Skip to main content

Exosomes for Immunotherapy of Cancer

  • Chapter
Handbook of Cancer Vaccines

Abstract

The biology of small vesicles (1–4) secreted from antigen-presenting cells (APCs) recently raised a great deal of interest with the demonstration of their potent immunostimulatory functions in tumor models (5,6). The origin of vesicle secretion was first described (7) in differentiating red blood cells where multivesicular bodies (MVBs) fused with plasma membrane in an exocytic manner. This exocytic pathway was later shown to occur in a wide variety of cell types such as B lymphocytes, mastocytes, immature dendritic cells (DCs), platelets, cytotoxic T lymphocytes (CTLs), fibroblasts, epithelial cells, and tumor cells (6,8–15). Vesicles exocytosed from MVBs into the extracellular medium are referred to as “exosomes” and should not be confused with the more recently described “ribonuclease complex” also named exosome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Denzer K, Kleijmeer MJ, Heijnen HF, Stoorvogel W, Geuze HJ. Exosome: from internal vesicle of the multivesicular body to intercellular signaling device. J Cell Sci 2000; 113:3365–3374.

    PubMed  CAS  Google Scholar 

  2. Denzer K, van Eijk M, Kleijmeer MJ, Jakobson E, de Groot C, Geuze HJ. Follicular dendritic cells carry MHC class II-expressing microvesicles at their surface. J Immunol 2000; 165:1259–1265.

    PubMed  CAS  Google Scholar 

  3. Quah B, O’Neill HC. The application of dendritic cell-derived exosomes in tumour immunotherpy. Cancer Biother Radiopharm 2000; 15:185–194.

    Article  PubMed  CAS  Google Scholar 

  4. Andre F, Schartz NE, Movassagh M, Flament C, Pautier P, Morice P, Pomel C, Lhomme C, Escudier B, Le Chevalier T, Tursz T, Amigorena S, Raposo G, Angevin E, Zitvogel L. Malignant effusions and immunogenic tumor derived-exosomes. Lancet 2002; 360:295–305.

    Article  PubMed  CAS  Google Scholar 

  5. Zitvogel L, Regnault A, Lozier A, Wolfers J, Flament C, Tenza D, Ricciardi-Castagnoli P, Raposo G, Amigorena S. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cellderived exosomes. Nat Med 1998; 4:594–600.

    Article  PubMed  CAS  Google Scholar 

  6. Wolfers J, Lozier A, Raposo G, Regnault A, Thery C, Masurier C, Flament C, Pouzieux S, Faure F, Tursz T, Angevin E, Amigorena S, Zitvogel L. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat Med 2001; 7:297–303.

    Article  PubMed  CAS  Google Scholar 

  7. Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem 1987; 262:9412–9420.

    PubMed  CAS  Google Scholar 

  8. Raposo G, Tenza D, Mecheri S, Peronet R, Bonnerot C, Desaymard C. Accumulation of major histocompatibility complex class II molecules in mast cell secretory granules and their release upon degranulation. Mol Biol Cell 1997; 8:2631–2645.

    PubMed  CAS  Google Scholar 

  9. Escola JM, Kleijmeer MJ, Stoorvogel W, Griffith JM, Yoshie O, Geuze HJ. Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes. J Biol Chem 1998; 273:20121–20127.

    Article  PubMed  CAS  Google Scholar 

  10. Arnold PY, Mannie MD. Vesicles bearing MHC class II molecules mediate transfer of antigen-presenting cells to CD4+ cells. Eur J Immunol 1999; 29:1363–1373.

    Article  PubMed  CAS  Google Scholar 

  11. Heijnen IA, van Vugt MJ, Fanger NA, Graziano RF, de Wit TP, Hofhuis FM, Guyre PM, Capel PJ, Verbeek JS, van de Winkel JG. Antigen targeting to myeloid-specific human Fc gamma RI/CD64 triggers enhanced antibody responses in transgenic mice. J Clin Invest 1996; 97:331–338.

    Article  PubMed  CAS  Google Scholar 

  12. Hess C, Sadallah S, Hefti A, Landmann R, Schifferli JA. Ectosomes released by human neutrophils are specialized functional units. J Immunol 1999; 163:4564–4573.

    PubMed  CAS  Google Scholar 

  13. Patel DM, Arnold PY, White GA, Nardella JP, MD. Mannie Class II MHC/peptide complexes are released from APC and are acquired by T cell responders during specific antigen recognition. J Immunol 1999; 163:5201–5210.

    PubMed  CAS  Google Scholar 

  14. Geminard C, Nault F, Johnstone RM, Vidal M. Characteristics of the interaction between Hsc70 and the transferrin receptor in exosomes released during reticulocyte maturation. J Biol Chem 2001; 276:9910–9916.

    Article  PubMed  CAS  Google Scholar 

  15. Skokos D, Le Panse S, Villa I, Rousselle JC, Peronet R, David B, Namane A, Mecheri S. Mast celldependent B and T lymphocyte activation is mediated by the secretion of immunologically active exosomes. J Immunol 2001; 166:868–876.

    PubMed  CAS  Google Scholar 

  16. Lemmon SK, Traub LM. Sorting in the endosomal system in yeast and animal cells. Curr Opin Cell Biol 2000; 12:457–466.

    Article  PubMed  CAS  Google Scholar 

  17. Odorizzi G, Babst M, Emr SD. Fab 1 p PtdIns(3)P 5-kinase function essential for protein sorting in the multivesicular body. Cell 1998; 95:847–858.

    Article  PubMed  CAS  Google Scholar 

  18. Komada M, Soriano P. Hrs, a FYVE finger protein localized to early endosomes, is implicated in vesicular traffic and required for ventral folding morphogenesis. Genes Dev 1999; 13:1475–1485.

    Article  PubMed  CAS  Google Scholar 

  19. Chin LS, Raynor MC, Wei X, Chen HQ, Li L. Hrs interacts with sorting nexin 1 and regulates degradation of epidermal growth factor receptor. J Biol Chem 2001; 276:7069–7078.

    Article  PubMed  CAS  Google Scholar 

  20. Hemler ME. Specific tetraspanin functions. J Cell Biol 2001; 155:1103–1107.

    Article  PubMed  CAS  Google Scholar 

  21. Vidal M, Mangeat P, Hoekstra D. Aggregation reroutes molecules from a recycling to a vesicle-mediated secretion pathway during reticulocyte maturation. J Cell Sci 1997; 110:1867–1877.

    PubMed  CAS  Google Scholar 

  22. Geminard C, Nault F, Johnstone RM, Vidal M. Characteristics of the interaction between Hsc70 and the transferrin receptor in exosomes released during reticulocyte maturation. J Biol Chem 2001; 276:9910–9916.

    Article  PubMed  CAS  Google Scholar 

  23. Blanchard N, Lankar D, Faure F, Regnault A, Dumont C, Raposo G, Hivroz C. TCR activation of human T cells induces the production of exosomes bearing the TCR/CD3/z complex. J Immunol 2002; 168:3235–3242.

    PubMed  CAS  Google Scholar 

  24. Peters PJ, Borst J, Oorschot V, Fukuda M, Krahenbuhl O, Tschopp J, Slot JW, Geuze HJ. Cytotoxic T lymphocyte granules are secretory lysosomes, containing both perforin and granzymes. J Exp Med 1991; 173:1099–1109.

    Article  PubMed  CAS  Google Scholar 

  25. Thery C, Regnault A, Garin J, Wolfers J, Zitvogel L, Ricciardi-Castagnoli P, Raposo G, Amigorena S. Molecular characterization of dendritic cell-derived exosomes. Selective accumulation of the heat shock protein hsc 73. J Cell Biol 1999; 147:599–610.

    Article  PubMed  CAS  Google Scholar 

  26. Thery C, Boussac M, Veron P, Ricciardi-Castagnoli P, Raposo G, Garin J, Amigorena S. Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J Immunol 2001; 166:7309–7318.

    PubMed  CAS  Google Scholar 

  27. Clayton A, Court J, Navabi H, Adams M, Mason MD, Hobot JA, Newman GR, Jasani B. Analysis of antigen presenting cell derived exosomes, based on immuno-magnetic isolation and flow cytometry. J Immunol Methods 2001; 247:163–174.

    Article  PubMed  CAS  Google Scholar 

  28. Stoorvogel W, Kleijmeer MJ, Geuze HJ, Raposo G. The biogenesis and functions of exosomes. Traffic 2002; 3:321–330.

    Article  PubMed  CAS  Google Scholar 

  29. Chaput N, Schartz NEC, André F, et al. Exosomes as potent cell free peptide-based vaccine. II. Exosomes in CpG adjuvants efficiently prime naïve Tcl lymphocytes leading to tumor rejection. J Immunol. In press.

    Google Scholar 

  30. André F, Chaput N, Schartz NEC, et al. Exosomes as potent cell free peptide-based vaccine. I. Dendritic cell-derived exosomes transfer functional MHC class 1/peptide complexes to DC. J Immunol. In press.

    Google Scholar 

  31. Thery C, Duban L, Segura E, Veron P, Lantz 0, Amigorena S. Indirect activation of naive CD4+ T cells by dendritic cell-derived exosomes. Nat Immunol 2002; 3:1156–1162.

    Article  PubMed  CAS  Google Scholar 

  32. Lamparski H, Metha-Damani A, Yao J, Patel S, Hsu D, Ruegg C, Le Pecq J. Production and characterization of clinical grade exosomes derived from dendritic cells. J Immunol Methods 2002; 270:211.

    Article  PubMed  CAS  Google Scholar 

  33. Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief CJ, Geuze HJ. B lymphocytes secrete antigen-presenting vesicles. J Exp Med 1996; 183:1161–1172.

    Article  PubMed  CAS  Google Scholar 

  34. van Niel G, Raposo G, Candalh C, Boussac M, Hershberg R, Cerf-Bensussan N, Heyman M. Intestinal epithelial cells secrete exosome-like vesicles. Gastroenterology 2001; 121:337–349.

    Article  PubMed  Google Scholar 

  35. Angevin E. 7th International Symposium on Dendritic Cells. Abstract 20, p. 28,2002.

    Google Scholar 

  36. Pan BT, Teng K, Wu C, Adam M, Johnstone RM. Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J Cell Biol 1985; 101:942–948.

    Article  PubMed  CAS  Google Scholar 

  37. Kropshofer H, Spindeldreher S, Rohn TA, Platania N, Grygar C, Daniel N, Wolpl A, Langen H, Horejsi V, Vogt AB. Tetraspan microdomains distinct from lipid rafts enrich select peptide-CMH class II complexes. Nat Immunol 2002; 3:61–68.

    Article  PubMed  CAS  Google Scholar 

  38. Karlsson M, Lundin S, Dahlgren U, Kahu H, Pettersson I, Telemo E. “Tolerosomes” are produced by intestinal epithelial cells. Eur J Immunol 2001; 31:2892–2900.

    Article  PubMed  CAS  Google Scholar 

  39. Pêche H. Club Francophone Des Cellules Dendritiques. Abstract C08, p. 31,2001.

    Google Scholar 

  40. Huang JF, Yang Y, Sepulveda H, Shi W, Hwang I, Peterson PA, Jackson MR, Sprent J, Cai Z. TCRmediated internalization of peptide-MHC complexes acquired by T cells. Science 1999; 286:952–954.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc.

About this chapter

Cite this chapter

Chaput, N., Schartz, N.E.C., Andre, F., Zitvogel, L. (2004). Exosomes for Immunotherapy of Cancer. In: Morse, M.A., Clay, T.M., Lyerly, H.K. (eds) Handbook of Cancer Vaccines. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-680-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-680-5_22

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9818-9

  • Online ISBN: 978-1-59259-680-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics