Skip to main content

Impaired DNA Methylation in Lupus T Cells

  • Chapter
Lupus

Part of the book series: Contemporary Immunology ((CONTIM))

Abstract

Although lupus is commonly thought of as a B-cell disease, evidence from murine models of lupus-like syndromes and our understanding of how T cells coordinate the overall immune response suggest that T cells play a fundamental role in this disorder. Our group has developed a model that directly implicates T cells in the initiation of drug-induced and idiopathic lupus, and suggests molecular mechanisms relevant to this process. These studies derive from experiments aimed at determining the importance of DNA methylation in the regulation of T-cell function and gene expression. One particularly interesting outcome of these experiments is that hypomethylated CD4+ cells are no longer dependent on antigen for activation, and respond to antigen-presenting cells (APCs) lacking specific antigen, thus demonstrating characteristics of autoreactivity. We have used this observation to develop a working model for the study of both idiopathic and drug-induced lupus, in which methylation changes in the promoter sequences of critical genes lead to autoreactivity, and the autoreactive T cells then induce an autoimmune disease. This chapter reviews the current concepts regarding DNA methylation and its role in gene regulation, and relates this information to our model of T-cell—induced lupus-like disease. Finally, this chapter describes our current work for consideration as an area of research to be pursued to understand fully the molecular events initiating lupus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, R. L. P. (1994) Eukaryotic DNA methyltransferases—structure and function. BioEssays 17, 139–144.

    Google Scholar 

  2. Bird, A. P. (1986) CpG-rich islands and the function of DNA methylation. Nature 321, 209–213.

    Article  PubMed  CAS  Google Scholar 

  3. Cross, S. H. and Bird, A. P. (1995) CpG islands and genes. Curr. Biol. Ltd. 5, 309–314.

    CAS  Google Scholar 

  4. Antequera, F. and Bird, A. (1993) CpG islands, in DNA Methylation: Molecular Biology and Biological Significance ( Host, J. P. and Saluz, H. P., eds.), Birkhauser Verlag, Basel, Switzerland, pp. 169–185.

    Chapter  Google Scholar 

  5. Razin, A. and Riggs, D. (1980) DNA methylation and gene function. Science 210, 604–610.

    Article  PubMed  CAS  Google Scholar 

  6. Zacharias, W. (1993) Methylation of cytosine influences in DNA structure, in DNA Methylation: Molecular Biology and Biological Significance ( Jost, J. P. and Saluz, H. P., eds.). Birkauser Verlag, Basel, Switzerland, pp. 27–38.

    Chapter  Google Scholar 

  7. Meehan, R., Lewis, J. D., McKay, S., Kleiner, E. L., and Bird, A. (1989) Identification of a mammalian protein that binds specifically to DNA containing methylated CpGs. Cell 58, 499–507.

    Article  PubMed  CAS  Google Scholar 

  8. Boyes, J. and A. Bird. (1991) DNA methylation inhibits transcription indirectly via a methylCpG binding protein. Cell 64, 1123–1134.

    Article  PubMed  CAS  Google Scholar 

  9. Kass, S.U., Pruss, D., and Wolffe, A. P. (1997) How does DNA methylation repress transcription? Trends Genet. 13, 444–449.

    Article  PubMed  CAS  Google Scholar 

  10. Siegfried, Z. and Cedar, H. (1997) DNA methylation: a molecular lock. Curr. Biol. 7, R305 - R307.

    Article  PubMed  CAS  Google Scholar 

  11. Bestor, T., Laudano, A., Mattaliano, R., and Ingram, V. (1988) Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. J. Mol. Biol. 203, 971–983.

    Article  PubMed  CAS  Google Scholar 

  12. Bestor, T. H. and Ingram, V. M. (1985) Growth-dependent expression of multiple species of DNA methyltransferase in murine erythroleukemia cells. Proc. Natl. Acad. Sci. USA 82, 2674–2678.

    Article  PubMed  CAS  Google Scholar 

  13. Gruenbaum, Y., Cedar, H., and Razin, A. (1982) Substrate and sequence specificity of a eukaryotic DNA methylase. Nature 95, 620–622.

    Article  Google Scholar 

  14. Bird, A. (1992) The essentials of DNA methylation. Cell 70, 5–8.

    Article  PubMed  CAS  Google Scholar 

  15. Razin, A. and Szyf, M. (1984) DNA methylation patterns: formation and function. Biochim. Biophys. Acta 782, 331–342.

    Article  PubMed  CAS  Google Scholar 

  16. Bird, A. P. (1986) CpG-rich islands and the function of DNA methylation. Nature 321, 209–213.

    Article  PubMed  CAS  Google Scholar 

  17. Yen, R. W. C., Vertino, P. M., Nelkin, B. D., Yu, J. J., El-Deiry, W. S., Cumaraswamy, A., Lennon, G. G., Trask, B. J., Celano, P., and Baylin, S. B. (1992) Isolation and characterization of the cDNA encoding human DNA methyltransferase. Nucleic Acids Res. 20, 2287–2291.

    Article  PubMed  CAS  Google Scholar 

  18. Szyf, M., Kaplan, F., Mann, V., Giloh, H., Kedar, E., and Razin, A. (1985) Cell cycle-dependent regulation of eukaryotic DNA methylase level. J. Biol. Chem. 260, 8653–8656.

    PubMed  CAS  Google Scholar 

  19. Szyf, M., Bozovic, V., and Tanigawa, G. (1991) Growth regulation of mouse DNA methyltransferase gene expression. J. Biol. Chem. 266, 10,027–10, 030.

    Google Scholar 

  20. Leonhardt, H., Page, A. W., Weier, H.-U., and Bestor, T. H. (1992) A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei. Cell 71, 865–873.

    Article  PubMed  CAS  Google Scholar 

  21. Chuang, L.S.-H., Hain-In, I., Koh, T.-H., Ng, H.-H., Xu, G., and Li, B. F. L. (1997) Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1. Science 277, 1996–2000.

    Article  PubMed  CAS  Google Scholar 

  22. Vertino, P.M., Yen, R.-W. C., Gao, J., and Baylin, S. B. (1996) De novo methylation of CpG island sequences in human fibroblasts overexpressing DNA (cytosine-5-)-methyltransferase. Mol. Cell. Biol. 16, 4555–4565.

    PubMed  CAS  Google Scholar 

  23. Antequera, F., Boyes, J., and Bird, A. (1990) High levels of de novo methylation and altered chromatin structure at CpG islands in cell lines. Cell 62, 503–514.

    Article  PubMed  CAS  Google Scholar 

  24. Lei, H., Oh, S. P., Okano, M., Jüttermann, R., Gos, K. S., Jaenisch, R., and Li, E. (1996) De novo DNA cytosine methyltransferase activities in mouse embryonic stem cells. Development 122, 3195–3205.

    PubMed  CAS  Google Scholar 

  25. Riggs, A.D. and Pfeifer, G. P. (1992) X-chromosome inactivation and cell memory. Trends Genet 8, 169–174.

    PubMed  CAS  Google Scholar 

  26. Stoger, R., Kubicka, P., Liu, C.-G., Kafri, T., Razin, A., Cedar, H., et al. (1993) Maternal specific methylation of the imprinted mouse Igf2r locus identified the expressed locus as carrying the imprinting signal. Cell 73, 61–71.

    Article  PubMed  CAS  Google Scholar 

  27. Norris, D. P., Patel, D., Kay, G. F., Penny, G. D., Brockdorff, N., Sheardown, S. A., et al. (1994) Evidence that random and imprinted Xist expression is controlled by preemptive methylation. Cell 77, 41–51.

    Article  PubMed  CAS  Google Scholar 

  28. Li, E., Beard, C., and Jaenisch, R. (1993) Role of DNA methylation in genomic imprinting. Nature 366, 362–365.

    Article  PubMed  CAS  Google Scholar 

  29. Razin, A. and Cedar, H. (1994) DNA methylation and genomic imprinting. Cell 77, 473–476.

    Article  PubMed  CAS  Google Scholar 

  30. Nussbaum, R. L. and Ledbetter, D H. (1989) The fragile X syndrome, in The Metabolic Basis of Inherited Disease, 6th ed. ( Scriver, C. R., Beaudet, A. L., Sly, W. S., and Valle, D., eds.), McGraw-Hill, New York, pp. 327–341.

    Google Scholar 

  31. Warren, S. T. and Nelson, D. L. (1994) Advances in molecular analysis of fragile X syndrome. DAMA 271, 536–542.

    Article  CAS  Google Scholar 

  32. Kunst, C. B. and Warren, S. T. (1994) Cryptic and polar variation of the fragile X repeat could result in predisposing normal alleles. Cell 77, 853–861.

    Article  PubMed  CAS  Google Scholar 

  33. Jeanpierre, M., Turleau, C., Aurias, A., Prieur, M., Ledeist, F., Fischer, A., and ViegasPequignot, E. (1993) An embryonic-like methylation pattern of classical satellite DNA is observed in ICF syndrome. Hum. Mol. Genet. 2, 731–735.

    Article  PubMed  CAS  Google Scholar 

  34. Miniou, P., Jeanpierre, M., Bourchis, D., Barbosa, A. C. C., Blanquet, V., and ViegasPequignot, E. (1997) a-Satellite DNA methylation in normal individuals and in ICF patients: heterogeneous methylation of constitutive heterochromatin in adult and fetal tissues. Hum. Genet. 99, 738–745.

    Google Scholar 

  35. Baylin, S.B., Makos, M., Wu, J., Yen, R.-W. C., de Bustros, A., Vertino, P., and Nelkin, B. D. (1991) Abnormal patterns of DNA methylation in human neoplasia: potential consequences for tumor progression. Cancer Cells 3, 383–390.

    PubMed  CAS  Google Scholar 

  36. Laird, P. W. and Jaenisch, R. (1994) DNA methylation and cancer. Hum. Mol. Genet. 3, 1487–1495.

    PubMed  CAS  Google Scholar 

  37. Jones, P. A. and Gonzalgo, M. L. (1997) Altered DNA methylation and genome instability: a new pathway to cancer? Proc. Natl. Acad. Sci. USA 94, 2103–2105.

    Article  PubMed  CAS  Google Scholar 

  38. EI-Deiry, W. S., Nelkin, B. D., Celano, P., Yen, R.-W. C., Falco, J. P., Hamilton, S. R., and Baylin, S. B. (1991) High expression of the DNA methyltransferase gene characterizes human neoplastic cells and progression stages of colon cancer. Proc. Natl. Acad. Sci. USA 88, 3470–3474.

    Article  PubMed  Google Scholar 

  39. Jones, P. A. (1985) Gene activation by 5-azacytidine, in Molecular Biology of DNA Methylation ( Razin, A., ed.), Springer-Verlag, New York, pp. 9–18.

    Google Scholar 

  40. Jones, P. A. (1985) Effects of 5-azacytidine and its 2’deoxy derivative on cell differentiation and DNA methylation. Pharm. Ther. 28, 17–27.

    Article  CAS  Google Scholar 

  41. Jones, P. A. and Taylor, S. M. (1980) Cellular differentiation, cytidine analogs and DNA methylation. Cell 20, 85–93.

    Article  PubMed  CAS  Google Scholar 

  42. Taylor, S. M. and Jones, P. A. (1979) Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5-azacytidine. Cell 17, 771–779.

    Article  PubMed  CAS  Google Scholar 

  43. Davis, R. L., Weintraub, H., and Lassar, A. B. (1987) Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51, 987–1000.

    Article  PubMed  CAS  Google Scholar 

  44. Pinney, D. F., Pearson-White, S. H., Konieczny, S. F., Latham, K. E., and Emerson, C. P. Jr. (1988) Myogenic lineage determination and differentiation: evidence for a regulatory gene pathway. Cell 53, 781–793.

    Article  PubMed  CAS  Google Scholar 

  45. Li, E., Bestor, T. H., and Jaenisch, R. (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69, 915–926.

    Article  PubMed  CAS  Google Scholar 

  46. Richardson, B., Kahn, L., Lovett, E. J., and Hudson, J. (1986) Effect of an inhibitor of DNA methylation on T cells. I. 5-azacytidine induces T4 expression on T8+ T cells. J. Immunol. 137, 35–39.

    PubMed  CAS  Google Scholar 

  47. Richardson, B. (1986) Effect of an inhibitor of DNA methylation on T cells. II. 5-azacytidine induces self-reactivity in antigen-specific T4+ cells. Hum. Immunol. 17, 456–470.

    Article  PubMed  CAS  Google Scholar 

  48. Quddus, J., Johnson, K. J., Gavalchin, J., Amento, E. P., Chrisp, C. E., Yung, R. L., et al. (1993) Treating activated CD4+ T cells with either of two distinct DNA methyltransferase inhibitors, 5-azacytidine or procainamide, is sufficient to cause a lupus-like disease in syngeneic mice. J. Clin. Invest. 92, 38–53.

    Article  PubMed  CAS  Google Scholar 

  49. Yung, R. L., Quddus, J., Crisp, C. E., Johnson, K. J., and Richardson, B. C. (1995) Mechanisms of drug-induced lupus. I. Cloned TH2 cells modified with DNA methylation inhibitors in vitro cause autoimmunity in vivo. J. Immunol. 154, 3025–3035.

    CAS  Google Scholar 

  50. Harmon, C. E. and Portanova, J. P. (1982) Drug-induced lupus: clinical and serological studies. Clin. Rheum. Dis. 8, 121.

    PubMed  CAS  Google Scholar 

  51. Scheinbart, L. S., Johnson, M. A., Gross, L. A., Edelstein, S. R., and Richardson, B. C. (1991) Procainamide inhibits DNA methyltransferase in a human T cell line. J. Rheumatol. 18, 530–534.

    PubMed  CAS  Google Scholar 

  52. Cornacchia, E., Golbus, J., Maybaum, J., Strahler, J., Hanash, S., and Richardson, B. (1988) Hydralazine and procainamide inhibit T cell DNA methylation and induce autoreactivity. J. Immunol. 140, 2197–2200.

    PubMed  CAS  Google Scholar 

  53. Richardson, B., Cornacchia, E., Golbus, J., Maybaum, J., Strahler, J., and Hanash, S. (1988) N-acetylprocainamide is a less potent inducer of T cell autoreactivity than procainamide. Arthritis Rheum. 31, 995–999.

    Article  PubMed  CAS  Google Scholar 

  54. Kluger, J., Drayer, D. E., Reidenberg, M. M., and Lahita, R. (1981) Acetylprocainamide therapy in patients with previous procainamide-induced lupus syndrome. Ann. Int. Med. 95, 18–23.

    Article  PubMed  CAS  Google Scholar 

  55. Roden, D. M., Reele, S. B., Higgins, S. B., Wilkinson, G. R., Smith, R. R, Oates, J. A. and Woosley, R. L. (1980) Antiarrhythmic efficacy, pharmacokinetics and safety of N-acetylprocainamide in human subjects: comparison with procainamide. Am. J. Cardiol. 46, 463–468.

    Article  PubMed  CAS  Google Scholar 

  56. Ansel, J. C., Mountz, J., Steinberg, A. D., DeFabo, E., and Green, I. (1985) Effects of UV radiation on autoimmune strains of mice: increased mortality and accelerated autoimmunity in BXSB male mice. J. Invest. Dermatol. 85, 181–186.

    Article  PubMed  CAS  Google Scholar 

  57. Lehman, P., Holzle, E., Kind, P., Goerz, G., and Plewig, G. (1990) Experimental reproduction of skin lesions in lupus erythematosus by UVA and UVB radiation. J. Am. Acad. Dermatol. 22, 181–187.

    Article  Google Scholar 

  58. Richardson, B. C., Powers, D., Hooper, F., Yung, R. L., and O’Rourke, K. (1994) Lymphocyte function-associated antigen 1 overexpression and T cell autoreactivity. Arthritis Rheum. 37, 1363–1372.

    Article  PubMed  CAS  Google Scholar 

  59. Richardson, B. C., Strahler, J. R., Pivirotto, S., Quddus, J., Bayliss, G. E., Gross, L., et al. (1992) Phenotypic and functional similarities between 5-azacytidine-treated cells and a T cell subset in patients with active systemic lupus erythematosus. Arthritis Rheum. 35, 647–662.

    Article  PubMed  CAS  Google Scholar 

  60. Kishimoto, T. K., Larson, R. S., Corbi, A. L., Dustin, M. L., Staunton, D. E., and Springer, T. A. (1989) The leukocyte integrins. Adv. Immunol. 46, 149.

    Article  PubMed  CAS  Google Scholar 

  61. Abbas, A. K., Lichtman, A. H., and Pober, J. S., eds. (1994) Molecular basis of T cell antigen recognition and activation, in Cellular and Molecular Immunology, W. B. Saunders, Philadelphia, pp. 136–165.

    Google Scholar 

  62. Springer, T. A. (1990) Adhesion receptors of the immune system. Nature 346, 425–434.

    Article  PubMed  CAS  Google Scholar 

  63. Hynes, R. O. (1992) Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69, 11–25.

    Article  PubMed  CAS  Google Scholar 

  64. Altmann, D. M., Hogg, N., Trowsdale, J., and Wilkinson, D. (1989) Cotransfection of ICAM-1 and HLA-DR reconstitutes human antigen-presenting cell function in mouse L cells. Nature 338, 512–514.

    Article  PubMed  CAS  Google Scholar 

  65. Yung, R., Powers, D., Johnson, K., Amento, E., Carr, C., Laing, T., Yang, J., Chang, S., Hemati, N., and Richardson, B. (1996) Mechanisms of drug-induced lupus. II. T cells over-expressing lymphocyte function-associated antigen 1 become autoreactive and cause a lupus-like disease in syngeneic recipients. J. Clin. Invest. 97, 2866–2871.

    Article  PubMed  CAS  Google Scholar 

  66. Rolink, A. G. and Gleichmann, E. (1983) Allosuppressor-and allohelper-T cells in acute and chronic graft-vs-host (GvH) disease. III. Different Lyt subsets of donor T cells induce different pathological syndromes. J. Exp. Med. 158, 546–558.

    Article  PubMed  CAS  Google Scholar 

  67. Gleichmann, E., van Elven, E. H., and van der Veen, J. P. W. (1982) A systemic lupus erythematosus (SLE)-like disease in mice induced by abnormal T-B cell co-operation: preferential formation of autoantibodies characteristic of SLE. Eur. J. Immunol. 12, 139–152.

    Article  Google Scholar 

  68. Portanova, J. P., Ebling, F. M., Hammond, W. S., Hahn, B. H., and Kotzin, B. L. (1988) Allogeneic MHC antigen requirements for lupus-like autoantibody production and nephritis in murine graft-vs-host disease. J. Immunol. 141, 3370–3376.

    PubMed  CAS  Google Scholar 

  69. Bruijn, J. A., van Elven, E. H., Corver, W. E., Oudshoorn-Snoek, M., and Fleuren, G. J. (1989) Genetics of experimental lupus nephritis: non-H-2 factors determine susceptibility for renal involvement in murine chronic graft-versus-host disease. Clin. Exp. Immunol. 76, 284–289.

    PubMed  CAS  Google Scholar 

  70. Vandenbeele, P., Abramowicz, D., Berus, D., Van der Heyden, J., Grooten, J., Donckier, V., et al. (1993) Increased IL-6 production and IL-6-mediated Ig secretion in murine host-vsgraft disease. J. Immunol. 150, 4179–4187.

    Google Scholar 

  71. De Wit, D., Van Mechelen, M., Zanin, C., Doutrelepont, J.-M., Velu, T., Gerard, C., et al. (1993) Preferential activation of Th2 cells in chronic graft-versus-host reaction. J. Immunol. 150, 361–366.

    PubMed  Google Scholar 

  72. Steinberg, A. D. (1979) Studies of immune regulation in patients with systemic lupus erythematosus: evolving concepts. Ann. Intern. Med. 91, 587–604.

    Article  PubMed  Google Scholar 

  73. Blaese, R. M., Grayson, J., and Steinberg, A. D. (1980) Elevated immunoglobulin secreting cells in the blood of patients with active systemic lupus erythematosus: correlation of laboratory and clinical assessment of disease activity. Am. J. Med. 69, 345–350.

    Article  PubMed  CAS  Google Scholar 

  74. Ishigatsubo, Y., Sakamoto, H., Hagiwara, E., Aoki, A., Shirai, A., Tani, K., et al. (1990) Quantitation of autoantibody-secreting B cells in systemic lupus erythematosus. Autoimmunity 5, 71–80.

    Article  Google Scholar 

  75. Budman, D. R., Merchant, E. B., Steinberg, A. D., Doft, B., Gershwin, M. E., Lizzio, E., et al. (1977) Increased spontaneous activity of antibody-forming cells in the peripheral blood of patients with active SLE. Arthritis Rheum. 20, 829–833.

    Article  PubMed  CAS  Google Scholar 

  76. Kumagai, S., Sredni, B., House, S., Steinberg, A. D., and Green, I. (1982) Defective regulation of B lymphocyte colony formation in patients with systemic lupus erythematosus. J. Immunol. 128, 258–262.

    PubMed  CAS  Google Scholar 

  77. Tan, P. L. J., Pang, G. T. M., Wilson, J. D., and Cullinane, G. (1980) Immunoglobulin secreting cells in SLE: correlation with disease activity. J. Rheumatol. 7, 807–813.

    PubMed  CAS  Google Scholar 

  78. Frank, M. M., Hamburger, M. I., Lawley, T. J., Kimberly, R. P., and Plot, P. H. (1979) Defective reticuloendothelial system Fc-receptor function in systemic lupus erythematosus. N. Engl. J. Med. 300, 518–523.

    Article  PubMed  CAS  Google Scholar 

  79. Frank, M. M., Lawley, T. J., Hamburger, M. I., and Brown, E. (1983) Immunoglobulin G Fc receptor-mediated clearance in autoimmune disease. Ann. Intern. Med. 98, 206–218.

    Article  PubMed  CAS  Google Scholar 

  80. Aranow, C., Paul, E., and Diamond, B. (1993) The structure and derivation of antibodies and autoantibodies, in Dubois’ Lupus Erythematosus, 4th ed. ( Wallace, D. J. and Hahn, B. H., eds.), Lea & Febiger, Philadelphia; pp. 181–187.

    Google Scholar 

  81. Richardson, B. C., Liebling, M. R., and Hudson, J. L. (1990) CD4+ cells treated with DNA methylation inhibitors induce autologous B cell differentiation. Clin. Immunol. Immunopathol. 55, 368–381.

    Article  PubMed  CAS  Google Scholar 

  82. Reth, M. (1992) Antigen receptors on B lymphocytes. Annu. Rev. Immunol. 10, 97–121.

    Article  PubMed  CAS  Google Scholar 

  83. Abbas, A. K., Lichtman, A. H., and Pober, J. S., eds. (1994) B cell activation and antibody production, in Cellular and Molecular Immunology, W. B. Saunders, Philadelphia, pp. 188–204.

    Google Scholar 

  84. Forrester, J., Golbus, J., Brede, D., Hudson, J., and Richardson, B. (1988) B cell activation in patients with active procainamide induced lupus. J. Rheumatol. 15, 1384–1388.

    PubMed  CAS  Google Scholar 

  85. Henningsen, N. C., Cederberg, A., Hanson, A., and Johansson, B. W. (1975) Effects of longterm treatment with procaine amide: a prospective study with special regard to ANF and SLE in fast and slow acetylators. Acta Med. Scand. 198, 475–482.

    Article  PubMed  CAS  Google Scholar 

  86. Klajman, A., Camin-Belsky, N., Kimchi, A., and Ben-Efraim, S. (1970) Occurrence, immunoglobulin pattern and specificity of antinuclear antibodies in sera of procaine amide treated patients. Clin. Exp. Immunol. 7, 641–649.

    PubMed  CAS  Google Scholar 

  87. Richardson, B. C., Buckmaster, T., Keren, D. F., and Johnson, K. J. (1993) Evidence that macrophages are programmed to die after activating autologous, cloned, antigen specific, CD4+ T cells. Eur. J. Immunol. 23, 1450–1455.

    Article  PubMed  CAS  Google Scholar 

  88. Ju, S. T., DeKruyff, R. H., and Dorf, M. E. (1986) Inducer T-cell-mediated killing of antigen-presenting cells. Cell. Immunol. 101, 613–624.

    Article  PubMed  CAS  Google Scholar 

  89. Hancock, G. E., Cohn, Z. A., and Kaplan, G. (1989) The generation of antigen-specific, major histocompatibility complex-restricted cytotoxic T lymphocytes of the CD4+ phenotype: enhancement by the cutaneous administration of interleukin 2. J. Exp. Med. 169, 909–919.

    Article  PubMed  CAS  Google Scholar 

  90. Ottenhoff, T. H., Ab, B. K., van Embden, J. D., Thole, J. E., and Kiessling, R. (1988) The recombinant 65-kD heat shock protein of Mycobacterium bovis Bacillus Calmette-Guerin/M: tuberculosis is a target molecule for CD4+ cytotoxic T lymphocytes that lyse human monocytes. J. Exp. Med. 168, 1947–1952.

    Article  PubMed  CAS  Google Scholar 

  91. Kaufmann, S. H., Hug, E., Vath, U., and De Libero, G. (1987) Specific lysis of Listeria monocytogenes-infected macrophages by class II-restricted L3T4+ T cells. Eur. J. Immunol. 17, 237–246.

    Article  PubMed  CAS  Google Scholar 

  92. Richardson, B. C., Lalwani, N. D., Johnson, K. J., and Marks, R. M. (1994) Fas ligation triggers apoptosis in macrophages but not endothelial cells. Eur. J. Immunol. 24, 2640–2645.

    Article  PubMed  CAS  Google Scholar 

  93. Yung, R. L., Johnson, K. J., and Richardson, B. C. (1995) New concepts in the pathogenesis of drug-induced lupus. Lab. Invest. 73, 746–759.

    PubMed  CAS  Google Scholar 

  94. Burnham, T. K. and Fine, G. (1969) The immunofluorescence “band” test for lupus erythematosus. I. Morphologic variations of localized immunoglobulins at the dermal-epidermal junction in lupus erythematosus. Arch. Dermatol. 99, 413–420.

    Article  PubMed  CAS  Google Scholar 

  95. Cormane, R. H. (1964) Band globulin in the skin of patients with chronic discoid lupus erythematosus and systemic lupus erythematosus. Lancet 1, 534–555.

    Article  PubMed  CAS  Google Scholar 

  96. Jung, L. K. L., Good, R. A., and Fernandes, G. A. (1986) Studies on lymphocyte homing in autoimmune prone NZB mice. Immunol. Invest. 15, 11–23.

    Article  PubMed  CAS  Google Scholar 

  97. Mossman, T. R. and Coffman, R. L. (1989) TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol. 7, 145–173.

    Article  Google Scholar 

  98. Sonnhag, C., Karlsson, E., and Hed, J. (1979) Procainamide-induced lupus erythematosuslike syndrome in relation to acetylator phenotype and plasma levels of procainamide. Acta Med. Scand. 206, 245–251.

    Article  PubMed  CAS  Google Scholar 

  99. Roden, D. M., Reele, S. B., Higgins, S. B., Wilkinson, G. R., Smith, R. F., Oates, J. A., et al. (1980) Antiarrhythmic efficacy, pharmacokinetics and safety of N-acetylprocainamide in human subjects: comparison with procainamide. Am. J. Cardiol. 46, 463–468.

    Article  PubMed  CAS  Google Scholar 

  100. Fink, B. K., Chan, B., and Wofsy, D. (1994) Interleukin 6 promotes murine lupus in NZB/NZW F1 mice. J. Clin. Invest 94, 585–591.

    Article  Google Scholar 

  101. Richardson, B., Scheinbart, L., Strahler, J., Gross, L., Hanash, S., and Johnson, M. (1990) Evidence for impaired T cell methylation in systemic lupus erythematosus and rheumatoid arthritis. Arthritis Rheum. 33, 1665–1673.

    Article  PubMed  CAS  Google Scholar 

  102. Corvetta, A., Della Bitta, R., Luchetti, M. M., and Pomponio, G. (1991) 5-methylcytosine content of DNA in blood, synovial mononuclear cells and synovial tissue from patients affected by autoimmune rheumatic diseases. J. Chromatogr. 566, 481–491.

    Google Scholar 

  103. Golbus, J., Palella, T. D., and Richardson, B. C. (1990) Quantitative changes in T cell DNA methylation occur during differentiation and aging. Eur. J. Immunol. 20, 1869–1872.

    Article  PubMed  CAS  Google Scholar 

  104. Kay, M. M. (1988) Autoimmunity and aging. Concepts Immunopathol. 6, 166–192.

    PubMed  CAS  Google Scholar 

  105. Wade, A. W. and Szewczuk, M. R. (1984) Aging, idiotype repertoire shifts, and compartmentalization of the mucosal-associated lymphoid system. Adv. Immunol. 36, 143–188.

    Article  PubMed  CAS  Google Scholar 

  106. Makinodan, T. and Kay, M. M. (1980) Age influence on the immune system. Adv. Immunol. 29, 287–330.

    Article  PubMed  CAS  Google Scholar 

  107. Takeuchi, T., Amano, K., Sekine, H., Koide, J., and Abe, T. (1993) Upregulated expression and function of integrin adhesive receptors in systemic lupus erythematosus patients with vasculitis. J. Clin. Invest. 92, 3008–3016.

    Article  PubMed  CAS  Google Scholar 

  108. Richardson, B. C., Yung, R. L., Rowse, P., Johnson, K. J., and Lalwani, N. D. (1996) Monocyte apoptosis in patients with active lupus. Arthritis Rheum. 39, 1432–1434.

    Article  PubMed  CAS  Google Scholar 

  109. Linker-Israeli, M., Deans, R. J., Wallace, D. J., Prehn, J., Ozeri-Chen, T., and Klinenberg, J. R. (1991) Elevated levels of endogenous IL-6 in systemic lupus erythematosus: a putative role in pathogenesis. J. Immunol. 147, 117–123.

    PubMed  CAS  Google Scholar 

  110. Klashman, D. J., Martin, R. A., Martinez-Maza, O., and Stevens, R. H. (1991) In vitro regulation of B cell differentiation by interleukin-6 and soluble CD23 in systemic lupus erythematosus B cell subpopulations and antigen-induced normal B cells. Arthritis Rheum. 34, 276–286.

    CAS  Google Scholar 

  111. Kitani, A., Hara, M., Hirose, T., Norioka, K., Harigai, M., Suzuki, K., et al. (1989) Heterogeneity of B cell responsiveness to interleukin 4, interleukin 6 and low molecular weight B cell growth factor in discrete stages of B cell activation in patients with systemic lupus erythematosus. Clin. Exp. Immunol. 77, 31–36.

    PubMed  CAS  Google Scholar 

  112. Cornwell, R. D., Gollahon, K. A., and Hickstein, D. D. (1993) Description of the leukocyte function-associated antigen 1 (LFA-1 or CD l la promoter). Proc. Natl. Acad. Sci. USA 90, 4221–4225.

    Article  PubMed  CAS  Google Scholar 

  113. Ritchie, K. A., Aprikian, A., Gollahon, K. A., and Hickstein, D. D. (1995) The human leukocyte integrin CD11a promoter directs expression ion leukocytes of transgenic mice. Blood 86, 147–155.

    PubMed  CAS  Google Scholar 

  114. Shelley, C. S., Farokhzad, O. C., and Arnaout, M. A. (1993) Identification of cell-specific and developmentally regulated nuclear factors that direct myeloid and lymphoid expression of the CD1la gene. Proc. Natl. Acad. Sci. USA 90, 5364–5368.

    Article  PubMed  CAS  Google Scholar 

  115. Yang, J., Deng, C., Hemati, N., Hanash, S., and Richardson, B. C. (1997) Effect of mitogenic stimulation and DNA methylation on human T-cell DNA methyltransferase expression and activity. J. Immunol. 159, 1303–1309.

    PubMed  CAS  Google Scholar 

  116. Rouleau, J., Tanigawa, G., and Szyf, M. (1992) The mouse DNA methyltransferase 5’-region: a unique housekeeping gene promoter. J. Biol. Chem. 267, 7368–7377.

    PubMed  CAS  Google Scholar 

  117. Rouleau, J., MacLeod, R., and Szyf, M. (1995) Regulating the DNA methyltransferase by the Ras-AP-1 signaling pathway. J. Biol. Chem. 270, 1595–1601.

    Article  PubMed  CAS  Google Scholar 

  118. Deng, C., Yang, J., Scott, J., Hanash, S., and Richardson, B. C. (1998) Role of the rasMAPK signaling pathway in the DNA methyltransferase response to DNA hypomethylation. Biol. Chem. 379, 1113–1120.

    Article  PubMed  CAS  Google Scholar 

  119. Linker-Israeli, M., Blake, A. C., Kitridou, R. C., Gendler, S., Gillis, S., and Horwitz, D. A. (1983) Defective production of interleukin 1 and interleukin 2 in patients with systemic lupus erythematosus (SLE). J. Immunol. 130, 1276–1278.

    Google Scholar 

  120. Becker, H., Stengl, G., Stein, M., Frederlin, K. (1995) Analysis of proteins that interact with the IL-2 regulatory region in patients with rheumatic diseases. Clin. Exp. Immunol. 99, 325–330.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Scott, J.M., Richardson, B.C. (1999). Impaired DNA Methylation in Lupus T Cells. In: Kammer, G.M., Tsokos, G.C. (eds) Lupus. Contemporary Immunology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-703-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-703-1_17

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-5686-9

  • Online ISBN: 978-1-59259-703-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics