Skip to main content

Treatment of Systemic Lupus Erythematosus by Selective Inhibition of T-Cell Function

  • Chapter
Lupus

Part of the book series: Contemporary Immunology ((CONTIM))

  • 174 Accesses

Abstract

The past decade has brought dramatic advances in our understanding of the mechanisms underlying normal and pathologic immune responses. Based on these advances, several new strategies have been developed in an effort to achieve selective inhibition of pathologic immune responses (e.g., graft rejection, autoimmunity), while minimizing inhibitory effects on protective immune responses and avoiding toxic effects beyond the immune system. Many of these strategies are based on the two-signal model for T-cell activation (1–3). In this model, the first signal is provided by the interaction between the T-cell receptor (TCR) and an antigenic peptide in the context of class II major histocompatibility antigens (MHA II). This signal is augmented by the interaction between CD4 and MHA II, and it can be blocked by monoclonal antibodies (mAb) to CD4 (4). The second signal is provided by other receptor-ligand pairs on T cells and antigen-presenting cells (APCs). The presence or absence of this signal plays a critical role in determining whether antigen recognition through the TCR results in T-cell activation or T-cell unresponsiveness (1). Studies in murine models for systemic lupus erythematosus (SLE) indicate that blockade of either signal 1 or signal 2 can inhibit lupus nephritis (5–10). As described in this chapter, the challenge now is to translate these promising findings into practical new therapies for people with SLE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Marrack, P. and Kappler, J. W. (1993) How the immune system recognizes the body. Sci. Am. 269, 80–89.

    Article  PubMed  CAS  Google Scholar 

  2. Gimmi, C. D., Freeman, G. J., Gribben, G. J., Sugita, K., Freedman, A. S., Morimoto, C., and Nadler, L. M. (1991) B cell surface antigen B7 provides a costimulatory signal that induces T cells to proliferate and secrete interleukin 2. Proc. Natl. Acad. Sci. USA 88, 6575–6579.

    Article  PubMed  CAS  Google Scholar 

  3. Harding, F. A., McArthur, J. G., Gross, J. A., Raulet, D. H., and Allison, J. P. (1992) CD28mediated signaling co-stimulates murine T cells and prevents induction of anergy in T cell clones. Nature 356, 607–610.

    Article  PubMed  CAS  Google Scholar 

  4. Swain, S. L., Dialynas, D. P., Fitch, F. W., and English, M. (1984) Monoclonal antibody to L3T4 blocks the function of T cells specific for class II major histocompatibility complex antigen. J. Immunol. 132, 1118–1123.

    PubMed  CAS  Google Scholar 

  5. Wofsy, D. and Seaman, W. E. (1985) Successful treatment of autoimmunity in NZB/NZW F1 mice with monoclonal antibody to L3T4. J. Exp. Med. 161, 378–391.

    Article  PubMed  CAS  Google Scholar 

  6. Wofsy, D. and Seaman, W. E. (1987) Reversal of advanced murine lupus in NZB/NZW mice by treatment with monoclonal antibody to L3T4. J. Immunol. 138, 3247–3253.

    PubMed  CAS  Google Scholar 

  7. Finck, B. K., Linsley, P. S., and Wofsy, D. (1994) Treatment of murine lupus with CTLA4Ig. Science 265, 1225–1227.

    Article  PubMed  CAS  Google Scholar 

  8. Mohan, C., Shi, Y., Laman, J. D., and Datta, S. K. (1995) Interaction between CD40 and its ligand gp39 in the development of murine lupus nephritis. J. Immunol. 154, 1470–1480.

    PubMed  CAS  Google Scholar 

  9. Early, G. S., Zhao, W., and Burns, C. M. (1996) Anti-CD40 ligand antibody treatment prevents the development of lupus-like nephritis in a subset of New Zealand Black x New Zealand White mice. J. Immunol. 157, 3159–3164.

    PubMed  CAS  Google Scholar 

  10. Daikh, D. I., Finck, B. K., Linsley, P. S., Hollenbaugh, D., and Wofsy, D. (1997) Long-term inhibition of murine lupus by brief simultaneous blockade of the B7/CD28 and CD40/gp39 costimulation pathways. J. Immunol. 159, 3104–3108.

    PubMed  CAS  Google Scholar 

  11. Steinberg, A. D., Raveche, E. S., Laskin, C. A., Smith, H. R., Santoro, T., Miller, M. L., and Plotz, P. H. (1984) Systemic lupus erythematosus: insights from animal models. Ann. Intern. Med. 100, 714–727.

    Article  PubMed  CAS  Google Scholar 

  12. Wofsy, D. (1986) Administration of monoclonal anti-T cell antibodies retards murine lupus in BXSB mice. J. Immunol. 136, 4554–4560.

    PubMed  CAS  Google Scholar 

  13. Santoro, T. J., Portanova, J. P., and Kotzin, B. L. (1988) The contribution of L3T4+ T cells to lymphoproliferation and autoantibody production in MRL-1pr/lpr mice. J. Exp. Med. 167, 1713–1718.

    Article  PubMed  CAS  Google Scholar 

  14. Cobbold, S. P., Jayasuriya, A., Nash, A., Prospero, T. D., and Waldmann, H. (1984) Therapy with monoclonal antibodies by elimination of T-cell subsets in vivo. Nature 312, 548–551.

    Article  PubMed  CAS  Google Scholar 

  15. Wofsy, D., Mayes, D. C., Woodcock, J., and Seaman, W. E. (1985) Inhibition of humoral immunity in vivo by monoclonal antibody to L3T4: studies with soluble antigens in intact mice. J. Immunol. 135, 1698–1701.

    PubMed  CAS  Google Scholar 

  16. Woodcock, J., Wofsy, D., Eriksson, E., Scott, J. H., and Seaman, W. E. (1986) Rejection of skin grafts and generation of cytotoxic T cells by mice depleted of L3T4+ cells. Transplantation 42, 636–642.

    Article  PubMed  CAS  Google Scholar 

  17. Gutstein, N. L., Seaman, W. E., Scott, J. H., and Wofsy, D. (1986) Induction of immune tolerance by administration of monoclonal antibody to L3T4. J. Immunol. 137, 1127–1132.

    PubMed  CAS  Google Scholar 

  18. Gutstein, N. L. and Wofsy, D. (1986) Administration of F(ab’)2 fragments of monoclonal antibody to L3T4 inhibits humoral immunity in mice without depleting L3T4+ cells. J. Immunol. 137, 3414–3419.

    PubMed  CAS  Google Scholar 

  19. Goronzy, J., Weyand, C. M., and Fathman, C. G. (1986) Long-term humoral unresponsiveness in vivo, induced by treatment with monoclonal antibody against L3T4. J. Exp. Med. 164, 911–925.

    Article  PubMed  CAS  Google Scholar 

  20. Wofsy, D. and Seaman, W. E. (1986) Analysis of the function of L3T4+ T cells by in vivo treatment with monoclonal antibody to L3T4. Immunol. Res. 5, 97–105.

    Article  PubMed  CAS  Google Scholar 

  21. Carteron, N. L., Schimenti, C. L., and Wofsy, D. (1989) Treatment of murine lupus with F(ab’)2 fragments of monoclonal antibody to L3T4: suppression of autoimmunity does not depend on T helper cell depletion. J. Immunol. 142, 1470–1475.

    PubMed  CAS  Google Scholar 

  22. Connolly, K., Roubinian, J. R., and Wofsy, D. (1992) Development of murine lupus in CD4depleted NZB/NZW mice: sustained inhibition of residual CD4+ T cells is required to suppress autoimmunity J. Immunol. 149, 3083–3088.

    PubMed  CAS  Google Scholar 

  23. Ranges, G. E., Sriram, S., and Cooper, S. M. (1985) Prevention of type II collagen-induced arthritis by in vivo treatment with anti-L3T4. J. Exp. Med. 162, 1105–1110.

    Article  PubMed  CAS  Google Scholar 

  24. Waldor, M. K., Sriram, S., Hardy, R., Herzenberg, L. A., Lanier, L., Lim, M., and Steinman, L. (1985) Reversal of experimental allergic encephalomyelitis with monoclonal antibody to a T-cell subset marker. Science 227, 415–417.

    Article  PubMed  CAS  Google Scholar 

  25. Koike, T., Itoh, Y., Ishi, T., Ito, I., Takabayashi, K., Marumaya, N., Tomioka, H., and Yoshida, S. (1987) Preventive effect of monoclonal anti-L3T4 antibody on development of diabetes in NOD mice. Diabetes 36, 539–541.

    Article  PubMed  CAS  Google Scholar 

  26. Shizuru, J. A., Taylor-Edwards, C., Banks, B. A., Gregory, A. K., and Fathman, C. G. (1988) Immunotherapy of the nonobese diabetic mouse: treatment with an antibody to T-helper lymphocytes. Science 240, 659–661.

    Article  PubMed  CAS  Google Scholar 

  27. Christadoss, P. and Dauphinee, M. L. (1986) Immunotherapy for myasthenia gravis: a murine model. J. Immunol. 136, 2437–2440.

    PubMed  CAS  Google Scholar 

  28. Herzog, C. H., Walker, C. H., Muller, W., Rieber, P., Riethmuller, G., Wassmer, P. Stockinger, H., Madic, O., and Pichler, W. J. (1989) Anti-CD4 antibody treatment of patients with rheumatoid arthritis: I. Effect on clinical course and circulating T cells. J. Autoimmun. 2, 627–642.

    CAS  Google Scholar 

  29. Moreland, L. W., Bucy, R. P., Tilden, A., Pratt, P. W., LoBuglio, A. F., Khazaeli, M., Everson, M. P., Daddona, P., Ghrayeb, J., Kilgariff, C., Sanders, M. E., and Koopman, W. J. (1993) Use of a chimeric monoclonal anti-CD4 antibody in patients with refractory rheumatoid arthritis. Arthritis Rheum. 36, 307–318.

    Article  PubMed  CAS  Google Scholar 

  30. Moreland, L. W., Pratt, P. W., Bucy, R. P., Jackson, B. S., Feldman, J. W., and Koopman, W. J. (1994) Treatment of refractory rheumatoid arthritis with a chimeric anti-CD4 monoclonal antibody: long-term followup of CD4+ T cell counts. Arthritis Rheum. 37, 834–838.

    Article  PubMed  CAS  Google Scholar 

  31. van der Lubbe, P. A., Dijkmans, B. A., Markusse, H. M., Nässander, U., and Breedveld, F. C. (1995) A randomized, double-blind, placebo-controlled study of CD4 monoclonal antibody therapy in early rheumatoid arthritis. Arthritis Rheum. 38, 1097–1106.

    Article  PubMed  Google Scholar 

  32. Levy, R., Weisman, M., Wiesenhutter, C., Yocum, D., Schnitzer, T., Goldman, A., Schiff, M., Breedveld, F., Solinger, A., MacDonald, B., and Lipani, J. (1996) Results of a placebo-controlled, multicenter trial using a primatized non-depleting, anti-CD4 monoclonal antibody in the treatment of rheumatoid arthritis. Arthritis Rheum. 39, S 122.

    Google Scholar 

  33. Tan, P., Anasetti, C., Hansen, J. A., Melrose, J., Brunvand, M., Bradshaw, J., Ledbetter, J. A., and Linsley, P. S. (1993) Induction of alloantigen-specific hyporesponsiveness in human T lymphocytes by blocking interaction of CD28 with its natural ligand B7BB1. J. Exp. Med. 177, 165–173.

    Article  PubMed  CAS  Google Scholar 

  34. Bluestone, J. A. (1995) New perspectives of CD28–B7-mediated T cell costimulation. Immunity 2, 555–559.

    Article  PubMed  CAS  Google Scholar 

  35. Linsley, P. S., Brady, W., Urnes, M., Gorsmaire, L., Damle, N. K., and Ledbetter, J. A. (1991) CTLA-4 is a second receptor for the B cell activation antigen B7. J. Exp. Med. 174, 561–569.

    Article  PubMed  CAS  Google Scholar 

  36. Krummel, M. F. and Allison, J. P. (1995) CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J. Exp. Med. 182, 459–465.

    Article  PubMed  CAS  Google Scholar 

  37. Waterhouse, P., Penninger, J. M., Timms, E., Wakeham, A., Shahinian, A., Lee, K. P., Thompson, C. B., Griesser, H., and Mak, T. (1995) Lymphoproliferative disorders with early lethality in mice deficient in CTLA-4. Science 270, 985–988.

    Article  PubMed  CAS  Google Scholar 

  38. Leach, D. R., Krummel, M. F., and Allison, J. P. (1996) Enhancement of antitumor immunity by CTLA-4 blockade. Science 271, 1734–1736.

    Article  PubMed  CAS  Google Scholar 

  39. Linsley, P. S., Wallace, P. M., Johnson, J., Gibson, M. G., Greene, J. L., Ledbetter, J. A., Singh, C., and Tepper, M. A. (1992) Immunosuppression in vivo by a soluble form of the CTLA-4 T cell activation molecule. Science 257, 792–795.

    Article  PubMed  CAS  Google Scholar 

  40. Milich, D. R., Linsley, P. S., Hughes, J. L., and Jones, J. E. (1994) Soluble CTLA-4 can suppress autoantibody production and elicit long term unresponsiveness in a novel transgenic model. J. Immunol. 153, 429–435.

    PubMed  CAS  Google Scholar 

  41. Durie, F. H., Foy, T. M., Masters, S. R., Laman, J. D., and Noelle, R. J. (1994) The role of CD40 in the regulation of humoral and cell-mediated immunity. Immunol. Today 15, 406–411.

    Article  PubMed  CAS  Google Scholar 

  42. Aruffo A., Farrington, M., Hollenbaugh, D., Li, X., Milatovich, A., Nonoyama, S., et al. (1993) The CD40 ligand, gp39, is defective in activated T cells from patients with X-linked hyper-IgM syndrome. Cell 72, 291–300.

    Article  PubMed  CAS  Google Scholar 

  43. Allen, R. C., Armitage, R. J., Conley, M. E., Rosenblatt, H., Jenkins, N. A., Copeland, N. G., et al. (1993) CD40 ligand gene defects responsible for X-linked hyper-IgM syndrome. Science 259, 990–996.

    Article  PubMed  CAS  Google Scholar 

  44. Klaus, S. J., Berberich, I., and Clark, E. A. (1994) CD40 and its ligand in the regulation of humoral immunity Semin. Immunol. 6, 279–286.

    Article  PubMed  CAS  Google Scholar 

  45. Griggs, N. D., Agersborg, S. S., Noelle, R. J., Ledbetter, J. A., Linsley, P. S., and Tung, K. S. K. (1996) The relative contribution of the CD28 and gp39 costimulatory pathways in the clonal expression and pathogenic acquisition of self reactive T cells. J. Exp. Med. 183, 801–810.

    Article  PubMed  CAS  Google Scholar 

  46. Daikh, D. I. and Wofsy, D. (1998) Induction of antigen-specific tolerance in vivo by blockade of T cell costimulation. J. Invest. Med. 46, 72A (abstract).

    Google Scholar 

  47. Austin, H. A., Klippel, J. H., Balow, J. E., le Riche, N. G., Steinberg, A. D., Plotz, P. H., and Decker, J. L. (1986) Therapy of lupus nephritis: controlled trial of prednisone and cytotoxic drugs. N. Engl. J. Med. 314, 614–619.

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Daikh, D.I., Wofsy, D. (1999). Treatment of Systemic Lupus Erythematosus by Selective Inhibition of T-Cell Function. In: Kammer, G.M., Tsokos, G.C. (eds) Lupus. Contemporary Immunology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-703-1_38

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-703-1_38

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-5686-9

  • Online ISBN: 978-1-59259-703-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics