Skip to main content

Animal Models of Cerebral Ischemia

Neurodegeneration and Cell Transplantation

  • Chapter
Cell Transplantation for Neurological Disorders

Abstract

Stroke remains a leading cause of death in the US, killing more than two of every five Americans (1). There are 500,000 cases of stroke each year, of which 400,000 are ischemic (2). Approximately 20% of the people who suffer a stroke die in the first week. However, more than 70% of stroke patients survive long term. There were an estimated 2,920,000 stroke survivors in 1988 (1). The economic cost of cerebrovascular disease in 1993 was estimated to be $117.4 billion, including costs of physician, nursing, hospital and nursing home services, medications, and lost productivity (3). Many patients, as well as their families, are devastated, since patients are often severely incapacitated with physical and mental disabilities. This health problem will continue to increase as the population of the US ages. It is important to rehabilitate stroke patients, so that they are as independent as possible with activities of daily living (2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. American Heart Association (1991) Heart and Stroke Facts. American Heart Association National Center, Dallas.

    Google Scholar 

  2. Marwick, C. (1997) New era for acute stroke treatment. JAMA 277, 199–200.

    PubMed  CAS  Google Scholar 

  3. American Heart Association (1994) American Heart Association National Center Dallas.

    Google Scholar 

  4. Graham, D. I. (1992) Hypoxia and vacular disorders, in Greenfield’s Neuropathology ( Hulme, A. J. and Duchen, L. W., eds.), Edward Arnold, London, pp. 153–268.

    Google Scholar 

  5. Wolf, P. A., Kannel, W. B., McGee, D. L., Meeks, S. L., Bharucha, N. E., McNamara, P. M. (1983) Duration of atrial fibrillation and imiminence of stroke: the Farmingham Study. Stroke 14, 664–667.

    PubMed  CAS  Google Scholar 

  6. Joseph, R. (1990) Stroke and cerebrovascular disease, in Critical Issues in Neuropsychology ( Puente, A. E. and Reynolds, C. R., eds.), Plenum, New York, pp. 319–351.

    Google Scholar 

  7. Lubic, L. G. and Palkowitz, H. P. (1983) Stroke, 2nd ed., Medical Examination Publishing, New York.

    Google Scholar 

  8. Markgraf, C. G., Green, E. J., Watson, B., McCabe, P. M., Schneiiderman, N., Dietrich, W. D., et al. (1994) Recovery of sensorimotor function after distal middle cerebral artery photothrombotic occlusion in rats. Stroke 25, 153–159.

    PubMed  CAS  Google Scholar 

  9. Markgraf, C. G., Green, E. J., Hurwitz, B. E., Morikawa, E., Dietrich, W. D., McCabe, P. M., et al. (1992) Sensorimotor and cognitive consequences of middle cerebral artery occlusion in rats. Brain Res. 575, 238–246.

    PubMed  CAS  Google Scholar 

  10. Siesjo, B. K. and Bengtsson, F. (1989) Calcium fluxes, calcium antagonists, and calcium-related pathology in brain ischemia, hypoglycemia and speading depression: a unifying hypothesis. J. Cereb. Blood Flow Metab. 9, 127–140.

    PubMed  CAS  Google Scholar 

  11. Siesjo, B. K. (1992) Pathophsiology and treatment of focal cerebral ischemia: part I: Pathophysiology. J. Neurosurg. 77, 169–184.

    PubMed  CAS  Google Scholar 

  12. Yamamoto, M, Tamura A, Kirino T, Shimizu M, Sano K (1988) Behavioral changes after focal cerebral ischemia by left middle cerebral artery occlusion in rats. Brain Res. 452, 323–328.

    PubMed  CAS  Google Scholar 

  13. Tamura, A., Nagashima, H., Tsujita, Y., Nakayama, H., Kirino, T., and Sano, K. (1993) Behavioral changes after cerebral infarction in rats. J. Cereb. Blood Flow Metab. 13, 53.

    Google Scholar 

  14. Meldrum, B. S. (1990) Protection against ischemic neuronal damage by drugs acting on excitatory neurotransmission. Cerebrovasc. Brain Metab. Rev. 2, 27–57.

    PubMed  CAS  Google Scholar 

  15. Meldrum, B. S. (1992) Excitatory amino acid receptors and disease. Curr. Opinion. Neurol. Neurosurg. 5, 508–513.

    CAS  Google Scholar 

  16. Memezawa, H., Minamisawa, H., Smith, M-L., and Siesjo, B. K. (1992) Ischemic penumbra in a model of reversible cerebral artery occlusion in the rat. Exp. Brain Res. 89, 67–78.

    PubMed  CAS  Google Scholar 

  17. Molinari, G. F. and Laurent, J. P. (1976) A classification of experimental models of brain ischemia. Stroke 7, 14–17.

    Google Scholar 

  18. Karpiak, S. E., Tagliavia, A., and Wakade, C. G. (1989) Animal models for the study of drugs in ischemic stroke. Ann. Rev. Pharmacol. Toxicol. 29, 403–414.

    CAS  Google Scholar 

  19. Borlongan, C. V., Koutouzis, T. K., Freeman, T. B., Cahill, D. W., and Sanberg, P. R. (1995) Behavioral pathology induced by repeated systemic injections of 3-nitropropionic acid mimics the motoric symptoms of Huntington’s disease. Brain Res. 697, 254–257.

    PubMed  CAS  Google Scholar 

  20. Borlongan, C. V., Koutouzis, T. K., Randall, T. S., Freeman, T. B., Cahill, D. W., and Sanberg, P. R. (1995) Systemic 3-nitropropionic acid: Behavioral deficits and striatal damage in adult rats. Brain Res. Bull. 36, 549–556.

    PubMed  CAS  Google Scholar 

  21. Buchan, A. M., Yue, D., and Slivka, A. (1992) A new model of temporary focal neocortical ischemia in the rat. Stroke 23, 273–279.

    PubMed  CAS  Google Scholar 

  22. Nishino, H., Koide, K., Aihara, N., Kumazaki, M., Sakurai, T., and Nagai, H. (1993) Striatal grafts in the ischemic striatum improve pallidal GABA release and passive avoidance. Brain Res. Bull. 32, 517–520.

    PubMed  CAS  Google Scholar 

  23. Jones, T., Morawetz, R., Crowell, R., Marcoux, F., Fitzgibbon, S. J., DeGirolami, U., and Ojemann, R. (1981) Thresholds of focal cerebral ischemia in awake monkeys. J. Neurosurg. 54, 773–782.

    PubMed  CAS  Google Scholar 

  24. Borlongan, C. V., Koutouzis, T. K., Jorden, J., Poulos, S., Rodriguez, A., Cahill, D., et al. (1977) Neural transplantation as an experimental treatment modality for cerebral ischemia. Neurosci. Biobehay. Rev. 21, 79–90.

    Google Scholar 

  25. Nishino, H., Czurk6, A., Fukuda, A., Hashitani, T., Hida, H., Karadi, Z., et al. (1994) Pathophysiological process after transient ischemia of the middle cerebral artery in the rat. Brain Res. Bull. 35, 51–56.

    PubMed  CAS  Google Scholar 

  26. Koizumi, J., Yoshida, Y., Nakazawa, T., and Ooneda, G. (1986) Experimental studies of ischemic brain edema. 1. A new experimental model of cerebral embolism in rats in which recirculation can be introduced in the ischemic rats. Jpn. J. Stroke 8, 1–8.

    Google Scholar 

  27. Nagasawa, H. and Kogure, K. (1989) Correlation between cerebral blood flow and histologic changes in a new rat model of middle cerebral artery occlusion. Stroke, 20, 1037–1043.

    PubMed  CAS  Google Scholar 

  28. Borlongan, C. V., Cahill, D. W., and Sanberg, P. R. (1995) Locomotor and passive avoidance deficits following occlusion of the middle cerebral artery. Physiol. Behay. 58, 909–917.

    CAS  Google Scholar 

  29. Borlongan, C. V., Martinez, R., and Sanberg, P. R. (1995) Striatal dopamine-mediated catalepsy and locomotor activity in rats with occluded middle cerebral artery. Pharmacol. Biochem. Behay. 52, 225–229.

    CAS  Google Scholar 

  30. Dunnett, S. B. and Iversen, S. D. (1981) Learning impairments following selective kainic acid induced lesions within the neostriatum of rats. Behay. Brain Res. 2, 189–209.

    CAS  Google Scholar 

  31. Graybiel, A. M., Liu, F. C., and Dunnett, S. B. (1989) Intrastriatal transplants of cells derived from fetal striatal primordia. I. Phenotype and modular organzation. J. Neurosci. 9, 3250–3271.

    PubMed  CAS  Google Scholar 

  32. Nakahara, I., Kikuchi, H., Taki, W., Nishi, S., Kito, M., Yonekawa, Y., et al. (1992) Changes in major phospholipids of mitochondria during postischemic reperfusion in rat brain. J. Neurosurg. 76, 244–250.

    PubMed  CAS  Google Scholar 

  33. Borlongan, C. V., Cahill, D. W., and Sanberg, P. R. (1995) Asymmetrical behavior in rats following striatal lesions and fetal transplants: The elevated body swing test. Restor. Neurol. Neurosci. 9, 15–19.

    PubMed  CAS  Google Scholar 

  34. Koide, K., Hashitani, T., Aihara, N., Mabe, H., and Nishino, H. (1993) Improvement of passive avoidance task after grafting of fetal striatal cell suspensions in ischemic striatum in the rat. Rest. Neurol. Neurosci. 5, 205–214.

    CAS  Google Scholar 

  35. Nunn, J. and Hodges, H. (1994) Cognitive deficits induced by global cerebral ischemia: relationship to brain damage and reversal by transplants. Behay. Brain Res. 65, 1–31.

    CAS  Google Scholar 

  36. Benderson, J. B., Pitts, L. H., and Tsuji, M. (1986) Rat middle cerebral artery occlusion: Evaluation of the model and development of neurologic examination. Stroke 17, 472–476.

    Google Scholar 

  37. Kolb, B. (1990) Sparing and recovery of function, in The Cerebral Cortex of the Rat ( Kolb, B. and Tees, R. C., eds.), MIT Press, Cambridge, pp. 537–563.

    Google Scholar 

  38. Evarts, E. (1986) Brain control of movement: possible mechanisms of functional reorganization, in Recovery of Function: Theoretical Consideration for Brain Injury and Rehabilitation ( Bach-Y-Rita, P., ed.), Huber, Toronto, pp. 173–186.

    Google Scholar 

  39. Glees. P. (1986) Functional reorganization following hemispherectomy in man and after small experimental lesion in primates, in Recovery of Function: Theoretical Consideration for Brain Injury and Rehabilitation ( Bach-Y-Rita, P., ed.), Huber, Toronto, pp. 108–126.

    Google Scholar 

  40. Deckel, A. W., Moran, T. H., Coyle, J. T., Sanberg, P. R., and Robinson, R. G. (1986) Anatomical predictors of behavioural recovery following fetal striatal transplants. Brain Res. 365, 249–258.

    PubMed  CAS  Google Scholar 

  41. Isacson, O., Brundin, P., Gage, F. H., and Björklund, A. (1985) Neural grafting in a rat model of Huntinton’s Disease: progressive neurochemical changes after neostriatal ibotenate lesions and striatal tissue grafting. Neuroscience 16, 799–817.

    PubMed  CAS  Google Scholar 

  42. Mayer, E., Brown, V. J., Dunnet, S. B., and Robbins, T. W. (1991) Striatal graft-associated recovery of a lesion-induced performance deficit in the rat requires learning to use the transplant. Eur. J. Neurosci. 4, 119–126.

    Google Scholar 

  43. Sanberg, P. R., Wictorin, K., and Isacson, O. (1994) Cell Transplantation for Hunting-ton’s disease. RG Landes Company, Austin, TX.

    Google Scholar 

  44. Sanberg, P. R. and Coyle, J. T. (1984) Scientific approaches to Huntington’s disease. CRC Crit. Rev. Clin. Neurobiol. 1, 1–44.

    PubMed  CAS  Google Scholar 

  45. Emerich, D. F. and Sanberg, P. R. (1992) Animal models of Huntington’s Disease, in Animal Models of Neurological Disease, Neuromethods, vol. 21 ( Boulton, A., Baker, G., and Butterworth, R., eds.), Humana Press, Totowa, NJ, pp. 65–124.

    Google Scholar 

  46. Sanberg, P. R. (1980) Haloperidol-induced catalepsy is mediated by postsynaptic dopamine receptors. Nature 284, 472–473.

    PubMed  CAS  Google Scholar 

  47. Bullock, R., Butcher, S. P., Chen, M. H., Kendall, L., and McCulloch, J. (1991) Correlation of the extracellular glutamate concentration with extent of blood flow reduction after subdural hematoma in the rat. J. Neurosurg. 74, 794–802.

    PubMed  CAS  Google Scholar 

  48. Chen, M. H., Bullock, R., Graham, D. I., Miller, J. D., and McCulloch, J. (1991) Ischemic neuronal damage after acute subdural hematoma in the rat: effects of pretreatment with a glutamate anatagonist. J. Neurosurg. 74, 944–950.

    PubMed  CAS  Google Scholar 

  49. Olney, J. W. (1978) Neurotoxicity of excitatory amino acids, in Kainic Acid as a Tool in Neurobiology ( McGeer, E., Olney, J. W., and McGeer, P., eds.), Raven, New York, pp. 201–217.

    Google Scholar 

  50. Perlman, S. H., Levivier, M., Collier, T. J., Sladek, J. R., and Gash, D. M. (1991) Striatal implants protect the host striatum against quinolinic acid toxicity. Exp. Brain Res. 84, 303–310.

    Google Scholar 

  51. Sanberg, P. R., Lehmann, J., and Fibiger H. C. (1978) Impaired learning and memory after kainic acid lesions of the striatum: a behavioral model of Huntington’s disease. Brain Res. 149, 546–551.

    PubMed  CAS  Google Scholar 

  52. Macphail, E. M. (1982) Brain and intelligence vertebrates. Oxford University Press, New York.

    Google Scholar 

  53. Kendrick, D.F., Rilling, M. E., and Denny, M. R. (1986) Theories of Animal Memory. Lawrence Erlbaum Associates, Hillsdale, NJ.

    Google Scholar 

  54. Pearce. J. M. (1987) Introduction to Animal Cognition. Lawrence Erlbaum Associates, Hillsdale, NJ.

    Google Scholar 

  55. Vauclair, J. (1996) Animal cognition: An introduction to modern comparative psychology. Harvard University Press. Cambridge, MA.

    Google Scholar 

  56. Macphail, E. M. (1987) The comparative psychology of intelligencl. Behay. Brain Sci. 10, 645–695.

    Google Scholar 

  57. Watanabe, S., Hodos, W., Bessette, B. B., and Shimizu, T. (1986) Intraocular transfer in parallel visual pathways in pigeons. Brain Behay. Evol. 29, 184–195.

    CAS  Google Scholar 

  58. Shimizu, T. and Hodos, W. (1989) Reversal learning in pigeons: effects of selective lesions of the Wulst. Behay. Neurosci. 103, 262–272.

    CAS  Google Scholar 

  59. Colombo, M., Cawley, S., and Broadbent, N. (1997) The effects of hippocampal and area hippocampalis lesions in pigeons: II. Concurrent discrimination and spatial memory. Q. J. Exp. Psychol. 50, 172–189.

    CAS  Google Scholar 

  60. Shimizu, T., and Karten H. J. (1993) The avian visual system and the evolution of the neocortex, in Vision, Brain and Behavior in Birds ( Zeigler, H. P. and Bischof, H. J., eds.), MIT Press, Cambridge, MA, p. 103–114.

    Google Scholar 

  61. Willson, R. J., Szekely, A. D., and Stewart, M. G. (1994) Transient cerebral ischemia disrupts performance on a one-trial passive avoidance task in the domestic chick and is

    Google Scholar 

  62. Borlongan et al.

    Google Scholar 

  63. associated with neuronal degeneration in the central nervous system. Neuroscience,61 975–981.

    Google Scholar 

  64. Watanabe, S., Borlongan, C. V., Radcliffe, K. M., and Shimizu, T. (1996) An avian model of ischemia. Soc. Neurosci. Abstracts 22, 2150.

    Google Scholar 

  65. Menzies, S. A., Hoff, J. T., and Betz, A. L. (1992) Middle cerebral artery occlusion in rats: A neurological and pathological evaluation of a reproducible model. Neurosurgery 31, 100–107.

    PubMed  CAS  Google Scholar 

  66. Bugbee, N. M. (1979) The basal ganglia-tectal pathway: Its role in visually-guided behavior in the pigeon (Columba livia). PhD dissertation. University of Maryland, College Park.

    Google Scholar 

  67. Butler, A. B. and Hodos, W. (1996) Comparative Vertebrate Neuroanatomy Evolution and Adaptation. Wiley-Liss, New York.

    Google Scholar 

  68. Ter Horst, G. and Postigo, A. (1997) Stroke: prevalence and mechanisms of cell death, in Clinical Pharmacology of Cerebral Ischemia ( Ter Horst, G. and Korf, J., eds.), Humana Press, Totowa, NJ, pp. 1–30.

    Google Scholar 

  69. Wiessner, C. and Hossmann K.-A. (1997) Genomic responses following cerebral ischemia, in Clinical Pharmacology of Cerebral Ischemia ( Ter Horst, G. and Korf, J., eds.), Humana Press, Totowa, NJ, pp. 185–214.

    Google Scholar 

  70. Gavrieli, Y., Sherman, Y., and Mensaaaon, S. A. (1992) Identification of programmed cell death in situ via specific labelling of nuclear DNA fragmentation. J. Cell Biol. 119, 493–501.

    PubMed  CAS  Google Scholar 

  71. Gallyas, F. G., Feldner, F. H., Zoltay, G., and Wolff, J. R. (1990) Golgi-like demonstration of “dark” neurons with an argyrophil III method for experimental neuropathology. Acta Neuropathol. 79, 620–628.

    PubMed  CAS  Google Scholar 

  72. Kirino, T. and Sano, K. (1984) Selective vulneraility in the gerbil hippocampus following transient ischemia. Acta Neuropathol. 62, 201–208.

    PubMed  CAS  Google Scholar 

  73. Björklund, A. and Stenevi, U. (1979) Reconstruction of the nigrostriatal dopamine pathway by intracerebral nigral transplants. Brain Res. 177, 555–560.

    PubMed  Google Scholar 

  74. Perlow, M. J., Freed, W. J., Hoffer, B. J., Seiger, A., Olson, L., and Wyatt, R. J. (1979) Brain grafts reduce motor abnormalities produced by destruction of nigrostriatal dopamine system. Science 204, 643–647.

    PubMed  CAS  Google Scholar 

  75. Isacson, O., Brundin, P., Kelly, P. A. T., Gage, F. H., and Björklund, A. (1984) Functional neural replacement by grafted striatal neurons in ibotenic acid lesioned rat striatum. Nature 311, 458–460.

    PubMed  CAS  Google Scholar 

  76. Sanberg, P. R., Borlongan, C.V., Freeman, T. B., Koutouzis, T. K., Cahill, D. W., Isacson, O., et al. (1994) Transplantation of striatal human fetal tissue in excitotoxin model of Huntington’s disease: neuroanatomical and behavioral effects. Soc. Neurosci. Abstracts 20, 471.

    Google Scholar 

  77. Lindvall, O., Brundin, P., Widner, H., Rehncrona, S., Gustavii, B., Frackowiak, R., et al. (1990) Grafts of fetal dopamine neurons survive and improve motor function in Parkinson’s disease. Science 247, 574–577.

    PubMed  CAS  Google Scholar 

  78. Kordower, J. H., Freeman, T. B., Snow, B., Vingerhoets, F. J. G., Muffson, E. J., Sanberg, P. R., et al. (1995) Neuropathological evidence of graft survival and striatal reinnervation after transplantation of efetal mesencephalic tissue in a patient with Parkinson’s disease. N. Engl. J. Med. 332, 1118–1124.

    PubMed  CAS  Google Scholar 

  79. Freeman, T. B., Olanow, C. W., Hauser, R. A., Nauert, G. M., Smith, D. A., Borlongan, C. V., et al. (1995) Bilateral fetal nigral transplantation into the postcommissural putamen as a treatment for Parkinson’s disease: Six month follow-up. Ann. Neurol. 38, 379–388.

    PubMed  CAS  Google Scholar 

  80. Hitchcock, E. R., Clough, C., Hughes, R., and Kenny, B. (1988) Embryos and Parkinson’s disease. Lancet 1, 1274.

    PubMed  CAS  Google Scholar 

  81. Kurth, M. C., Kopyov, O. V., Dumas, C. M., and Jacques, D. B. (1996) Six month follow-up of motor function after fetal transplantation in a patient with Huntington’s disease. Amer. Soc. Neural Transplant Abstracts 3, 15.

    Google Scholar 

  82. Sanberg, P. R., Zubrycki, E., Ragozzino, M., Lu, S., Norman, A., and Shipley, M. (1990) NADPH-diaphorase-containing neurons and cytochrome oxidase activity following striatal quinolinic acid lesions and fetal striatal transplants. Prog. Brain Res. 82, 427–431.

    PubMed  CAS  Google Scholar 

  83. Isacson, O., Dawbarn, D., Brundin, P., Gage, F. H., Emson, P. C., and Björklund, A. (1987) Neural grafting in a rat model of Huntington’s disease: striosomal-like organization of striatal grafts as revealed by immunocytochemistry and receptor autoradiography. Neuroscience 22, 481–497.

    PubMed  CAS  Google Scholar 

  84. Wictorin, K., Clarke, D. J., Bolam, J. P., and Björklund, A. (1990) Fetal striatal neurons grafted into the ibotenate lesioned adult striatum: efferent projections and synaptic contacts in the host globus pallidus. Neuroscience 37, 301–315.

    PubMed  CAS  Google Scholar 

  85. Pundt, L. L., Kondoh, T., Conrad. J. A., and Low, W. C. (1996) Transplantation of human striatal tissue into a rodent model of Huntington’s disease: phenotypic expression of transplanted neurons and host-to-graft innervation. Brain Res. Bull. 39, 23–32.

    CAS  Google Scholar 

  86. Aihara, N., Mizukawa, K., Koide, K., Mabe, H., and Nishino, H. (1993) Striatal grafts in infact striatopallidum increase GABA receptor and improve water-maze learning in rat. Brain Res. Bull. 33, 483–488.

    Google Scholar 

  87. Hadani, M., Freeman, T. B., Pearson, J., Young, W., and Flamm, E. (1987) Embryonic cortical transplants survive in middle cerebral artery territory after permanent occlusion in adult rats, in Cell and Tissue Transplantation into the Adult Brain (Azmitia, E. C. and Björklund, A., eds.), Ann. NYAcad. Sci. USA 495, 711–714.

    Google Scholar 

  88. Grabowski, M., Brundin, P., and Johansson, B. B. (1993) Functional integration of cortical grafts placed in brain infarcts of rats. Ann. Neurol. 34, 362–368.

    PubMed  CAS  Google Scholar 

  89. Freeman, T. B., Sanberg, P. R., Snow, B. J., Vingerhoets, F. J. G., Smith, D. A., Borlongan, C. V, et al. (1994) Fetal nigral transplantation in Parkinson’s disease: The USF experience. Soc. Neurosci. Abstracts 20, 9.

    Google Scholar 

  90. Wictorin, K., Clarke, D. J., Bolam, J. P., and Björklund, A. (1989) Host corticostriatal fibers establish synaptic connections with grafted striatal neurons in the ibotenic acid lesioned striatum. Eur. J. Neurosci. 1, 189–195.

    PubMed  Google Scholar 

  91. Wictorin, K., Simerly, R. B., Isacson, O., Swanson, L. W., Björklund, A. (1989) Connectivity of striatal transplants implanted into the ibotenic acid-lesioned striatum. II. Cortical afferents. Neuroscience 30, 297–311.

    PubMed  CAS  Google Scholar 

  92. Isacson, O., Dunnett, S. B., and Björklund, A. (1986) Graft induced behavioral recovery in an animal model of Huntington’s disease. Proc. Natl. Acad. Sci. USA 83, 2728–2732.

    PubMed  CAS  Google Scholar 

  93. Rod, M. R. and Auer, R. N. (1992) Combination therapy with nimodipine and dizocilpine in a rat model of transient forebrain ischemia. Stroke 23, 196–209.

    Google Scholar 

  94. Nishino, H., Czurkô, A., Onizuka, K., Fukuda, A., Hida, H., Ungsuparkorn, C., et al. (1994) Neuronal damage following transient cerebral ischemia and its restoration by neural transplant. Neurobiology 2, 223–234.

    PubMed  CAS  Google Scholar 

  95. Nishino, H., Aihara, N., Czurkô, A., Hashitani, T., Isobe, Y., Ichikawa, O., and Watari, H. (1993) Reconstruction of GABAergic transmission and behavior by striatal cell grafts in rats with ischemic infarcts in the middle cerebral artery. J. Neural Transplant. Plast. 4, 147–155.

    PubMed  CAS  Google Scholar 

  96. Tulipan, N., Huang, S., Whetsell, U. O., and Allen, G. S. (1986) Neonatal striatal grafts prevent lethal syndrome produced by bilateral intrastriatal injection of kainic acid. Brain Res. 377, 163–167.

    PubMed  CAS  Google Scholar 

  97. Tulipan, N., Lou, S. Q., Allen, G. S., and Whetsell, U. O. (1988) Striatal grafts provide sustained protection from kainic and quinolinic acid-induced damage. Exp. Neurol. 102, 325–332.

    Google Scholar 

  98. Patel, S. N., Clayton, N. S., and Krebs, J. R. (1977) Hippocampal tissue transplants reverse lesion-induced spatial memory deficits in zebra finches (Taeniopygia guttata). J. Neurosci. 17, 3861–3869.

    Google Scholar 

  99. Borlongan, C. V., Stahl, C. E., Cameron, D. F., Saporta, S., Freeman, T. B., Cahill, D. W., et al. (19%) CNS modulation of graft survival and rejection. Neurol. Res. 18, 297–304.

    Google Scholar 

  100. Kawaja, M. D., Rosenberg, M., Yoshida, K., and Gage, F. H. (1992) Somatic gene transfer of nerve growth factor promotes the survival of axotomized septal neurons and the regeneration of their axons in adult rats. J. Neurosci. 12, 2849–2864.

    PubMed  CAS  Google Scholar 

  101. Bankiewicz, K., Mandel, R. J., Sofroniew, M. V. (1993) Trophism, transplantation and animal models of Parkinson’s disease. Exp. Neurol. 124, 140–149.

    PubMed  CAS  Google Scholar 

  102. Suhr, S. T. and Gage, F. H. (1993) Gene theraphy for neurologic disease. Neurol Rev. 50, 1252–1268.

    CAS  Google Scholar 

  103. Freed, W. J. (1993) Neural transplantation: Prospects for clinical use. Cell Transplant 2, 13–31.

    Google Scholar 

  104. Björklund, A. (1991) Neural transplantation—an experimental tool with clinical possibilities. TINS 14, 319–322.

    PubMed  Google Scholar 

  105. Borlongan, C. V., Tajima, Y., Trojanowski, J. Q., Lee, V-M. Y., and Sanberg, P. R. (1997) Transplanted human cultured neurons (NT2N cells) promote functional recovery in ischemic rats. Submitted.

    Google Scholar 

  106. Kleppner, S. R., Robinson, K. A., Trojanowski, J. Q., and Lee, V. M-Y. (1995) Transplanted human neurons derived from a teratocarcinoma cell line (NTera-2) mature, integrate, and survive for over 1 year in the nude mouse brain. J. Comp. Neurol. 357, 618–632.

    PubMed  CAS  Google Scholar 

  107. Miyazono, M., Lee, V. M-Y., and Trojanowski, J. Q. (1995) Proliferation, cell death, and neuronal differentiation in transplanted human embryonal carcinoma (NTera2) cells depend on the graft site in nude and severe combined immunodeficient mice. Lab. Invest. 73, 273–283.

    PubMed  CAS  Google Scholar 

  108. Trojanowski, J. Q., Mantione, J. R., Lee, J. H., Seid, D. P., You, T., Inge, L. J., et al. (1993) Neurons derived from a teratocarcinoma cell line establish molecular and structural polarity following transplantation into the rodent brain. Exp. Neurol. 122, 283–294.

    PubMed  CAS  Google Scholar 

  109. Lee V. M-Y., and Andrews, P. W. (1986) Differentiation of NTERA-2 clonal human embryonal carcinoma cells into neurons involves the induction of all three neurofilament proteins. J. Neurosci. 6, 514–521.

    PubMed  CAS  Google Scholar 

  110. Pleasure, S. J. and Lee, V. M-Y. (1993) NTera 2 cells: a human cell line which displays characteristics expected of a human committed neuronal progenitor cell. J. Neurosci. Res. 35, 585–602.

    PubMed  CAS  Google Scholar 

  111. Mantione, J. R., Kleppner, S. R., Miyazono, M., Wertkin, A. M., Lee, V.M-Y., and Trojanowski, J. Q. (1995) Human neurons that constitutively secrete Aß do not induce Alzheimer’s disease pathology following transplantation and long-term survival in the rodent brain. Brain Res. 671, 333–337.

    PubMed  CAS  Google Scholar 

  112. Schinstine, M., Stull, N. D., and Iacovitti, L. (1996) Induction of tyrosine hydroxylase in hNT neurons. Soc. Neurosci. Abstracts 22, 1959.

    Google Scholar 

  113. Tornatore, C., Baker-Cairns, B., Yadid, G., Hamilton, R., Meyers, K., Atwood, W., et al. (1996) Expression of tyrosien hydroxylase in an immortalized human fetal astrocyte cell line; in vitro characterization and engraftment into the rodent striatum. Cell Transplant 5, 145–163.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Borlongan, C.V. et al. (1998). Animal Models of Cerebral Ischemia. In: Freeman, T.B., Widner, H. (eds) Cell Transplantation for Neurological Disorders. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-476-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-476-4_11

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-043-4

  • Online ISBN: 978-1-59259-476-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics