): 2031–2035.

    Article  PubMed  CAS  Google Scholar 

  47. Meerum Terwogt JM, Malingre MM, Beijnen JH, et al. Coadministration of oral cyclosporin A enables oral therapy with paclitaxel. Clin Cancer Res 1999; 5 (11): 3379–3384.

    CAS  Google Scholar 

  48. Masuda S, Uemoto S, Hashida T, et al. Effect of intestinal P-glycoprotein on daily tacrolimus trough level in a living-donor small bowel recipient. Clin Pharmacol Ther 2000; 68 (1): 98–103.

    Article  PubMed  CAS  Google Scholar 

  49. Karlsson J, Kuo SM, Ziemniak J, Artursson P. Transport of celiprolol across human intestinal epithelial (Caco-2) cells: mediation of secretion by multiple transporters including P-glycoprotein. Br J Pharmacol 1993; 110 (3): 1009–1016.

    Article  PubMed  CAS  Google Scholar 

  50. Lennernas H, Regardh CG. Evidence for an interaction between the beta-blocker pafenolol and bile salts in the intestinal lumen of the rat leading to dose-dependent oral absorption and double peaks in the plasma concentration-time profile. Pharm Res 1993; 10 (6): 879–883.

    Article  PubMed  CAS  Google Scholar 

  51. Gramatte T, Oertel R, Terhaag B, Kirch W. Direct demonstration of small intestinal secretion and site-dependent absorption of the beta-blocker talinolol in humans. Clin Pharmacol Ther 1996; 59 (5): 541–549.

    Article  PubMed  CAS  Google Scholar 

  52. Wetterich U, Spahn-Langguth H, Mutschier E, et al. Evidence for intestinal secretion as an additional clearance pathway of talinolol enantiomers: concentration-and dose-dependent absorption in vitro and in vivo. Pharm Res 1996; 13 (4): 514–522.

    Article  PubMed  CAS  Google Scholar 

  53. Gramatte T, Oertel R,. Intestinal secretion of intravenous talinolol is inhibited by luminal Rverapamil. Clin Pharmacol Ther 1999; 66: 239–245.

    Article  PubMed  CAS  Google Scholar 

  54. Collett A, Higgs NB, Sims E, et al. Modulation of the permeability of H2 receptor antagonists cimetidine and ranitidine by P-glycoprotein in rat intestine and the human colonic cell line Caco-2. J Pharmacol Exp Ther 1999; 288 (1): 171–178.

    PubMed  CAS  Google Scholar 

  55. Chiou WL, Chung SM, Wu TC, Ma C. A comprehensive account on the role of efflux transporters in the gastrointestinal absorption of 13 commonly used substrate drugs in humans. Int J Clin Pharmacol Ther 2001; 39 (3): 93–101.

    PubMed  CAS  Google Scholar 

  56. Zuccato E, Calamari D, Natangelo M, Fanelli R. Presence of therapeutic drugs in the environment. Lancet 2000; 355 (9217): 1789–1790.

    Article  PubMed  CAS  Google Scholar 

  57. Batrakova EV, Li S, Miller DW, Kabanov AV. Pluronic P85 increases permeability of a broad spectrum of drugs in polarized BBMEC and Caco-2 cell monolayers. Pharm Res 1999; 16 (9): 1366–1372.

    Article  PubMed  CAS  Google Scholar 

  58. Dintaman JM, Silverman JA. Inhibition of P-glycoprotein by D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS). Pharm Res 1999; 16 (10): 1550–1556.

    Article  PubMed  CAS  Google Scholar 

  59. Coon JS, Knudson W, Clodfelter K, et al. Solutol HS 15, nontoxic polyoxyethylene esters of 12-hydroxystearic acid, reverses multidrug resistance. Cancer Res 1991; 51 (3): 897–902.

    PubMed  CAS  Google Scholar 

  60. Dudeja PK, Anderson KM, Harris JS, et al. Reversal of multidrug resistance phenotype by surfactants: relationship to membrane lipid fluidity. Arch Biochem Biophys 1995; 319 (1): 309–315.

    Article  PubMed  CAS  Google Scholar 

  61. Rege BD, Kao JP, Polli JE. Effects of nonionic surfactants on membrane transporters in Caco-2 cell monolayers. Eur J Pharm Sci 2002; 16 (4–5): 237–246.

    Article  PubMed  CAS  Google Scholar 

  62. Hugger ED, Audus KL, Borchardt RT. Effects of poly(ethylene glycol) on efflux transporter activity in Caco-2 cell monolayers. J Pharm Sci 2002; 91 (9): 1980–1990.

    Article  PubMed  CAS  Google Scholar 

  63. Zordan-Nudo T, Ling V, Liu Z, Georges E. Effects of nonionic detergents on P-glycoprotein drug binding and reversal of multidrug resistance. Cancer Res 1993; 53 (24): 5994–6000.

    PubMed  CAS  Google Scholar 

  64. Smit JW, Schinkel AH, Weert B, Meijer DK. Hepatobiliary and intestinal clearance of amphiphilic cationic drugs in mice in which both mdrla and mdrlb genes have been disrupted. Br J Pharmacol 1998; 124 (2): 416–424.

    Article  PubMed  CAS  Google Scholar 

  65. Kawahara M, Sakata A, Miyashita T, et al. Physiologically based pharmacokinetics of digoxin in mdrla knockout mice. J Pharm Sci 1999; 88 (12): 1281–1287.

    Article  PubMed  CAS  Google Scholar 

  66. Hori R, Okamura N, Aiba T, Tanigawara Y. Role of P-glycoprotein in renal tubular secretion of digoxin in the isolated perfused rat kidney. J Pharmacol Exp Ther 1993; 266 (3): 1620–1625.

    PubMed  CAS  Google Scholar 

  67. Lankas GR, Cartwright ME, Umbenhauer D. P-glycoprotein deficiency in a subpopulation of CF-1 mice enhances avermectin-induced neurotoxicity. Toxicol Appl Pharmacol 1997; 143 (2): 357–365.

    Article  PubMed  CAS  Google Scholar 

  68. Ueng YF, Kuwabara T, Chun, YJ, Guengerich FP. Cooperativity in oxidations catalyzed by cytochrome P450 3A4. Biochemistry 1997; 36 (2): 370–381.

    Article  PubMed  CAS  Google Scholar 

  69. Stouch TR, Gudmundsson O. Progress in understanding the structure-activity relationships of P-glycoprotein. Adv Drug Deliv Rev 2002; 54 (3): 315–328.

    Article  PubMed  CAS  Google Scholar 

  70. Wiese M, Pajeva IK. Structure-activity relationships of multidrug resistance reversers. Curr Med Chem 2001; 8 (6): 685–713.

    Article  PubMed  CAS  Google Scholar 

  71. Sharom FJ, Liu R, Romsicki Y, Lu P. Insights into the structure and substrate interactions of the P-glycoprotein multidrug transporter from spectroscopic studies. Biochim Biophys Acta 1999; 1461 (2): 327–345.

    Article  PubMed  CAS  Google Scholar 

  72. Raviv Y, Pollard HB, Bruggemann EP, et al. Photosensitized labeling of a functional multidrug transporter in living drug-resistant tumor cells. J Biol Chem 1990; 265 (7): 3975–3980.

    PubMed  CAS  Google Scholar 

  73. Higgins CF, Gottesman MM. Is the multidrug transporter a flippase? Trends Biochem Sci 1992; 17 (11): 18–21.

    Article  PubMed  CAS  Google Scholar 

  74. Homolya L, Hollo Z, Germann UA, et al. Fluorescent cellular indicators are extruded by the multidrug resistance protein. J Biol Chem 1993; 268 (29): 21493–21496.

    PubMed  CAS  Google Scholar 

  75. Lu P, Liu R, Sharom FJ. Drug transport by reconstituted P-glycoprotein in proteoliposomes. Effect of substrates and modulators, and dependence on bilayer phase state. Eur J Biochem 2001; 268 (6): 1687–1697.

    Article  PubMed  CAS  Google Scholar 

  76. Ferte J. Analysis of the tangled relationships between P-glycoprotein-mediated multidrug resistance and the lipid phase of the cell membrane. Eur J Biochem 2000; 267: 277–294.

    Article  PubMed  CAS  Google Scholar 

  77. Litman T, Zeuthen T, Skovsgaard T, Stein W. Competitive, non-competitive and cooperative interactions between substrates of P-glycoprotein as measured by its ATPase activity. Biochim Biophys Acta 1997; 1361: 169–176.

    Article  PubMed  CAS  Google Scholar 

  78. Ramu A, Ramu N. Reversal of multidrug resistance by bis (phenylalkyl) amines and structurally related compounds. Cancer Chemother Pharmacol 1994; 34: 423–430.

    Article  PubMed  CAS  Google Scholar 

  79. Klopman G, Shi LM, Ramum A. Quantitative structure-activity relationship of multidrug resistance reversal agents. Mol Pharmacol 1997; 52: 323–334.

    PubMed  CAS  Google Scholar 

  80. Pearce HL, Winter MA, Beck WT. Structural characteristics of compounds that modulate Pglycoprotein-associated multidrug resistance. Adv Enzyme Reg 1990; 30: 357–373.

    Article  CAS  Google Scholar 

  81. Ford JM, Hait WN. Pharmacology of drugs that alter multidrug resistance in cancer. Pharmacol Rev 1990; 42: 155–199.

    PubMed  CAS  Google Scholar 

  82. Ichikawa-Haraguchi M, Sumizawa T, Yoshimura A, et al. Progesterone and its metabolites: the potent inhibitors of the transporting activity of P-glycoprotein in the adrenal gland. Biochim Biophys Acta 1993; 1158 (3): 201–208.

    Article  PubMed  CAS  Google Scholar 

  83. Neuhoff S, Langguth P, Dressler C, et al. Affinities at the verapamil binding site of MDRIencoded P-glycoprotein: drugs and analogs, stereoisomers and metabolites. Int J Clin Pharmacol Ther 2000; 38 (4): 168–179.

    PubMed  CAS  Google Scholar 

  84. Lu L, Leonessa F, Baynham MT, et al. The enantioselective binding of mefloquine enantiomers to P-glycoprotein determined using an immobilized P-glycoprotein liquid chromatographic stationary phase. Pharm Res 2001; 18 (9): 1327–1330.

    Article  PubMed  CAS  Google Scholar 

  85. Prueksaritanont T, Meng Y, Ma B, et al. Differences in the absorption, metabolism and biliary excretion of a diastereomeric pair of alphavbeta3-antagonists in rat: limited role of P-glycoprotein. Xenobiotica 2002; 32 (3): 207–220.

    Article  PubMed  CAS  Google Scholar 

  86. Tmej C, Chiba P, Huber M, et al. A combined Hansch/Free-Wilson approach as predictive tool in QSAR studies on propafenone-type modulators of multidrug resistance. Arch Pharm (Weinheim) 1998; 331 (7–8): 233–240.

    Article  CAS  Google Scholar 

  87. Seelig A. A general pattern for substrate recognition by P-glycoprotein. Eur J Biochem 1998; 251: 252–261.

    Article  PubMed  CAS  Google Scholar 

  88. Ecker G, Huber M, Schmid D, Chiba P. The importance of a nitrogen atom in modulators of multidrug resistance. Mol Pharmacol 1999; 56: 791–796.

    PubMed  CAS  Google Scholar 

  89. Ekins S, Kim RB, Leake BF, et al. Three-dimensional quantitative structure-activity relationships of inhibitors of P-glycoprotein. Mol Pharmacol 2002; 61 (5): 964–973.

    Article  PubMed  CAS  Google Scholar 

  90. Penzotti JE, Lamb ML, Evensen E, Grootenhuis PD. A computational ensemble pharmacophore model for identifying substrates of P-glycoprotein. J Med Chem 2002; 45 (9): 1737–1740.

    Article  PubMed  CAS  Google Scholar 

  91. Vazquez-Laslop N, Zheleznova EE, Markham PN, et al. Recognition of multiple drugs by a single protein: a trivial solution of an old paradox. Biochem Soc Trans 2000; 28 (4): 517–520.

    Article  PubMed  CAS  Google Scholar 

  92. Xiao G, Liu S, Ji X, et al. First-sphere and second-sphere electrostatic effects in the active site of a class mu gluthathione transferase. Biochemistry 1996; 35 (15): 4753–4765.

    Article  PubMed  CAS  Google Scholar 

  93. Dougherty DA. Cation-pi interactions in chemistry and biology: a new view of benzene, Phe, Tyr, and Trp. Science 1996; 271 (5246): 163–168.

    Article  PubMed  CAS  Google Scholar 

  94. Romsicki Y, Sharom FJ. The ATPase and ATP-binding functions of P-glycoprotein: modulation by interaction with defined phospholipids. Eur J Biochem 1998; 256 (1): 170–178.

    Article  PubMed  CAS  Google Scholar 

  95. Romsicki Y, Sharom FJ. The membrane lipid environment modulates drug interactions with the P-glycoprotein multidrug transporter. Biochemistry 1999; 38 (21): 6887–6896.

    Article  PubMed  CAS  Google Scholar 

  96. de Lannoy IA, Mandin RS, Silverman M. Renal secretion of vinblastine, vincristine and colchicine in vivo. J Pharmacol Exp Ther 1994; 268 (1): 388–395.

    PubMed  Google Scholar 

  97. Lum BL, Fisher GA, Brophy NA, et al. Clinical trials of modulation of multidrug resistance. Pharmacokinetic and pharmacodynamic considerations. Cancer 1993; 72 (11 Suppl): 3502–3514.

    Article  PubMed  CAS  Google Scholar 

  98. Choo EF, Leake B, Wandel C, et al. Pharmacological inhibition of P-glycoprotein transport enhances the distribution of HIV-1 protease inhibitors into brain and testes. Drug Metab Dispos 2000; 28 (6): 655–660.

    PubMed  CAS  Google Scholar 

  99. Savolainen J, Edwards JE, Morgan ME, et al. Effects of a p-glycoprotein inhibitor on brain and plasma concentrations of anti-human immunodeficiency virus drugs administered in combination in rats. Drug Metab Dispos 2002; 30 (5): 479–482.

    Article  PubMed  CAS  Google Scholar 

  100. Westphal K, Weinbrenner A, Zschiesche M, et al. Induction of P-glycoprotein by rifampin increases intestinal secretion of talinolol in human beings: a new type of drug/drug interaction. Clin Pharmacol Ther 2000; 68 (4): 345–355.

    Article  PubMed  CAS  Google Scholar 

  101. Greiner B, Eichelbaum M, Fritz P, et al. The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin. J Clin Invest 1999; 104 (2): 147–153.

    Article  PubMed  CAS  Google Scholar 

  102. Geick A, Eichelbaum M, Burk O. Nuclear receptor response elements mediate induction of intestinal MDR1 by rifampin. J Biol Chem 2001; 276 (18): 14581–14587.

    Article  PubMed  CAS  Google Scholar 

  103. Abolhoda A, Wilson AE, Ross H, et al. Rapid activation of MDR1 gene expression in human metastatic sarcoma after in vivo exposure to doxorubicin. Clin Cancer Res 1999; 5 (11): 3352–3356.

    PubMed  CAS  Google Scholar 

  104. Ayrton A, Morgan P. Role of transport proteins in drug absorption, distribution and excretion. Xenobiotica 2001; 31 (8–9): 469–497.

    Article  PubMed  CAS  Google Scholar 

  105. Kim RB. Drugs as P-glycoprotein substrates, inhibitors, and inducers. Drug Metab Rev 2002; 34 (1–2): 47–54.

    Article  PubMed  CAS  Google Scholar 

  106. Jette L, Beaulieu E, Leclerc JM, Beliveau R Cyclosporin A treatment induces overexpression of P-glycoprotein in the kidney and other tissues. Am J Physiol 1996; 270 (5 Pt 2): F756 - F765.

    PubMed  CAS  Google Scholar 

  107. Drescher S, Schaeffeler E, Hitzl M, et al. MDR1 gene polymorphisms and disposition of the P-glycoprotein substrate fexofenadine. Br J Clin Pharmacol 2002; 53 (5): 526–534.

    Article  PubMed  CAS  Google Scholar 

  108. Schaeffeler E, Eichelbaum M, Brinkmann U, et al. Frequency of C3435T polymorphism of MDRI gene in African people. Lancet 2001; 358 (9279): 383–384.

    Article  PubMed  CAS  Google Scholar 

  109. Ameyaw MM, Regateiro F, Li T, et al. MDR1 pharmacogenetics: frequency of the C3435T mutation in exon 26 is significantly influenced by ethnicity. Pharmacogenetics 2001; 11 (3): 217–221.

    Article  PubMed  CAS  Google Scholar 

  110. Fellay J, Marzolini C, Meaden ER, et al. The Swiss HIV Cohort Study. Response to antiretroviral treatment in HIV-1-infected individuals with allelic variants of the multidrug resistance transporter 1: a pharmacogenetics study. Lancet 2002; 359 (9300): 30–36.

    Article  PubMed  CAS  Google Scholar 

  111. Kim RB, Leake BF, Choo EF, et al. Identification of functionally variant MDR1 alleles among European Americans and African Americans. Clin Pharmacol Ther 2001; 70 (2): 189–199.

    Article  PubMed  CAS  Google Scholar 

  112. Johne A, Kopke K, Gerloff T, et al. Modulation of steady-state kinetics of digoxin by haplotypes of the P-glycoprotein MDR1 gene. Clin Pharmacol Ther 2002; 72 (5): 584–594.

    Article  PubMed  CAS  Google Scholar 

  113. Schuetz EG, Furuya KN, Schuetz JD. Interindividual variation in expression of P-glycoprotein in normal human liver and secondary hepatic neoplasms. J Pharmacol Exp Ther 1995; 275 (2): 1011–1018.

    PubMed  CAS  Google Scholar 

  114. Fontana RJ, Lown KS, Paine MF, et al. Effects of a chargrilled meat diet on expression of CYP3A, CYP1A, and P-glycoprotein levels in healthy volunteers. Gastroenterology 1999; 117 (1): 89–98.

    Article  PubMed  CAS  Google Scholar 

  115. Wacher VJ, Wu CY, Benet LZ. Overlapping substrate specificities and tissue distribution of cytochrome P450 3A and P-glycoprotein: implications for drug delivery and activity in cancer chemotherapy. Mol Carcinog 1995; 13 (3): 129–134.

    Article  PubMed  CAS  Google Scholar 

  116. Lown KS, Mayo RR, Leichtman AB, et al. Role of intestinal P-glycoprotein (mdrl) in interpatient variation in the oral bioavailability of cyclosporine. Clin Pharmacol Ther 1997; 62 (3): 248–260.

    Article  PubMed  CAS  Google Scholar 

  117. Potocnik U, Glavac MR, Golouh R, Glavac D. The role of P-glycoprotein (MDR1) polymorphisms and mutations in colorectal cancer. Pflugers Arch 2001; 442 (6 Suppl 1): R182 - R183.

    Article  PubMed  CAS  Google Scholar 

  118. Rund D, Azar I, Shperling O. A mutation in the promoter of the multidrug resistance gene (MDR1) in human hematological malignancies may contribute to the pathogenesis of resistant disease. Adv Exp Med Biol 1999; 457: 71–75.

    Article  PubMed  CAS  Google Scholar 

  119. Dhooge C, De Moerloose B, Laureys G, et al. Expression of the multidrug transporter Pglycoprotein is highly correlated with clinical outcome in childhood acute lymphoblastic leukemia: results of a long-term prospective study. Leuk Lymphoma 2002; 43 (2): 309–314.

    Article  PubMed  CAS  Google Scholar 

  120. Tada Y, Wada M, Kuroiwa K, et al. MDR1 gene overexpression and altered degree of methylation at the promoter region in bladder cancer during chemotherapeutic treatment. Clin Cancer Res 2000; 6 (12): 4618–4627.

    PubMed  CAS  Google Scholar 

  121. Wang E-J, Casciano CN, Clement RP, Johnson WW. Inhibition of P-glycoprotein transport function by grapefruit juice psoralen. Pharm Res 2001; 18 (4): 432–438.

    Article  PubMed  CAS  Google Scholar 

  122. Wang E-J, Casciano CN, Clement RP, Johnson WW. Evaluation of the interaction of loratadine and desloratadine with P-glycoprotein. Drug Metab Dispos 2001; 29 (8): 1080–1083.

    PubMed  CAS  Google Scholar 

  123. Wang E-J, Casciano CN, Clement RP, Johnson WW. HMG-CoA reductase inhibitors (statins) characterized as direct inhibitors of P-glycoprotein. Pharm Res 2001; 18 (6): 800–806.

    Article  PubMed  CAS  Google Scholar 

  124. Wang E-J, Casciano CN, Clement RP, Johnson WW. The farnesyl protein transferase inhibitor SCH66336 is a potent inhibitor of MDR1 product P-glycoprotein. Cancer Res 2001; 61 (20): 7525–7529.

    PubMed  CAS  Google Scholar 

  125. Yamazaki M, Neway WE, Ohe T, et al. In vitro substrate identification studies for p-glycoprotein-mediated transport: species difference and predictability of in vivo results. J Pharmacol Exp Ther 2001; 296 (3): 723–735.

    PubMed  CAS  Google Scholar 

  126. Annaert PP, Turncliff RZ, Booth CL, et al. P-glycoprotein-mediated in vitro biliary excretion in sandwich-cultured rat hepatocytes. Drug Metab Dispos 2001; 29 (10): 1277–1283.

    PubMed  CAS  Google Scholar 

  127. Megard I, Garrigues A, Orlowski S, et al. A co-culture-based model of human blood-brain barrier: application to active transport of indinavir and in vivo-in vitro correlation. Brain Res 2002; 927 (2): 153–167.

    Article  PubMed  CAS  Google Scholar 

  128. Adachi Y, Suzuki H, Sugiyama Y. Comparative studies on in vitro methods for evaluating in vivo function of MDR1 P-glycoprotein. Pharm Res 2001; 18 (12): 1660–1668.

    Article  PubMed  CAS  Google Scholar 

  129. Taipalensuu J, Tornblom H, Lindberg G, et al. Correlation of gene expression of ten drug efflux proteins of the ATP-binding cassette transporter family in normal human jejunum and in human intestinal epithelial Caco-2 cell monolayers. J Pharmacol Exp Ther 2001; 299 (1): 164–170.

    PubMed  CAS  Google Scholar 

  130. Le Ferrec E, Chesne C, Artusson P, et al. In vitro models of the intestinal barrier. The report and recommendations of ECVAM Workshop 46. European Centre for the Validation of Alternative methods. Altern Lab Anim 2001; 29 (6): 649–668.

    PubMed  Google Scholar 

  131. Artursson P, Palm K, Luthman K. Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv Drug Deliv Rev 2001; 46 (1–3): 27–43.

    Article  PubMed  CAS  Google Scholar 

  132. Sun D, Lennernas H, Welage LS, et al. Comparison of human duodenum and Caco-2 gene expression profiles for 12,000 gene sequences tags and correlation with permeability of 26 drugs. Pharm Res 2002; 19 (10): 1400–1416.

    Article  PubMed  CAS  Google Scholar 

  133. Stewart BH, Chan OH, Lu RH, et al. Comparison of intestinal permeabilities determined in multiple in vitro and in situ models: relationship to absorption in humans. Pharm Res 1995; 12 (5): 693–699.

    Article  PubMed  CAS  Google Scholar 

  134. Conradi RA, Wilkinson KF, Rush BD, et al. In vitro/in vivo models for peptide oral absorption: comparison of Caco-2 cell permeability with rat intestinal absorption of renin inhibitory peptides. Pharm Res 1993; 10 (12): 1790–1792.

    Article  PubMed  CAS  Google Scholar 

  135. Walter E, Kissel T, Raddatz P. Transport of peptidomimetic renin inhibitors across monolayers of a human intestinal cell line (Caco-2): evidence for self-enhancement of paracellular transport route. Pharm Res 1995; 12 (11): 1801–1805.

    Article  PubMed  CAS  Google Scholar 

  136. Barecki-Roach M, Wang EJ, Johnson WW. Many P-glycoprotein substrates do not inhibit the transport process across cell membranes. Xenobiotica 2003; 33 (2): 131–140.

    Article  PubMed  CAS  Google Scholar 

  137. Scala S, Akhmed N, Rao US, et al. P-glycoprotein substrates and antagonists cluster into two distinct groups. Mol Pharmacol 1997; 51: 1024–1033.

    PubMed  CAS  Google Scholar 

  138. Polli JW, Wring SA, Humphreys JE, et al. Rational use of in vitro P-glycoprotein assays in drug discovery. J Pharmacol Exp Ther 2001; 299 (2): 620–628.

    PubMed  CAS  Google Scholar 

  139. Eytan GD, Regev R, Oren G, Assaraf YG. The role of passive transbilayer drug movement in multidrug resistance and its modulation. J Biol Chem 1996; 271: 12897–12902.

    Article  PubMed  CAS  Google Scholar 

  140. Sonveaux N, Vigano C, Shapiro AB, et al. Ligand-mediated tertiary structure changes of reconstituted P-glycoprotein. A tryptophan fluorescence quenching analysis. J Biol Chem 1999; 274: 17649–17654.

    Article  PubMed  CAS  Google Scholar 

  141. Wielinga PR, Westerhoff HV, Lankelma J. The relative importance of passive and P-glycoprotein mediated anthracycline efflux from multidrug-resistant cells. Eur J Biochem 2000; 267: 649–657.

    Article  PubMed  CAS  Google Scholar 

  142. Urbatsch IL, al-Shawi MK, Senior AE. Characterization of the ATPase activity of purified Chinese hamster P-glycoprotein. Biochemistry 1994; 33: 7069–7076.

    Article  PubMed  CAS  Google Scholar 

  143. Zachowski A. Phospholipids in animal eukaryotic membranes: transverse asymmetry and movement. Biochem J 1993; 294 (Pt 1): 1–14.

    PubMed  CAS  Google Scholar 

  144. Eytan GD, Regev R, Oren G, et al. Efficiency of P-glycoprotein-mediated exclusion of rhodamine dyes from multidrug-resistant cells is determined by their passive transmembrane movement rate. Eur J Biochem 1997; 248: 104–112.

    Article  PubMed  CAS  Google Scholar 

  145. Regev R, Eytan GD. Flip-flop of doxorubicin across erythrocyte and lipid membranes. Biochem Pharmacol 1997; 54: 1151–1158.

    Article  PubMed  CAS  Google Scholar 

  146. Doppenschmitt S, Spahn-Langguth H, Regardh CG, Langguth P. Role of P-glycoprotein-mediated secretion in absorptive drug permeability: an approach using passive membrane permeability and affinity to P-glycoprotein. J Pharm Sci 1999; 88, 1067–1072.

    Article  PubMed  CAS  Google Scholar 

  147. Lentz KA, Polli JW, Wring SA, et al. Influence of passive permeability on apparent P-glycoprotein kinetics. Pharm Res 2000; 17: 1456–1460.

    Article  PubMed  CAS  Google Scholar 

  148. Mankhetkorn S, Dubru F, Hesschenbrouck J, et al. Relation among the resistance factor, kinetics of uptake, and kinetics of the P-glycoprotein-mediated efflux of doxorubicin, daunorubicin, 8-(S)-fluoroidarubicin, and idarubicin in multidrug-resistant K562 cells. Mol Pharmacol 1996; 49: 532–539.

    PubMed  CAS  Google Scholar 

  149. Mankhetkorn S, Garnier-Suillerot A. The ability of verapamil to restore intracellular accumulation of anthracyclines in multidrug resistant cells depends on the kinetics of their uptake. Eur J Pharmacol 1998; 343: 313–321.

    Article  PubMed  CAS  Google Scholar 

  150. Borrel MN, Fiallo M, Veress I, Garnier-Suillerot A. The effect of crown ethers, tetraalkylammonium salts, and polyoxyethylene amphiphiles on pirarubicin incorporation in K562 resistant cells. Biochem Pharmacol 1995; 50: 2069–2076.

    Article  PubMed  CAS  Google Scholar 

  151. Barnes KM, Dickstein B, Cutler GB Jr, et al. Steroid treatment, accumulation, and antagonism of P-glycoprotein in multidrug-resistant cells. Biochemistry 1996; 35: 4820–4827.

    Article  PubMed  CAS  Google Scholar 

  152. Borgnia MJ, Eytan GD, Assaraf YG. Competition of hydrophobic peptides, cytotoxic drugs, and chemosensitizers on a common P-glycoprotein pharmacophore as revealed by its ATPase activity. J Biol Chem 1996; 271: 3163–3171.

    Article  PubMed  CAS  Google Scholar 

  153. Tanaka K, Hirai M, Tanigawara Y, et al. Effect of cyclosporin analogues and FK506 on transcellular transport of daunorubicin and vinblastine via P-glycoprotein. Pharm Res 1996; 13: 1073–1077.

    Article  PubMed  CAS  Google Scholar 

  154. Sarkadi B, Muller, M, Homolya L, et al. Interaction of bioactive hydrophobic peptides with the human multidrug transporter. FASEB J 1994; 8: 766–770.

    PubMed  CAS  Google Scholar 

  155. Chiba P, Ecker G, Schmid D, et al. Structural requirements for activity of propafenone-type modulators in P-glycoprotein-mediated multidrug resistance. Mol Pharmacol 1996: 49: 1122–1130.

    PubMed  CAS  Google Scholar 

  156. Ferte J, Kuhnel JM, Chapuis G, et al. Flavonoid-related modulators of multidrug resistance: synthesis, pharmacological activity, and structure-activity relationships. J Med Chem 1999; 42: 478–489.

    Article  PubMed  CAS  Google Scholar 

  157. Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nature Rev Cancer 2002; 2 (1): 48–58.

    Article  CAS  Google Scholar 

  158. Fojo AT, Ueda K, Slamon DJ, et al. Expression of a multidrug-resistance gene in human tumors and tissues. Proc Natl Acad Sci USA 1987; 84 (1): 265–269

    Article  PubMed  CAS  Google Scholar 

  159. Leith CP, Kopecky KJ, Chen IM, et al. Frequency and clinical significance of the expression of the multidrug resistance proteins MDR1/P-glycoprotein, MRP1, and LRP in acute myeloid leukemia: a Southwest Oncology Group Study. Blood 1999; 94 (3): 1086–1099.

    PubMed  CAS  Google Scholar 

  160. Trock BJ, Leonessa F, Clarke R. Multidrug resistance in breast cancer: a meta-analysis of MDR1/gp170 expression and its possible functional significance. J Natl Cancer Inst 1997; 89 (13): 917–931.

    Article  PubMed  CAS  Google Scholar 

  161. Mechetner E, Kyshtoobayeva A, Zonis S, et al. Levels of multidrug resistance (MDR1) Pglycoprotein expression by human breast cancer correlate with in vitro resistance to taxol and doxorubicin. Clin Cancer Res 1998; 4 (2): 389–398

    PubMed  CAS  Google Scholar 

  162. Baekelandt MM, Holm R, Nesland JM, et al. P-glycoprotein expression is a marker for chemotherapy resistance and prognosis in advanced ovarian cancer. Anticancer Res 2000; 20 (2B): 1061–1067.

    PubMed  CAS  Google Scholar 

  163. Ciarmiello A, Del Vecchio S, Silvestro P, et al. Tumor clearance of technetium 99m-sestamibi as a predictor of response to neoadjuvant chemotherapy for locally advanced breast cancer. J Clin Oncol 1998; 16 (5): 1677–1683.

    PubMed  CAS  Google Scholar 

  164. Yu D, Liu B, Jing T, S et al. Overexpression of both p185c-erbB2 and p170mdr-1 renders breast cancer cells highly resistant to taxol. Oncogene 1998; 16 (16): 2087–2094.

    Article  PubMed  CAS  Google Scholar 

  165. Tsuruo T, Iida H, Tsukagoshi S, Sakurai Y. Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil. Cancer Res 1981; 41 (5): 1967–1972.

    PubMed  CAS  Google Scholar 

  166. Twentyman PR, Bleehen NM. Resistance modification by PSC-833, a novel non-immunosuppressive cyclosporin. Eur J Cancer 1991; 27 (12): 1639–1642.

    Article  PubMed  CAS  Google Scholar 

  167. List AF, Spier C, Greer J, et al. Phase I/II trial of cyclosporine as a chemotherapy-resistance modifier in acute leukemia. J Clin Oncol 1993; 11 (9): 1652–1660.

    PubMed  CAS  Google Scholar 

  168. Aszalos A, Ross DD. Biochemical and clinical aspects of efflux pump related resistance to anti-cancer drugs. Anticancer Res 1998; 18 (4C): 2937–2944.

    PubMed  CAS  Google Scholar 

  169. Liu M, Bryant MS, Chen J, et al. Antitumor activity of SCH 66336, an orally bioavailable tricyclic inhibitor of farnesyl protein transferase, in human tumor xenograft models and wapras transgenic mice. Cancer Res 1998; 58 (21): 4947–4956.

    PubMed  CAS  Google Scholar 

  170. Nielsen LL, Shi B, Hajian G, et al. Combination therapy with the farnesyl protein transferase inhibitor SCH66336 and SCH58500 (p53 adenovirus) in preclinical cancer models. Cancer Res 1999; 59 (23): 5896–5901.

    PubMed  CAS  Google Scholar 

  171. Shi B, Yaremko B, Hajian G, et al. The farnesyl protein transferase inhibitor SCH66336 synergizes with taxanes in vitro and enhances their antitumor activity in vivo. Cancer Chemother Pharmacol 2000; 46 (5): 387–393.

    Article  PubMed  CAS  Google Scholar 

  172. Ford JM. Experimental reversal of P-glycoprotein-mediated multidrug resistance by pharmacological chemosensitisers. Eur J Cancer 1996; 32A (6): 991–1001.

    Article  Google Scholar 

  173. Sonneveld P, Wiemer E. Inhibitors of multidrug resistance. Curr Opin Oncol 1997; 9 (6): 543–548.

    Article  PubMed  CAS  Google Scholar 

  174. Stupp R, Bauer J, Pagani O, et al. Ventricular arrhythmia and torsade de pointe: dose limiting toxicities of the MDR-modulator S97 8 in a phase I trial. Ann Oncol 1998; 9 (l1): 1233–1242.

    Article  PubMed  CAS  Google Scholar 

  175. Sadeque AJ, Wandel C, He H, et al. Increased drug delivery to the brain by P-glycoprotein inhibition. Clin Pharmacol Ther 2000; 68 (3): 231–237.

    Article  PubMed  CAS  Google Scholar 

  176. Fields A, Hochster H, Runowicz C, et al. PSC833: initial clinical results in refractory ovarian cancer patients. Curr Opin Oncol 1998; 10 (Suppl 1): 521.

    Google Scholar 

  177. Hyafil F, Vergely C, Du Vignaud P, Grand-Perret T. In vitro and in vivo reversal of multidrug resistance by GF120918, an acridonecarboxamide derivative. Cancer Res 1993; 53 (19): 4595–4602.

    PubMed  CAS  Google Scholar 

  178. Dantzig AH, Shepard RL, Cao J, et al. Reversal of P-glycoprotein-mediated multidrug resistance by a potent cyclopropyldibenzosuberane modulator, LY335979. Cancer Res 1996; 56 (18): 4171–4179.

    PubMed  CAS  Google Scholar 

  179. Dantzig AH, Law KL, Cao J, Starling JJ. Reversal of multidrug resistance by the P-glycoprotein modulator, LY335979, from the bench to the clinic. Curr Med Chem 2001; 8 (1): 39–50.

    Article  PubMed  CAS  Google Scholar 

  180. Toppmeyer D, Seidman AD, Pollak M, et al. Safety and efficacy of the multidrug resistance inhibitor Incel (biricodar; VX-710) in combination with paclitaxel for advanced breast cancer refractory to paclitaxel. Clin Cancer Res 2002; 8 (3): 670–678.

    PubMed  CAS  Google Scholar 

  181. Abraham J, Bakke S, Rutt A, et al. A phase II trial of combination chemotherapy and surgical resection for the treatment of metastatic adrenocortical carcinoma: continuous infusion doxorubicin, vincristine, and etoposide with daily mitotane as a P-glycoprotein antagonist. Cancer 2002; 94 (9): 2333–2343.

    Article  PubMed  CAS  Google Scholar 

  182. Sonneveld P. Reversal of multidrug resistance in acute myeloid leukaemia and other haematological malignancies. Eur J Cancer 1996; 32A (6): 1062–1069.

    Article  Google Scholar 

  183. Sonneveld P, List AF. Chemotherapy resistance in acute myeloid leukaemia. Best Pract Res Clin Haematol 2001; 14 (1): 211–233.

    Article  PubMed  CAS  Google Scholar 

  184. Germann UA, Shlyakhter K, Mason VS, et al. Cellular and biochemical characterization of VX-710 as a chemosensitizer: Reversal of P-glycoprotein-mediated multidrug resistance in vitro. Anti-Cancer Drugs 1997; 8 (2): 125.

    Article  PubMed  CAS  Google Scholar 

  185. Malkhandi PJ, Ferry DR, Boer R, Kerr DJ. P-Glycoprotein has a drug acceptor site for 1, 4dihydropyridines which is localised on an intracellular domain. Proc Amer Assoc Cancer Res 1995;36:Abst 1977.

    Google Scholar 

  186. Boer R, Ulrich WR, Haas S, et al. Interaction of cytostatics and chemosensitizers with the dexniguldipine binding site on P-glycoprotein. Eur J Pharmacol 1996; 295 (2–3): 253–260.

    Article  PubMed  CAS  Google Scholar 

  187. Safa AR, et al. The relationship between modulation of multidrug resistance by novel, potent agents and their affinities for P-glycoprotein. 9th NCI-EORTC Symp New Drugs Cancer Ther (March 12–15) 1996;Abst 419.

    Google Scholar 

  188. Malingre MM, Beijnen JH, Rosing H, et al. Co-administration of GF120918 significantly increases the systemic exposure to oral paclitaxel in cancer patients. Br J Cancer 2001;84(11:42–47.

    Google Scholar 

  189. Mistry P, Plumb J, Eccles S, et al. In vivo efficacy of XR9051, a potent modulator of Pglycoprotein mediated multidrug resistance. Br J Cancer 1999; 79 (11–12): 1672–1678.

    Article  PubMed  CAS  Google Scholar 

  190. Martin C, Berridge G, Mistry P, et al. The molecular interaction of the high affinity reversal agent XR9576 with P-glycoprotein. Br J Pharmacol 1999; 128 (2): 403–411.

    Article  PubMed  CAS  Google Scholar 

  191. Mistry P, Stewart AJ, Dangerfield W, et al. In vitro and in vivo reversal of P-glycoproteinmediated multidrug resistance by a novel potent modulator, XR9576. Cancer Res 2001; 61 (2): 749–758.

    PubMed  CAS  Google Scholar 

  192. Dodic N, Dumaitre B, Daugan A, Pianetti P. Synthesis and activity against multidrug resistance in Chinese hamster ovary cells of new acridone-4-carboxamides. J Med Chem 1995; 38 (13): 2418.

    Google Scholar 

  193. van Zuylen L, Sparreboom A, van der Gaast A, et al. Disposition of docetaxel in the presence of P-glycoprotein inhibition by intravenous administration of R101933. Eur J Cancer 2002; 38 (8): 1090–1099.

    Article  PubMed  Google Scholar 

  194. Kimura Y, Aoki J, Kohno M, et al. P-glycoprotein inhibition by the multidrug resistance-reversing agent MS-209 enhances bioavailability and antitumor efficacy of orally administered paclitaxel. Cancer Chemother Pharmacol 2002; 49 (4): 322–328.

    Article  PubMed  CAS  Google Scholar 

  195. Dixon R, Toyonaga B. P-glycoprotein inhibitor 0C144–093: Phase 1 intravenous and oral pharmacokinetics of a novel multidrug resistance modulator. Proc Amer Assoc Cancer Res 2000;41:Abst 3863.

    Google Scholar 

  196. Guns ES, Denyssevych T, Dixon R, et al. Drug interaction studies between paclitaxel (Taxol) and 0C 144–093-a new modulator of MDR in cancer chemotherapy. Eur J Drug Metab Pharmacokinet 2002; 27 (2): 119–126.

    Article  PubMed  CAS  Google Scholar 

  197. Leonessa F, Kim JH, Ghiorghis A, et al. C-7 analogues of progesterone as potent inhibitors of the P-glycoprotein efflux pump. J Med Chem 2002; 45 (2): 390–398.

    Article  PubMed  CAS  Google Scholar 

  198. Tranchand B, Catimel G, Lucas C, et al. Phase I clinical and pharmacokinetic study of S9788, a new multidrug-resistance reversal agent given alone and in combination with doxorubicin to patients with advanced solid tumors. Cancer Chemother Pharmacol 1998; 41 (4): 281–291.

    Article  PubMed  CAS  Google Scholar 

  199. Roe M, Folkes A, Ashworth P, et al. Reversal of P-glycoprotein mediated multidrug resistance by novel anthranilamide derivatives. Bioorg Med Chem Lett 1999; 9 (4): 595–600.

    Article  PubMed  CAS  Google Scholar 

  200. Harding MW, Ford, PJ, Mason VS, et al. VX-853: A novel bispecific chemosensitizer which reverses P-glycoprotein-and MRP-mediated multidrug resistance. Proc Amer Assoc Cancer Res 1996;37: Abst. 2283.

    Google Scholar 

  201. Kusunoki N, Takara K, Tanigawara Y, et al. Inhibitory effects of a cyclosporin derivative, SDZ PSC 833, on transport of doxorubicin and vinblastine via human P-glycoprotein. Jpn J Cancer Res 1998; 89 (11): 1220–1228.

    Article  PubMed  CAS  Google Scholar 

  202. Tiberghien F, Wenandy T, Loor F. The potent immunosuppressive cyclosporin FR901459 inhibits the human P-glycoprotein and formyl peptide receptor functions. J Antibiot (Tokyo) 2000; 53 (5): 509–515.

    Article  CAS  Google Scholar 

  203. Wang E-J, Lew K, Casciano CN, et al. Characterization of common azole antifungals contrasted for interaction with P-glycoprotein. Antimicrob Agents Chemother 2002; 46 (1): 160–165.

    Article  PubMed  CAS  Google Scholar 

  204. Martin C, Berridge G, Higgins CF, Callaghan R. The multi-drug resistance reversal agent SR33557 and modulation of vinca alkaloid binding to P-glycoprotein by an allosteric interaction. Br J Pharmacol 1997; 122 (4): 765–771.

    Article  PubMed  CAS  Google Scholar 

  205. Maitrejean M, Comte G, Barron D, et al. The flavanolignan silybin and its hemisynthetic derivatives, a novel series of potential modulators of P-glycoprotein. Bioorg Med Chem Lett 2000; 10 (2): 157–160.

    Article  PubMed  CAS  Google Scholar 

  206. Oldham RK, Reid WK, Barnett D. Phase I study of CBT-1 and Taxol in patients with Taxol resistant cancers. Cancer Biother Radiopharm 2000; 15 (2): 153–159.

    Article  PubMed  CAS  Google Scholar 

  207. Borst P, Evers R, Kool M, Wijnholds J. A family of drug transporters: the multidrug resistance-associated proteins. J Natl Cancer Inst 2000; 92 (16): 1295–1302.

    Article  PubMed  CAS  Google Scholar 

  208. Kruh GD, Zeng H, Rea PA, et al. MRP subfamily transporters and resistance to anticancer agents. J Bioenerg Biomembr 2001; 33 (6): 493–501.

    Article  PubMed  CAS  Google Scholar 

  209. Suzuki T, Nishio K, Tanabe S. The MRP family and anticancer drug metabolism. Curr Drug Metab 2001; 2 (4): 367–377.

    Article  PubMed  CAS  Google Scholar 

  210. Borst P, Elferink RO. Mammalian ABC transporters in health and disease. Annu Rev Biochem 2002; 71: 537–592.

    Article  PubMed  CAS  Google Scholar 

  211. Ross DD, Doyle LA, Schiffer CA, et al. Expression of multidrug resistance-associated protein (MRP) mRNA in blast cells from acute myeloid leukemia (AML) patients. Leukemia 1996; 10 (1): 48–55.

    PubMed  CAS  Google Scholar 

  212. Dietrich CG, de Waart DR, Ottenhoff R, et al. Increased bioavailability of the food-derived carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine in MRP2-deficient rats. Mol Pharmacol 2001; 59 (5): 974–980.

    PubMed  CAS  Google Scholar 

  213. Borst P, Kool M, Evers R. Do cMOAT (MRP2), other MRP homologues, and LRP play a role in MDR? Semin Cancer Biol 1997; 8 (3): 205–213.

    Article  PubMed  CAS  Google Scholar 

  214. Konig J, Nies AT, Cui Y, et al. Conjugate export pumps of the multidrug resistance protein (MRP) family: localization, substrate specificity, and MRP2-mediated drug resistance. Biochim Biophys Acta 1999; 1461 (2): 377–394.

    Article  PubMed  CAS  Google Scholar 

  215. Kawabe T, Chen ZS, Wada M, et al. Enhanced transport of anticancer agents and leukotriene C4 by the human canalicular multispecific organic anion transporter (cMOAT/MRP2). FEBS Lett 1999; 456 (2): 327–331

    Article  PubMed  CAS  Google Scholar 

  216. Allen JD, Brinkhuis RF, van Deemter L, et al. Extensive contribution of the multidrug transporters P-glycoprotein and Mrpl to basal drug resistance. Cancer Res 2000; 60 (20): 5761–5766.

    PubMed  CAS  Google Scholar 

  217. Kool M, de Haas M, Scheffer GL, et al. Analysis of expression of cMOAT (MRP2), MRP3, MRP4, and MRP5, homologues of the multidrug resistance-associated protein gene (MRP1), in human cancer cell lines. Cancer Res 1997; 57 (16): 3537–3547.

    PubMed  CAS  Google Scholar 

  218. Zaman GJ, Versantvoort CH, Smit JJ, et al. Analysis of the expression of MRP, the gene for a new putative transmembrane drug transporter, in human multidrug resistant lung cancer cell lines. Cancer Res 1993; 53 (8): 1747–1750.

    PubMed  CAS  Google Scholar 

  219. Cole SP, Bhardwaj G, Gerlach JH, et al. Overexpression of a transporter gene in a multidrugresistant human lung cancer cell line. Science 1992; 258 (5088): 1650–1654

    Article  PubMed  CAS  Google Scholar 

  220. Kuwano M, Toh S, Uchiumi T, et al. Multidrug resistance-associated protein subfamily transporters and drug resistance. Anticancer Drug Des 1999; 14 (2): 123–131.

    PubMed  CAS  Google Scholar 

  221. Nies AT, Konig J, Pfannschmidt M, et al. Expression of the multidrug resistance proteins MRP2 and MRP3 in human hepatocellular carcinoma. Int J Cancer 2001; 94 (4): 492–499.

    Article  PubMed  CAS  Google Scholar 

  222. Zalcberg J, Hu XF, Slater A, et al. MRP1 not MDRI gene expression is the predominant mechanism of acquired multidrug resistance in two prostate carcinoma cell lines. Prostate Cancer Prostatic Dis 2000; 3 (2): 66–75.

    Article  PubMed  CAS  Google Scholar 

  223. Potschka H, Fedrowitz M, Loscher W. Multidrug resistance protein MRP2 contributes to blood-brain barrier function and restricts antiepileptic drug activity. J Pharmacol Exp Ther 2003; 306 (1): 124–131.

    Article  PubMed  CAS  Google Scholar 

  224. Wijnholds J, deLange EC, Scheffer GL, et al. Multidrug resistance protein 1 protects the choroid plexus epithelium and contributes to the blood-cerebrospinal fluid barrier. J Clin Invest 2000; 105 (3): 279–285.

    Article  PubMed  CAS  Google Scholar 

  225. Loe DW, Almquist KC, Cole SP, Deeley RG. ATP-dependent 17 beta-estradiol 17-(beta-Dglucuronide) transport by multidrug resistance protein (MRP). Inhibition by cholestatic steroids. J Biol Chem 1996; 271 (16): 9683–9689.

    Article  PubMed  CAS  Google Scholar 

  226. Huisman MT, Smit JW, Crommentuyn KM, et al. Multidrug resistance protein 2 (MRP2) transports HIV protease inhibitors, and transport can be enhanced by other drugs. AIDS 2002; 16 (17): 2295–22301

    Article  PubMed  CAS  Google Scholar 

  227. Cui Y, Konig J, Buchholz JK, et al. Drug resistance and ATP-dependent conjugate transport mediated by the apical multidrug resistance protein, MRP2, permanently expressed in human and canine cells. Mol Pharmacol 1999; 55 (5): 929–937.

    PubMed  CAS  Google Scholar 

  228. Hatanaka H, Abe Y, Naruke M, et al. Modulation of multidrug resistance in a cancer cell line by anti-multidrug resistance-associated protein (MRP) ribozyme. Anticancer Res 2001; 21 (2A): 879–885.

    PubMed  CAS  Google Scholar 

  229. Hinoshita E, Uchiumi T, Taguchi K, et al. Increased expression of an ATP-binding cassette superfamily transporter, multidrug resistance protein 2, in human colorectal carcinomas. Clin Cancer Res 2000; 6 (6): 2401–2407.

    PubMed  CAS  Google Scholar 

  230. Hour TC, Chen J, Huang CY, et al. Characterization of chemoresistance mechanisms in a series of cisplatin-resistant transitional carcinoma cell lines. Anticancer Res 2000; 20 (5A): 3221–3225.

    PubMed  CAS  Google Scholar 

  231. Itoh Y, Tamai M, Yokogawa K, et al. Involvement of multidrug resistance-associated protein 2 in in vivo cisplatin resistance of rat hepatoma AH66 cells. Anticancer Res 2002; 22 (3): 1649–1653.

    PubMed  CAS  Google Scholar 

  232. Khokhar NZ, She Y, Rusch VW, Sirotnak FM. Experimental therapeutics with a new 10deazaaminopterin in human mesothelioma: further improving efficacy through structural design, pharmacologie modulation at the level of MRP ATPases, and combined therapy with platinums. Clin Cancer Res 2001; 7 (10): 3199–3205.

    PubMed  CAS  Google Scholar 

  233. Koike K, Kawabe T, Tanaka T, et al. A canalicular multispecific organic anion transporter (cMOAT) antisense cDNA enhances drug sensitivity in human hepatic cancer cells. Cancer Res 1997; 57 (24): 5475–5479.

    PubMed  CAS  Google Scholar 

  234. Komuro Y, Udagawa Y, Susumu N, et al. Paclitaxel and SN-38 overcome cisplatin resistance of ovarian cancer cell lines by down-regulating the influx and efflux system of cisplatin. Jpn J Cancer Res 2001; 92 (11): 1242–12450.

    Article  PubMed  CAS  Google Scholar 

  235. O’Brien ML, Vulevic B, Freer S, et al. Glutathione peptidomimetic drug modulator of multidrug resistance-associated protein. J Pharmacol Exp Ther 1999; 291 (3): 1348–1355.

    PubMed  Google Scholar 

  236. Kirihara Y, Yamamoto W, Toge T, Nishiyama M. Dihydropyrimidine dehydrogenase, multidrug resistance-associated protein, and thymidylate synthase gene expression levels can predict 5-fluorouracil resistance in human gastrointestinal cancer cells. Int J Oncol 1999; 14 (3): 551–556.

    PubMed  CAS  Google Scholar 

  237. Zhan M, Liu X. Schedule-dependent reversion of cisplatin resistance by 5-fluorouracil in a cisplatin-resistant human lung adenocarcinoma cell line A549DDP. Chin Med J (Engl) 1999; 112 (4): 336–339.

    CAS  Google Scholar 

  238. Hegedus T, Orfi L, Seprodi A, et al. Interaction of tyrosine kinase inhibitors with the human multidrug transporter proteins, MDR1 and MRP1. Biochim Biophys Acta 2002; 1587 (23): 318–325.

    PubMed  CAS  Google Scholar 

  239. Mahon FX, Belloc F, Lagarde V, et al. MDR1 gene overexpression confers resistance to imatinib mesylate in leukemia cell line models. Blood 2003; 101 (6): 2368–2373.

    Article  PubMed  CAS  Google Scholar 

  240. Olson DP, Scadden DT, D’Aquila RT, De Pasquale MP. The protease inhibitor ritonavir inhibits the functional activity of the multidrug resistance related-protein 1 (MRP-1). AIDS 2002; 16 (13): 1743–1747.

    Article  PubMed  CAS  Google Scholar 

  241. Scheffer GL, Kool M, de Haas M, et al. Tissue distribution and induction of human multidrug resistant protein 3. Lab Invest 2002; 82 (2): 193–201.

    PubMed  CAS  Google Scholar 

  242. Ogawa K, Suzuki H, Hirohashi T, et al. Characterization of inducible nature of MRP3 in rat liver. Am J Physiol Gastrointest Liver Physiol 2000; 278 (3): G438 - G446.

    PubMed  CAS  Google Scholar 

  243. Schuetz JD, Connelly MC, Sun D, et al. MRP4: a previously unidentified factor in resistance to nucleoside-based antiviral drugs. Nat Med 1999; 5 (9): 1048–1051.

    Article  PubMed  CAS  Google Scholar 

  244. Chen ZS, Lee K, Kruh GD. Transport of cyclic nucleotides and estradiol 17-beta-D-glucuronide by multidrug resistance protein 4. Resistance to 6-mercaptopurine and 6-thioguanine. J Biol Chem 2001; 276 (36): 33747–33754.

    Article  PubMed  CAS  Google Scholar 

  245. Zelcer N, Reid G, Wielinga P, et al. Steroid and bile acid conjugates are substrates of human multidrug-resistance protein (MRP) 4 (ATP-binding cassette C4). Biochem J 2003; 371 (Pt 2): 361–367.

    Article  PubMed  CAS  Google Scholar 

  246. Wielinga PR, Reid G, Challa EE, et al. Thiopurine metabolism and identification of the thiopurine metabolites transported by MRP4 and MRP5 overexpressed in human embryonic kidney cells. Mol Pharmacol 2002; 62 (6): 1321–1331.

    Article  PubMed  CAS  Google Scholar 

  247. Jedlitschky G, Burchell B, Keppler D. The multidrug resistance protein 5 functions as an ATP-dependent export pump for cyclic nucleotides. J Biol Chem 2000; 275 (39): 30069–30074.

    Article  PubMed  CAS  Google Scholar 

  248. Chen ZS, Lee K, Walther S, et al. Analysis of methotrexate and folate transport by multidrug resistance protein 4 (ABCC4): MRP4 is a component of the methotrexate efflux system. Cancer Res 2002; 62 (11): 3144–3150.

    PubMed  CAS  Google Scholar 

  249. Shoshani I, Laux WH, Perigaud C, et al. Inhibition of adenylyl cyclase by acyclic nucleoside phosphonate antiviral agents. J Biol Chem 1999; 274 (49): 34742–3474.

    Article  PubMed  CAS  Google Scholar 

  250. Schuetz EG, Strom S, Yasuda K, et al. Disrupted bile acid homeostasis reveals an unexpected interaction among nuclear hormone receptors, transporters, and cytochrome P450. J Biol Chem 2001; 276 (42): 39411–39418.

    Article  PubMed  CAS  Google Scholar 

  251. Belinsky MG, Chen ZS, Shchaveleva I, et al. Characterization of the drug resistance and transport properties of multidrug resistance protein 6 (MRP6, ABCC6). Cancer Res 2002; 62 (21): 6172–6177.

    PubMed  CAS  Google Scholar 

  252. Madon J, Hagenbuch B, Landmann L, et al. Transport function and hepatocellular localization of mrp6 in rat liver. Mol Pharmacol 2000; 57 (3): 634–641.

    PubMed  CAS  Google Scholar 

  253. Bergen AA, Plomp AS, Schuurman EJ, et al. Mutations in ABCC6 cause pseudoxanthoma elasticum. Nat Genet 2000; 25 (2): 228–231.

    Article  PubMed  CAS  Google Scholar 

  254. Miyake K, Mickley L, Litman T, et al. Molecular cloning of cDNAs which are highly overexpressed in mitoxantrone-resistant cells: demonstration of homology to ABC transport genes. Cancer Res 1999; 59 (1): 8–13.

    PubMed  CAS  Google Scholar 

  255. Doyle LA, Yang W, Abruzzo LV, et al. A multidrug resistance transporter from human MCF7 breast cancer cells. Proc Natl Acad Sci USA 1998; 95 (26): 15665–15670.

    Article  PubMed  CAS  Google Scholar 

  256. Robey RW, Medina-Perez WY, Nishiyama K, et al. Overexpression of the ATP-binding cassette half-transporter, ABCG2 (Mxr/BCrp/ABCP1), in flavopiridol-resistant human breast cancer cells. Clin Cancer Res 2001; 7 (1): 145–152.

    PubMed  CAS  Google Scholar 

  257. Wang X, Furukawa T, Nitanda T, et al. Breast cancer resistance protein (BCRP/ABCG2) induces cellular resistance to HIV-1 nucleoside reverse transcriptase inhibitors. Mol Pharmacol 2003; 63 (1): 65–72.

    Article  PubMed  CAS  Google Scholar 

  258. Nakagawa R, Hara Y, Arakawa H, et al. ABCG2 confers resistance to indolocarbazole corn-pounds by ATP-dependent transport. Biochem Biophys Res Commun 2002; 299 (4): 669–675.

    Article  PubMed  CAS  Google Scholar 

  259. Allen JD, Schinkel AH. Multidrug resistance and pharmacological protection mediated by the breast cancer resistance protein (BCRP/ABCG2). Mol Cancer Ther 2002; 1 (6): 427–434.

    PubMed  CAS  Google Scholar 

  260. Litman T, Brangi M, Hudson E, et al. The multidrug-resistant phenotype associated with overexpression of the new ABC half-transporter, MXR (ABCG2). J Cell Sci 2000; 113 (Pt 11): 2011–2021.

    PubMed  CAS  Google Scholar 

  261. Allen JD, Brinkhuis RF, Wijnholds J, Schinkel AH. The mouse Bcrpl/Mxr/Abcp gene: amplification and overexpression in cell lines selected for resistance to topotecan, mitoxantrone, or doxorubicin. Cancer Res 1999; 59 (17): 4237–4241.

    PubMed  CAS  Google Scholar 

  262. Ross DD. Novel mechanisms of drug resistance in leukemia. Leukemia 2000; 14 (3): 467–473.

    Article  PubMed  CAS  Google Scholar 

  263. van den Heuvel-Eibrink MM, Wiemer EA, Prins A, et al. Increased expression of the breast cancer resistance protein (BCRP) in relapsed or refractory acute myeloid leukemia (AML). Leukemia 2002; 16 (5): 833–839.

    Article  PubMed  CAS  Google Scholar 

  264. Cooray HC, Blackmore CG, Maskell L, Barrand MA. Localisation of breast cancer resistance protein in microvessel endothelium of human brain. Neuroreport 2002; 13 (16): 2059–2063.

    Article  PubMed  CAS  Google Scholar 

  265. Maliepaard M, Scheffer GL, Faneyte IF, et al. Subcellular localization and distribution of the breast cancer resistance protein transporter in normal human tissues. Cancer Res 2001; 61 (8): 3458–3464.

    PubMed  CAS  Google Scholar 

  266. Scharenberg CW, Harkey MA, Torok-Storb B. The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood 2002; 99 (2): 507–512.

    Article  PubMed  CAS  Google Scholar 

  267. Jonker JW, Smit JW, Brinkhuis RF, et al. Role of breast cancer resistance protein in the bioavailability and fetal penetration of topotecan. J Natl Cancer Inst 2000; 92 (20): 1651–1656.

    Article  PubMed  CAS  Google Scholar 

  268. Eisenblatter T, Huwel S, Galla HJ. Characterisation of the brain multidrug resistance protein (BMDP/ABCG2/BCRP) expressed at the blood-brain barrier. Brain Res 2003; 971 (2): 221–231.

    Article  PubMed  CAS  Google Scholar 

  269. Zamber CP, Lamba JK, Yasuda K, et al. Natural allelic variants of breast cancer resistance protein (BCRP) and their relationship to BCRP expression in human intestine. Pharmacogenetics 2003; 13 (1): 19–28.

    Article  PubMed  CAS  Google Scholar 

  270. Childs S, Yeh RL, Georges E. Ling V. Identification of a sister gene to P-glycoprotein. Cancer Res 1995; 55 (10): 2029–2034.

    PubMed  CAS  Google Scholar 

  271. Thompson R, Strautnieks S. BSEP: function and role in progressive familial intrahepatic cholestasis. Semin Liver Dis 2001; 21 (4): 545–550.

    Article  PubMed  CAS  Google Scholar 

  272. Meier PJ, Stieger B. Bile salt transporters. Annu Rev Physiol 2002; 64: 635–661.

    Article  PubMed  CAS  Google Scholar 

  273. Strautnieks SS, Bull LN, Knisely AS, et al. A gene encoding a liver-specific ABC transporter is mutated in progressive familial intrahepatic cholestasis. Nat Genet 1998; 20 (3): 233–238.

    Article  PubMed  CAS  Google Scholar 

  274. Wang R, Salem M, Yousef IM, et al. Targeted inactivation of sister of P-glycoprotein gene (BSEP) in mice results in non-progressive but persistent intrahepatic cholestasis. Proc Natl Acad Sci USA 2001; 98 (4): 2011–2016.

    Article  PubMed  CAS  Google Scholar 

  275. Stieger B, Fattinger K, Madon J, et al. Drug-and estrogen-induced cholestasis through inhibition of the hepatocellular bile salt export pump (Bsep) of rat liver. Gastroenterology 2000; 118 (2): 422–430.

    Article  PubMed  CAS  Google Scholar 

  276. Childs S, Yeh RL, Hui D, Ling V. Taxol resistance mediated by transfection of the liver-specific sister gene of P-glycoprotein. Cancer Res 1998; 58 (18): 4160–4167.

    PubMed  CAS  Google Scholar 

  277. Funk C, Ponelle C, Scheuermann G, Pantze M. Cholestatic potential of troglitazone as a possible factor contributing to troglitazone-induced hepatotoxicity: in vivo and in vitro interaction at the canalicular bile salt export pump (Bsep) in the rat. Mol Pharmacol 2001; 59 (3): 627–635.

    PubMed  CAS  Google Scholar 

  278. Kostrubsky VE, Vore M, Kindt E, et al. The effect of troglitazone biliary excretion on metabolite distribution and cholestasis in transporter-deficient rats. Drug Metab Dispos 2001; 29 (12): 1561–1566.

    PubMed  CAS  Google Scholar 

  279. Fattinger K, Funk C, Pantze M, et al. The endothelin antagonist bosentan inhibits the canalicular bile salt export pump: a potential mechanism for hepatic adverse reactions. Clin Pharmacol Ther 2001; 69 (4): 223–231.

    Article  PubMed  CAS  Google Scholar 

  280. Bolder U, Trang NV, Hagey LR, et al. Sulindac is excreted into bile by a canalicular bile salt pump and undergoes a cholehepatic circulation in rats. Gastroenterology 1999; 117 (4): 962–971.

    Article  PubMed  CAS  Google Scholar 

  281. Torok M, Gutmann H, Fricker G, Drewe J. Sister of P-glycoprotein expression in different tissues. Biochem Pharmacol 1999; 57 (7): 833–835.

    Article  PubMed  CAS  Google Scholar 

  282. Wang E-J, Casciano CN, Clement RP, Johnson WW Fluorescent substrates of sister-P-glycoprotein (BSEP) evaluated as markers of active transport and inhibition: evidence for contingent unequal binding sites. Pharmaceutical Res 2003; 20 (4): 537–544.

    Article  CAS  Google Scholar 

  283. Smith AJ, van Helvoort A, van Meer G, et al. MDR3 P-glycoprotein, a phosphatidylcholine translocase, transports several cytotoxic drugs and directly interacts with drugs as judged by interference with nucleotide trapping. J Biol Chem 2000; 275 (31): 23530–23539.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Johnson, W.W. (2004). ABC Transporter Proteins and Cellular Drug Resistance. In: Lu, D.R., Øie, S. (eds) Cellular Drug Delivery. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-745-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-745-1_9

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-455-5

  • Online ISBN: 978-1-59259-745-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics