Skip to main content

Reactive Oxygen Involvement in Neurodegenerative Pathways

Causes, Consequences, and Potential Management with Nitrone-Based Free Radical Traps

  • Chapter
Neuroinflammation

Part of the book series: Contemporary Neuroscience ((CNEURO))

Abstract

As organs age, the likelihood of severe dysfunction increases steadily. The brain is particularly sensitive to age-related, chronic and acute oxidative pathologies. An emerging paradigm holds that diverse neurodegenerative conditions share a common etiological factor, namely, enhanced brain tissue oxidation owing to exacerbated production of reactive oxygen species (ROS) or to compromise of antioxidant defense and repair mechanisms. Brain is particularly susceptible to oxidative stress owing to its high content of unsaturated lipids, high metabolic rate, relative dearth of antioxidant enzymes, and inability to regenerate lost neurons. Pathogenic ROS generation may result from metabolic enzyme dysregulation, impaired mitochondrial respiration, excitotoxic stimulation, and secondarily as a function of intracellular calcium stress (summarized in Fig. 1 and elaborated below). Natural variation in antioxidant systems may explain why humans differ so greatly with respect to pathways and rates of neurodegeneration. If this is the case, antioxidant supplementation of the aging brain may forestall certain aspects of age-related neurodegeneration. Accordingly, much research has focused on antioxidant management of aging brain and on antioxidant interdiction of postischemic brain damage. Recent findings indicate that specific antioxidants do more than scavenge ROS, but may indirectly affect cellular signal transduction, genetic response, and inflammatory events in such a way as to modulate beneficially brain response to oxidative challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schapira, A. H. and Cooper, J. M. (1992) Mitochondrial function in neuro-degeneration and aging. Mutat. Res. 275, 1133–1143.

    Google Scholar 

  2. Halliwell, B. and Gutteridge, J. M. C. (1989) Free Radicals in Biology and Medicine. Clarendon Press, Oxford.

    Google Scholar 

  3. Partridge, R. S., Monroe, S. M., Parks, J. K., Johnson, K., Parker, W. D., Jr., Eaton, G. R., and Eaton, S. S. (1994) Spin trapping of azidyl and hydroxyl radicals in azide-inhibited rat brain submitochondrial particles. Arch. Biochem. Biophys. 310, 210–217.

    Article  PubMed  CAS  Google Scholar 

  4. Colton, C.A., Snell, J., Chernyshev, O., and Gilbert, D. L. (1994) Induction of superoxide anion nitric oxide production in cultured microglia. Ann. NY Acad. Sci. 738, 54–63.

    Article  PubMed  CAS  Google Scholar 

  5. McCord, J. M. (1985) Oxygen-derived free radicals in postischemic tissue injury. N. Engl. J. Med. 312, 159.

    Article  PubMed  CAS  Google Scholar 

  6. Lands, W. E. M., Kulmacz, R. J., and Marshall, P. J. (1984) Lipid peroxide actions in the regulation of prostaglandin biosynthesis, in Free Radicals in Biology, vol. VI, ( Pryor, W., ed.), Academic, New York, pp. 39–61.

    Google Scholar 

  7. Vliegenhardt, J. F. G. and Veldink, G. A. (1982) Lipoxygenases, in Free Radicals in Biology, vol. V, ( Pryor, W., ed.), Academic, New York, pp. 29–59.

    Google Scholar 

  8. Stadtman, E. R. and Oliver, C. N. (1991) Metal-catalyzed oxidation of proteins. J. Biol. Chem. 206, 2005–2008.

    Google Scholar 

  9. Wiseman, H. and Halliwell, B. (1996) Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem. J. 313, 17–29.

    PubMed  CAS  Google Scholar 

  10. Floyd, R. A. and Carney, J. M. (1993) The role of metal ions in oxidative processes and aging. Toxicol. Indust. Health 9, 197–214.

    CAS  Google Scholar 

  11. Uchida, K. and Stadtman, E. R. (1992) Modification of histidine residues in proteins by reaction with 4-hydroxynonenal. Proc. Natl. Acad. Sci. USA 89, 4544–4548.

    Article  PubMed  CAS  Google Scholar 

  12. Fukuto, J. M. and Chaudhuri, G. (1995) Inhibition of constitutive and inducible nitric synthase: potential selective inhibition. Annu. Rev. Pharmacol. Toxicol. 35, 165–194.

    Article  PubMed  CAS  Google Scholar 

  13. Czapski, G. and Goldstein, S. (1995) The role of the reaction of ‘NO with superoxide oxygen in biological systems: a kinetic approach. Free Radical Biol. Med. 19, 785–794.

    Article  CAS  Google Scholar 

  14. Lipton, S.A., Singel, D. J., and Stamler, J. S. (1994) Neuroprotective and neuro-destructive effects of nitric oxide and redox congeners. Ann. NY Acad. Sci. 738, 382–387.

    Article  PubMed  CAS  Google Scholar 

  15. Packer, M. A. and Murphy, M. P. (1994) Peroxynitrite causes calcium efflux from mitochondria which is prevented by cyclosporin A. FEBS Lett. 345, 237–240.

    Article  PubMed  CAS  Google Scholar 

  16. Yermilov, V., Rubio, J., Becchi, M., Friesen, M. D., Pignatelli, B., and Ohshima, H. (1995) Formation of 8-nitroguanine by the reaction of guanine with peroxynitrite in vitro. Carcinogenesis 16, 2045–2050.

    Article  CAS  Google Scholar 

  17. Gotz, M. E., Kunig, G., Riederer, P., and Youdim, M. B. H. (1994) Oxidative stress: free radical production in neural degeneration. Pharmacol. Ther. 63, 27–122.

    Article  Google Scholar 

  18. Balazs, L. and Leon, M. (1994) Evidence of an oxidative challenge in the Alzheimer’s brain. Neurochem. Res. 19, 1131–1137.

    Article  PubMed  CAS  Google Scholar 

  19. Gerlach, M., Ben-Shachar, D., Riederer, P., and Youdim, M. B. H. (1994) Altered brain metabolism of iron as a cause of neurodegenerative diseases? J. Neurochem. 63, 793–807.

    Article  PubMed  CAS  Google Scholar 

  20. Jenner, P. (1994) Oxidative damage in neurodegenerative diseases. Lancet 344, 796–798.

    Article  PubMed  CAS  Google Scholar 

  21. Coyle, J. T. and Puttfarcken, P. (1993) Oxidative stress, glutamate, and neuro-degenerative disorders. Science 262, 689–695.

    Article  PubMed  CAS  Google Scholar 

  22. Olanow, C. W. (1992) An introduction to the free radical hypothesis in Parkinson’s disease. Ann. Neurol. 32, S2 - S8.

    Article  PubMed  CAS  Google Scholar 

  23. Hensley, L., Hall, N., Subramaniam, R., Cole, P., Harris, M., Aksenov, M. Aksenova, M., Gabbita, S. P., Wu, J. F., Carney, J. M., Lovell, M., Markesbery, W. R., and Butterfield, D. A. (1995) Brain regional correspondence between Alzheimer’s disease histopathology and biomarkers of protein oxidation. J. Neurochem. 65, 2146–2156.

    Article  PubMed  CAS  Google Scholar 

  24. Markesbery W. R., Lovell, M. A., and Ehmann, W. D. (1994) Increased lipid per-oxidation antioxidant enzyme activity in the brain in Alzheimer’s disease. Neurobiol. Aging 15, S139 - S140.

    Google Scholar 

  25. Smith, C. D., Carney, J. M., Tatsumo, T., Stadtman, E. R., Floyd, R. A., and Markesbery, W. R. (1992) Protein oxidation in aging brain. Ann. NY Acad. Sci. 663, 110–119.

    Article  PubMed  CAS  Google Scholar 

  26. Oliver, C.N., Ahn, B. W., Moerman, E. J., Goldstein, S., and Stadtman, E. R. (1987) Age related changes in oxidized proteins. J. Biol. Chem. 12, 5488–5491.

    Google Scholar 

  27. Subarao, K. V., Richardson, S., and Ang, L. C. (1990) Autopsy samples of Alzheimer’s cortex show increased peroxidation in vitro. J. Neurochem. 55, 343–345.

    Google Scholar 

  28. Hajimohammadreza, I. and Brammer, M. (1990) Brain membrane fluidity and lipid peroxidation in Alzheimer’s disease. Neurosci. Lett. 112, 333–337.

    Google Scholar 

  29. Mizuno Y., Ohta, S., Tanaka, M., Takamiya, S., Suzuki, K., Sato, T., Oya, H., Ozawa, T., and Kagawa, Y. (1989) Deficiencies in complex I subunits of the respiratory chain in Parkinson’s disease. Biochem. Biophys. Res. Commun. 163, 1450–1455.

    Article  PubMed  CAS  Google Scholar 

  30. Earle, K. M. (1968) Studies in Parkinson’s disease including X-ray fluorescent spectroscopy of formalin fixed brain tissue. J. Neuropathol. Exp. Neurol. 27, 1–14.

    Article  PubMed  CAS  Google Scholar 

  31. Langstrom J. W., Ballard, P., Tetrud, J. W., and Irwin, I. (1983) Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219, 979–980.

    Article  Google Scholar 

  32. Dexter, D. T., Carter, C. J., Wells, F. R., Javoy-Agid, F., Agid, Y., Lees, A., Jenner, P., and Marsden, C. (1989) Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J. Neurochem. 52, 381–389.

    Article  PubMed  CAS  Google Scholar 

  33. Oreland, L. (1991) Monoamine oxidase, dopamine and Parkinson’s disease. Acta Neurol. Scand. Suppl. 136, 60–65.

    CAS  Google Scholar 

  34. Felten D. L., Felten, S. Y., Steece-Collier, K., Date, I., and Clemens, J. A. (1992) Age-related decline in the dompaminergic nigrostriatal system: the oxidative hypothesis and protective strategies. Ann. Neurol. Suppl. 32, S133 - S137.

    Google Scholar 

  35. Menzies, S. A., Hoff, J. T., and Betz, A. L. (1992) Middle cerebral artery occlusion in rats: a neurological and pathological evaluation of a reproducible model. Neurosurgery 31, 100–106.

    Article  PubMed  CAS  Google Scholar 

  36. Chandler, M. J., DeLeo, J., and Carney, J. M. (1985) An unanesthetized gerbil model of cerebral ischemia-induced behavioral changes. J. Pharmacol. Methods 14, 137–146.

    Article  PubMed  CAS  Google Scholar 

  37. Sen, S. and Phillis, J. W. (1993) Alpha phenyl tert-butyl nitrone (PBN) attentuates hydroxyl radical production during ischemia-reperfusion injury of rat brain: an EPR study. Free Radical Res. Commun. 19, 255–265.

    Article  CAS  Google Scholar 

  38. Zini, I., Tomasi, A., Grimaldi, R., Vannini, V., and Agnati, L. F. (1992) Detection of free radicals during brain ischemia and reperfusion by spin trapping and micro-dialysis. Neurosci. Lett. 138, 279–282.

    Article  PubMed  CAS  Google Scholar 

  39. Lange, D. G., Kirsch, J. R., Halfaer, M. A., and Traystman, R. J. (1990) A continuous in vivo model of ischemia/reperfusion induced free radical production in the CSF of pig using spin-trapping agents and EPR techniques. Free Radical Biol. Med. 9 (Suppl. 1), 97.

    Google Scholar 

  40. Floyd, R. A. and Carney, J. M. (1991) Age influence on oxidative events during brain ischemia/reperfusion. Arch. Gerontol. Geriatr. 12, 155–177.

    Google Scholar 

  41. Liu, P. K., Hsu, C. Y., Dizdaroglu, M., Floyd, R. A., Karakaya, A., and Cui, J. K. (1996) Chromosomal mutation in the mouse brain following cerebral ischemiareperfusion. J. Neurosci. 16, 6795–6806.

    PubMed  CAS  Google Scholar 

  42. Oliver, C. N., Starke-Reed, P. E., Stadtman, E. R., Liu, G. J., Carney, J. M., and Floyd, R. A. (1990) Oxidative damage to brain proteins, loss of glutamine synthetase activity, and production of free radicals during ischemia/reperfusion-induced injury to gerbil brain. Proc. Natl. Acad. Sci. USA 87, 5144–5147.

    Article  PubMed  CAS  Google Scholar 

  43. Zhao, Q., Pahlmark, K., Smith, M. L., and Seisjo, B. K. (1994) Delayed treatment with the phenyl-tert-butyl nitrone (PBN) reduces infarct size following transient middle cerebral artery occlusion in rats. Acta Physiol. Scand. 152, 349–350.

    Article  PubMed  CAS  Google Scholar 

  44. Phillis, J. W. and Clough-Helfman, C. (1990) Protection from cerebral ischemic injury gerbils with the spin trap N-tert-butyl-a-phenylnitrone (PBN). Neurosci. Lett. 116, 315–319.

    Article  PubMed  CAS  Google Scholar 

  45. Iadecola, C., Zhang, F., Xu, S., Casey R., and Ross, M. E. (1995) Inducible nitric oxide synthase gene expression in brain following cerebral ischemia. J. Cereb. Blood Flow Metab. 15, 378–384.

    Article  PubMed  CAS  Google Scholar 

  46. Iadecola, C., Zhang, and Xu, X. (1995) Inhibition of inducible nitric oxide synthase ameliorates cerebral ischemic damage. Am. J. Phys. 268, R286 - R292.

    CAS  Google Scholar 

  47. Bagasra, O., Michaels, F. H., Zheng, Y. M., Bobroski, L. E., Spitsin, S. V., Fu, Z. F., Tawadros, R., and Koprowski, H. (1995) Activation of the inducible form of nitric oxide synthase in the brains of patients with multiple sclerosis. Proc. Natl. Acad. Sci. USA 92, 12,041–12, 045.

    Google Scholar 

  48. Remade, J., Raes, M., Toussaint, O., Renard, P., and Rao, G. (1995) Low levels of reactive oxygen species as modulators of cell function. Mutat. Res. 316, 103–122.

    Article  Google Scholar 

  49. Schreck, R., Rieber, P., and Baeuerle, P. A. (1991) Reactive oxygen intermediates as apparently widely used messengers in the activation of NF-xB transcription factor and HIV–1. Eur. Mol. Biol. Organ. J. 10, 2247–2258.

    CAS  Google Scholar 

  50. Lander, H. M., Ogiste, J. S., Teng, K. K., and Novogrodsky, A. (1995) p21ras as a common signaling target of reactive free radicals and cellular redox stress. J. Biol. Chem. 270, 21,195–21,198.

    Google Scholar 

  51. Nagafuji, T., Sugiyama, M., Muto, A., Makino, T., Miyauchi, T., and Nabata, H. (1995) The neuroprotective effect of a potent and selective inhibitor of type I NOS (L-MIN) in a rat model of focal cerebral ischemia. Acta Neurochir. Suppl. 60, 285–288.

    Google Scholar 

  52. Qureshi, G. A., Baig, S., Bednar, I., Sodersten, P., Forsberg, G., and Siden, A. (1995) Increased cerebrospinal fluid concentration of nitrite in Parkinson’s disease. NeuroReport 6, 1642–1644.

    CAS  Google Scholar 

  53. Dorheim, M. A., Tracey, W. R., Pollock, J. S., and Grammis, P. (1994) Nitric oxide synthase activity is elevated in brain microvessels in Alzheimer’s disease. Biochem. Biophys. Res. Commun. 205, 659–665.

    Article  PubMed  CAS  Google Scholar 

  54. Palmer, C., Towfighi, J., Roberts, R. L., and Heitjan, D. J. (1993) Allopurinol administered inducing hypoxia-ischemia reduces brain injury in 7-day old rats. Pediatr. Res. 33, 405–411.

    PubMed  CAS  Google Scholar 

  55. Betz, A. J., Randall, J., and Martz, D. (1991) Xanthine oxidase is not a major source of radicals in focal cerebral ischemia. Am. J. Physiol. 260, H563 - H568.

    PubMed  CAS  Google Scholar 

  56. Linday, S., Liu, T. H., Xu, J. A., Marshall, P. A., Thompson, J. K., Parks, D. A., Freeman, B. A., Hsu, C. Y., and Beckman, J. S. (1991) Role of xanthine dehydrogenase and oxidase in focal cerebral ischemic injury to the rat. Am. J. Physiol. 261, H2051 - H2057.

    Google Scholar 

  57. Lafon-Cazal, M., Pietri, S., Culcasi, M., and Bockaert, J. (1993) NMDA-dependent superoxide production and neurotoxicity. Nature 364, 535–537.

    Article  PubMed  CAS  Google Scholar 

  58. Beal, M. F. (1992) Does impairment of energy metabolism result in excitotoxic neuronal neurodegenerative illnesses? Ann. Neurol. 31, 119–132.

    Article  PubMed  CAS  Google Scholar 

  59. Deliconstantinos, G. and Villiotou, V. (1996) NO synthase and xanthine oxidase activities of rat brain synaptosomes: peroxynitrite formation as a causative factor of neurotoxicity. Neurochem. Res. 21, 51–61.

    Article  PubMed  CAS  Google Scholar 

  60. Schulz, J. B., Henshaw, D. R., Siwek, D., Jenkins, B. G., Ferrante, R. J., Cipolloni, P. B., Kowall, N. W., Rosen, B. R., and Beal, M. F. (1995) Involvement of free radicals in excitotoxicity in vivo. J. Neurochem. 64, 2239–2247.

    Article  CAS  Google Scholar 

  61. Volterra, A., Trotti, D., Tromba, C., Floridi, S., and Racagni, G. (1994) Glutamate uptake inhibition by oxygen free radicals in rat cortical astrocytes. J. Neurosci. 14, 2944–2932.

    Google Scholar 

  62. Rothstein, J. D., Lin, J., Dykes-Hoberg, M., and Kuncl, R. W. (1993) Chronic inhibition of glutamate uptake produces a model of slow neurotoxicity. Proc. Natl. Acad. Sci. USA 90, 6591–6595.

    Article  PubMed  CAS  Google Scholar 

  63. Barchowski, A., Williams, M. E., Benz, C. C., and Chepenik, K. P. (1994) Oxidant-sensitive protein phosphorylation in endothelial cells. Free Radical Biol. Med. 16, 771–777.

    Article  Google Scholar 

  64. Devary, Y., Rosette, C., Didonato, J. A., and Karin, M. (1993) NF-xB activation by ultraviolet light is not dependent on a nuclear signal. Science 261, 1442–1445.

    Article  PubMed  CAS  Google Scholar 

  65. Adcock, I. M., Brown, C. R., Kwon, O., and Barnes, P. J. (1994) Oxidative stress induces NFxB DNA binding and inducible NOS mRNA in human epithelial cells. Biochem. Biophys. Res. Commun. 199, 1518–1524.

    Article  PubMed  CAS  Google Scholar 

  66. Charriaut-Marlangue, C., Margall, I., Ploticine, M., and Ben-Ari, Y. (1995) Early endonuclease activation following reversible focal ischemia in the rat brain. J. Cereb. Blood Flow Metab. 15, 385–388.

    Article  PubMed  CAS  Google Scholar 

  67. MacManus, J. P., Buchan, A. M., Hill, I. E., Rasquinha, I., and Preston, E. (1993) Global ischemia can cause DNA fragmentation indicative of apoptosis in rat brain. Neurosci. Lett. 164, 89–92.

    Article  PubMed  CAS  Google Scholar 

  68. Dragunow, M., Faull, R. L., Lawlor, P., Beilharz, E. J., Singleton, K., Walker, E. B., and Mee, E. (1995) In situ evidence for DNA fragmentation in Huntington’s disease striatum and Alzheimer’s disease temporal lobes. NeuroReport 6, 1053–1057.

    CAS  Google Scholar 

  69. Loo, D. T., Copani, A., Pike, C. J., Whittemore, E. R., Calencewicz, A. J., and Cotman, C. W. (1993) Apoptosis is induced by ß-amyloid in cultured central nervous system neurons. Proc. Natl. Acad. Sci. USA 90, 7951–7955.

    Article  PubMed  CAS  Google Scholar 

  70. Macaya, A., Munell, F., Gubits, R. M., and Burke, R. E. (1994) Apoptosis in substantia following developmental striatal excitotoxic injury. Proc. Natl. Acad. Sci. USA 19, 8117–8121.

    Article  Google Scholar 

  71. Whittemore, E. R., Loo, D. T., and Cotman, C. W. (1994) Exposure to hydrogen peroxide induces cell death via apoptosis in cultured rat cortical neurons. Neuro-Report 5, 1485–1488.

    CAS  Google Scholar 

  72. Slater, A. F. G., Nobel, C. S. I., and Orrenius, S. (1995) The role of intracellular antioxidants in apoptosis. Biochim. Biophys. Acta 1271, 59–62.

    Article  PubMed  Google Scholar 

  73. Slater, A. F. G., Nobel, C. S., Maellaro, E., Bustamante, J., Kimland, M., and Orrhenius, S. (1995) Nitrone spin traps and a nitroxide antioxidant inhibit a corn-mon pathway of thymocyte apoptosis. Biochem. J. 306, 771–779.

    PubMed  CAS  Google Scholar 

  74. Rothwell, N. J. and Relton, J. K. (1993) Involvement of cytokines in acute neuro-degeneration in the CNS. Neurosci. Biobehay. Rev. 17, 217–227.

    Article  CAS  Google Scholar 

  75. Itagaki S., McGeer, P. L., Akiyama, H., Zhu, S., and Selkoe, D. (1989) Relationship of microglia and astrocytes to amyloid deposits of Alzheimer disease. J. Neuroimmunol. 24, 173–182.

    Article  PubMed  CAS  Google Scholar 

  76. Mattson, M. P., Lovell, M. A., Furukawa, K., and Markesbery, W. R. (1995) Neurotrophic factors attenuate glutamate-induced accumulation of peroxides, elevation of intracellular Cat+ concentration, and neurotoxicity and increase antioxidant enzyme activities in hippocampal neurons. J. Neurochem. 65, 1740–1751.

    Article  PubMed  CAS  Google Scholar 

  77. Liu, T., Clark, R. K., McDonnell, P. C., Young, P. R., White, M. S., Barone, F. C., and Feuerstein, G. Z. (1994) Tumor necrosis factor-a expression in ischemic neurons. Stroke 25, 1481–1488.

    Google Scholar 

  78. Warren J. S. (1990) Interleukins and tumor necrosis factor in inflammation. Crit. Rev. Clin. Lab. Sci. 28, 37–59.

    Article  PubMed  CAS  Google Scholar 

  79. Tarkowski, E., Rosengren, L., Blomstrand, C., Wikkelso, C., Jensen, C., Ekholm, S., and Tarkowski, A. (1995) Early intrathecal production of interleukin–6 predicts the size of brain lesion in stroke. Stroke 26, 1391–1398.

    Google Scholar 

  80. Mogi, M., Harada, M., Kondo, T., Riederer, P., Inagaki, H., Minami, M., and Nagatsu, T. (1994) Interleukin–10, interleukin–6, epidermal growth factor and transforming growth factor-a are elevated in the brain from Parkinsonian patients. Neurosci. Lett. 180, 147–150.

    Article  PubMed  CAS  Google Scholar 

  81. Mrack, R. E., Sheng, J. G., and Griffin, W. S. T. (1993) Glial cytokines in Alzheimer’s disease: review and pathogenic implications. Hum. Pathol. 26, 816–823.

    Article  Google Scholar 

  82. Griffin, W. S. T., Stanley, L. C., Ling, C., White, L., MacLeod, V., Perrot, L. J., White, C. L., and Araoz, C. (1989) Brain interleukin–1 and S–100 immunoreactivity are elevated in Down’s syndrome and Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 86, 7611–7622.

    Article  PubMed  CAS  Google Scholar 

  83. Giulian, D., Woodward, J., Young, D., Krebs, J. F., and Lachman, L. B. (1989) Interleukin–1 injected into mammalian brain stimulates astrogliosis and neovascularization. J. Neurosci. 8, 2485–2490.

    Google Scholar 

  84. Beasley, D., Schwartz, J. H., and Brenner, B. M. (1991) Interleukin–1 induces prolonged L-arginine-dependent cyclic guanosine monophosphate and nitrite production in rat vascular smooth muscle cells. J. Clin. Invest. 87, 602–608.

    Article  PubMed  CAS  Google Scholar 

  85. Donnelly R. J., Freidhoff, A. J., Beer, B., Blume, A. J., and Vitek, M. P. (1990) Interleukin–1 stimulates the beta-amyloid precursor promotor. Cell Mol. Neurobiol. 10, 485–495.

    Article  PubMed  CAS  Google Scholar 

  86. Meda, L., Cassatella, M. A., Szendrel, G. I., Otvos, L., Jr., Baron, P., Villalba, M., Ferrari, D., and Rossi, F. (1995) Activation of microglial cells by ß-amyloid protein and interferon-gamma. Nature 374, 647–650.

    Article  PubMed  CAS  Google Scholar 

  87. Behl, C., Davis, J. B., Lesley, R., and Schubert, D. (1994) Hydrogen peroxide mediates amyloid ß-peptide toxicity. Cell 77, 817–827.

    Article  PubMed  CAS  Google Scholar 

  88. Harris, M. E., Hensley, K., Butterfield, D. A., Leedle, R. E., and Carney, J. M. (1995) Direct evidence of oxidative injury by the Alzheimer’s amyloid ß-peptide in cultured hippocampal neurons. Exp. Neurol. 131, 193–202.

    Article  PubMed  CAS  Google Scholar 

  89. Mark, R. J., Hensley, K., Butterfield, D. A., and Mattson, M. P. (1995) Amyloid ß-peptide impairs ion-motive ATPase activities: evidence for a role in loss of neuronal Cat+ homeostasis death. J. Neurosci. 15, 6239–6249.

    PubMed  CAS  Google Scholar 

  90. Mattson, M. P., Cheng, B., Davis, D., Bryant, K., Lieberburg, I., and Rydell, R. E. (1992) ß-amyyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J. Neurosci. 12, 376–389.

    PubMed  CAS  Google Scholar 

  91. McGeer, P. L., McGeer, E., Rogers, J., and Sibley, J. (1991) Anti-inflammatory drugs and Alzheimer disease. Lancet 335, 1037.

    Article  Google Scholar 

  92. Rogers, J., Kirby, L. C., Hempelman, S. R., Berry, D. L., McGeer, P. L., Kaszniak, A. W., Zalinski, J., Cofield, M., Mansukhani, L., Willson, P., and Kogan, F. (1993) Clinical trial of indomethacin in Alzheimer’s disease. Neurology 43, 1609–1611.

    Article  PubMed  CAS  Google Scholar 

  93. Hennekens, C. H. and Gaziano, J. M. (1993) Antioxidants and heart disease: epidemiology and clinical evidence. Clin. Cardiol. 16, 110–113.

    Article  Google Scholar 

  94. Clemens, J. A. and Panetta, J. A. (1994) Neuroprotection by antioxidants in models of global and focal ischemia. Ann. NY Acad. Sci. 738, 250–256.

    Article  PubMed  CAS  Google Scholar 

  95. Janzen, E. G. and Blackburn, B. J. (1968) Detection and identification of short-lived free radicals by electron spin resonance trapping technique. J. Am. Chem. Soc. 90, 5909, 5910.

    Google Scholar 

  96. Pogrebniak, H. W., Merino, M. J., Hahn, S. M., Mitchell, J. B., and Pass, H. I. (1992) Spin salvage from endotoxemia: the role of cytokine down-regulation. Surgery 112, 130–139.

    PubMed  CAS  Google Scholar 

  97. Chen, Q., Fisher, A., Reagan, J. D., Yan, L. J., and Ames, B. N. (1995) Oxidative DNA damage and senescence of human diploid fibroblast cells. Proc. Natl. Acad. Sci. USA 92, 4337–4341.

    Article  PubMed  CAS  Google Scholar 

  98. Carney, J. M., Starke-Reed, P. E., Oliver, C. N., Landum, R. W., Cheng, M. S. Wu, J. F., and Floyd, R. A. (1991) Reversal of age-related increase in brain protein oxidation, decrease in enzyme activity, and loss in temporal and spatial memory by chronic administration of the spin-trapping compound N-tert-butyl-a-phenylnitrone. Proc. Natl. Acad. Sci. USA 88, 3633–3636.

    Article  PubMed  CAS  Google Scholar 

  99. Cheng, H. Y., Liu, T., Feuerstein, G., and Barone, F. C. (1993) Distribution of spin-trapping compounds in rat blood and brain: in vivo microdialysis determination. Free Radical Biol. Med. 14, 243–250.

    Article  CAS  Google Scholar 

  100. Yue, T. L., Gu, J. L., Lysko, P. G., Cheng, H. Y., Barone, F. C., and Fuerstein, G. (1992) Neuroprotective effects of phenyl-t-butyl-nitrone in gerbil brain ischemia and in cultured rat cerebellar neurons. Brain Res. 574, 193–197.

    Article  PubMed  CAS  Google Scholar 

  101. Busciglio, J. and Yankner, B. A. (1995) Apoptosis and increased generation of reactive oxygen species in Down’s syndrome neurons in vivo. Nature 378, 267–272.

    Google Scholar 

  102. Edamatsu, R., Mori, A., and Packer, L. (1995) The spin trap N-tert-butyl-a-phenylnitrone prolongs the lifespan of the senescence accelerated mouse. Biochem. Biophys. Res. Commun. 211, 847–849.

    Article  PubMed  CAS  Google Scholar 

  103. Chen, Q. and Ames, B. N. (1994) Senescence-like growth arrest by hydrogen peroxide fibroblast F65 cells. Proc. Natl. Acad. Sci. USA 91, 4130–4134.

    Article  PubMed  CAS  Google Scholar 

  104. Janzen, E. G., West, M. S., and Poyer, J. L. (1994) Comparison of antioxidant activity of hindered phenols in initiated rat liver microsomal peroxidation, in, Frontiers of Reactive Oxygen Species in Biology and Medicine (Asada, K. and Yoshikawa, T., eds.), Elsevier, Amsterdam, pp. 431–434.

    Google Scholar 

  105. French, J. F., Thomas, C. E., Downs, T. R., Ohlweiler, D. F., Carr, A. A., and Dage, R. C. (1994) Protective effects of a cyclic nitrone antioxidant in animal models of endotoxic shock and chronic bacteremia. Circ. Shock 43, 130–136.

    PubMed  CAS  Google Scholar 

  106. Miyajima, T. and Kotake. Y. (1995) Spin trapping agent, phenyl N-tert-butylnitrone, inhibitis induction of nitric oxide synthase in endotoxin-induced shock in mice. Biochem. Biophys. Res. Commun. 215, 114–121.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hensley, K., Pye, Q.N., Tabatabaie, T., Stewart, C.A., Floyd, R.A. (1998). Reactive Oxygen Involvement in Neurodegenerative Pathways. In: Wood, P.L. (eds) Neuroinflammation. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-473-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-473-3_10

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-5961-7

  • Online ISBN: 978-1-59259-473-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics