Skip to main content

Endothelial Injury During Minimally Invasive Bypass Grafting

  • Chapter
Minimally Invasive Cardiac Surgery

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 172 Accesses

Abstract

Over the last few decades, the vascular endothelium has emerged as a central mediator of the biochemical events that underlie the preoperative, operative, and postoperative course of nearly all patients who undergo cardiovascular interventional procedures and cardiovascular surgery. While initially felt to be a passive bystander of the whole-body response to cardiac surgery, it is now clear that the endothelium is a dynamic organ which is a central regulator of vascular tone, vasomotor function, coagulation, and cellular interactions. Although in the physiologically unstressed state the role of the endothelium is to maintain intravascular homeostasis, it also serves a critical role in the response to injury. Specifically, in terms of cardiovascular surgery, the endothelium modulates the systemic inflammatory response, changing vasomotor tone, impacting coagulation responses, initiating the intimal hyperplastic response, and mediating the chronic changes leading to atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Perrault LP, Menasche P, Wassef M, et al. Endothelial effects of hemostatic devices for continuous cardioplegia or minimally invasive operations. Ann Thorac Surg 1996; 62 (4): 1158–1163.

    Article  PubMed  CAS  Google Scholar 

  2. Chavanon O, Perrault LP, Menasche P, Carrier M, Vanhoutte PM. As originally published in 1996: Endothelial effects of hemostatic devices for continuous cardioplegia or minimally invasive operations. Updated in 1999. Ann Thorac Surg 1999; 68 (3): 1118–1120.

    Article  PubMed  CAS  Google Scholar 

  3. Verrier ED, Boyle EMJ. Endothelial cell injury in cardiovascular surgery: an overview. Ann Thorac Surg 1997; 64 (4): S2 - S8.

    Article  Google Scholar 

  4. Ruschitzka FT, Noll G, Luscher TF. The endothelium in coronary artery disease. Cardiology 1997; 88 (suppl 3): 3–19.

    Article  PubMed  CAS  Google Scholar 

  5. Vita JA, Treasure CB, Nabel EG, et al. Coronary vasomotor response to acetylcholine relates to risk factors for coronary artery disease. Circulation 1990; 81 (2): 491–497.

    Article  PubMed  CAS  Google Scholar 

  6. Ludmer PL, Jelwyn AP, Shook TL, et al. Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. N Engl J Med 1986; 315 (17): 1046–1051.

    Article  PubMed  CAS  Google Scholar 

  7. Pearson Pi, Evora PR, Schaff HV. Bioassay of EDRF from internal mammary arteries: implications for early and late bypass graft patency. Ann Thorac Surg 1992; 54 (6): 1078–1084.

    Google Scholar 

  8. Nonami Y. The role of nitric oxide in cardiac surgery. Surg Today 1997; 27 (7): 583–592.

    Article  PubMed  CAS  Google Scholar 

  9. Lockowandt U, Franco-Cereceda A. Off-pump coronary bypass surgery causes less immediate postoperative coronary endothelial dysfunction compared to on-pump coronary bypass surgery. Eur J Cardiothorac Surg 2001; 20 (6): 1147–1151.

    Article  PubMed  CAS  Google Scholar 

  10. Angdin M, Settergren G, Vaage J. Better preserved pulmonary endothelium-dependent vasodilation with off-pump coronary surgery. Scand Cardiovasc J 2001; 35 (4): 264–269.

    Article  PubMed  CAS  Google Scholar 

  11. Lockowandt U, Liska J, Franco-Cereceda A. Short ischemia causes endothelial dysfunction in porcine coronary vessels in an in vivo model. Ann Thorac Surg 2001; 71 (1): 265–269.

    Article  PubMed  CAS  Google Scholar 

  12. Angdin M, Settergren G. Acetylcholine reactivity in the pulmonary artery during cardiac surgery in patients with ischemic or valvular heart disease. J Cardiothorac Vasc Anesth 1997; 11 (4): 458–462.

    Article  PubMed  CAS  Google Scholar 

  13. Pearson JD. Endothelial cell function and thrombosis. Baillieres Best Pract Res Clin Haematol 1999; 12 (3): 329–341.

    Article  PubMed  CAS  Google Scholar 

  14. Wu KK, Thiagarajan P. Role of endothelium in thrombosis and hemostasis. Annu Rev Med 1996; 47: 315–331.

    Article  PubMed  CAS  Google Scholar 

  15. Radomski MW, Palmer RM, Moncada S. Comparative pharmacology of endothelium-derived relaxing factor, nitric oxide and prostacyclin in platelets. Br J Pharmacol 1987; 92 (1): 181–187.

    Article  PubMed  CAS  Google Scholar 

  16. Marcus AJ, Safier LB. Thromboregulation: multicellular modulation of platelet reactivity in hemostasis and thrombosis. FASEB J 1993; 7 (6): 516–522.

    PubMed  CAS  Google Scholar 

  17. Wu C. Heat shock transcription factors: structure and regulation. Annu Rev Cell Dev Biol 1995; 11: 441–469.

    Article  PubMed  CAS  Google Scholar 

  18. Ogawa S, Gerlach H, Esposito C, Pasagian-Macaulay A, Brett J, Stern D. Hypoxia modulates the barrier and coagulant function of cultured bovine endothelium. Increased monolayer permeability and induction of procoagulant properties. J Clin Invest 1990; 85 (4): 1090–1098.

    Article  PubMed  CAS  Google Scholar 

  19. Camera M, Giesen PL, Fallon J, et al. Cooperation between VEGF and TNF-alpha is necessary for exposure of active tissue factor on the surface of human endothelial cells. Arterioscler Thromb Vasc Biol 1999; 19 (3): 531–537.

    Article  PubMed  CAS  Google Scholar 

  20. Lyberg T, Galdal KS, Evensen SA, Prydz H, et al. Cellular cooperation in endothelial cell thromboplastin synthesis. Br J Haematol 1983; 53 (1): 85–95.

    Article  PubMed  CAS  Google Scholar 

  21. Bevilacqua MP, Pober JS, Majeau GR, Cotran RS, Gimbrone MA. Interleukin 1 (IL-1) induces biosynthesis and cell surface expression of procoagulant activity in human vascular endothelial cells. J Exp Med 1984; 160 (2): 618–623.

    Article  PubMed  CAS  Google Scholar 

  22. Brox JH, Osterud B, Bjorklid E, Fenton JW 2nd. Production and availability of thromboplastin in endothelial cells: the effects of thrombin, endotoxin and platelets. Br J Haematol 1984; 57 (2): 239–246.

    PubMed  CAS  Google Scholar 

  23. Bajaj MS, Birktoft JJ, Steer SA, Bajaj SP. Structure and biology of tissue factor pathway inhibitor. Thromb Haemost 2001; 86 (4): 959–972.

    PubMed  CAS  Google Scholar 

  24. Emeis JJ, vanden Eijnden-Schrauwen Y, vanden Hoogen CM, de Priester W, Westmuckett A, Lupu F. An endothelial storage granule for tissue-type plasminogen activator. J Cell Biol 1997; 139 (1): 245–256.

    Article  PubMed  CAS  Google Scholar 

  25. Colucci M, Paramo JA, Cotten D. Generation in plasma of a fast-acting inhibitor of plasminogen activator in response to endotoxin stimulation. J Clin Invest 1985; 75 (3): 818–824.

    Article  PubMed  CAS  Google Scholar 

  26. van der Poll T, Levi M, Buller HR, et al. Fibrinolytic response to tumor necrosis factor in healthy subjects. J Exp Med 1991; 174 (3): 729–732.

    Article  PubMed  Google Scholar 

  27. Weerasinghe A, Taylor KM. The platelet in cardiopulmonary bypass. Ann Thorac Surg 1998; 66 (6): 2145–2152.

    Article  PubMed  CAS  Google Scholar 

  28. Raymond PD, Marsh NA. Alterations to haemostasis following cardiopulmonary bypass and the relationship of these changes to neurocognitive morbidity. Blood Coagul Fibrinolysis 2001; 12 (8): 601–618.

    Article  PubMed  CAS  Google Scholar 

  29. Boyle EM Jr, Verrier ED, Spiess BD. Endothelial cell injury in cardiovascular surgery: the procoagulant response. Ann Thorac Surg 1996; 62 (5): 1549–1557.

    Article  PubMed  Google Scholar 

  30. Boisclair MD, Lane DA, Philippou H, Sheikh S, Hunt B. Thrombin production, inactivation and expression during open heart surgery measured by assays for activation fragments including a new ELISA for prothrombin fragment F1 + 2. Thromb Haemost 1993; 70 (2): 253–258.

    PubMed  CAS  Google Scholar 

  31. Boisclair MD, Lane DA, Philippou H, et al. Mechanisms of thrombin generation during surgery and cardiopulmonary bypass. Blood 1993; 82 (11): 3350–3357.

    PubMed  CAS  Google Scholar 

  32. Philippou H, Adami A, Boiselair MD, Lane DA. An ELISA for factor X activation peptide: application to the investigation of thrombogenesis in cardiopulmonary bypass. BrJ Haematol 1995; 90 (2): 432–437.

    Article  CAS  Google Scholar 

  33. Ikeda K, Nagasawa K, Horiuchi T, Tsuru T, Nishizaka H, Niho Y. C5a induces tissue factor activity on endothelial cells. Thromb Haemost 1997; 77 (2): 394–398.

    PubMed  CAS  Google Scholar 

  34. van Mourik JA, Romani De Wit T, Voorberg J. Biogenesis and exocytosis of Weibel-Palade bodies. Histochem Cell Biol 2002; 117 (2): 113–122.

    Article  PubMed  Google Scholar 

  35. Harker LA, Malpass TW, Branson HE, Hessel EA 2nd, Slichter SJ. Mechanism of abnormal bleeding in patients undergoing cardiopulmonary bypass: acquired transient platelet dysfunction associated with selective alpha-granule release. Blood 1980; 56 (5): 824–834.

    PubMed  CAS  Google Scholar 

  36. Holdright DR, Hunt BJ, Parratt R, et al. The effects of cardiopulmonary bypass on systemic and coronary levels of von Willebrand factor. Eur J Cardiothorac Surg 1995; 9 (1): 18–21.

    Article  PubMed  CAS  Google Scholar 

  37. Hunt BJ, Parratt RN, Segal HC, Sheikh S, Kallis P, Yacoub M. Activation of coagulation and fibrinolysis during cardiothoracic operations. Ann Thorac Surg 1998; 65 (3): 712–718.

    Article  PubMed  CAS  Google Scholar 

  38. Tabuchi N, de Haan J, Boonstra PW, van Oeveren W. Activation of fibrinolysis in the pericardial cavity during cardiopulmonary bypass. J Thorac Cardiovasc Surg 1993; 106 (5): 828–833.

    PubMed  CAS  Google Scholar 

  39. Valen G, Eriksson E, Risberg B, Vaage J. Fibrinolysis during cardiac surgery. Release of tissue plasminogen activator in arterial and coronary sinus blood. Eur J Cardiothorac Surg 1994; 8 (6): 324–330.

    Article  PubMed  CAS  Google Scholar 

  40. Casati V, Gerli C, Franco A, et al. Activation of coagulation and fibrinolysis during coronary surgery: on-pump versus off-pump techniques. Anesthesiology 2001; 95 (5): 1103–1109.

    Article  PubMed  CAS  Google Scholar 

  41. Nader ND, Khadra WZ, Reich NJ, Bacon DR, Salerno TA, Panos AL. Blood product use in cardiac revascularization: comparison of on-and off-pump techniques. Ann Thorac Surg 1999; 68 (5): 1640–1643.

    Article  PubMed  CAS  Google Scholar 

  42. Ascione R, Williams S, Lloyd CT, Sundaramoorthi T, Pitsis AA, Angelini GD. Reduced postoperative blood loss and transfusion requirement after beating-heart coronary operations: a prospective randomized study. J Thorac Cardiovasc Surg 2001; 121 (4): 689–696.

    Article  PubMed  CAS  Google Scholar 

  43. Vinten-Johansen J, Sato H, Zhao ZQ. The role of nitric oxide and NO-donor agents in myocardial protection from surgical ischemic-reperfusion injury. Int J Cardiol 1995; 50 (3): 273–281.

    Article  PubMed  CAS  Google Scholar 

  44. Ascione R, Lloyd CT, Underwood MJ, Lotto AA, Pitsis AA, Angelini GD. Inflammatory response after coronary revascularization with or without cardiopulmonary bypass. Ann Thorac Surg 2000; 69 (4): 1198–1204.

    Article  PubMed  CAS  Google Scholar 

  45. Grubitzsch H, Ansorge K, Wollert GH, Eckel L. Stunned myocardium after off-pump coronary artery bypass grafting. Ann Thorac Surg 2001; 71 (1): 352–355.

    Article  PubMed  CAS  Google Scholar 

  46. Okazaki Y, Takarabe K, Murayama J, et al. Coronary endothelial damage during off-pump CABG related to coronary-clamping and gas insufflation. Eur J Cardiothorac Surg 2001; 19 (6): 834–839.

    Article  PubMed  CAS  Google Scholar 

  47. Perrault LP, Nickner C, Desjardins N, Carrier M. Effects on coronary endothelial function of the Cohn stabilizer for beating heart bypass operations. Ann Thorac Surg 2000; 70 (3): 1111–1114.

    Article  PubMed  CAS  Google Scholar 

  48. Walia AS, Kole SD. Clamp for coronary artery operations. Ann Thorac Surg 1998; 65 (5): 1475–1476.

    Article  PubMed  CAS  Google Scholar 

  49. Bandyopadhyay A, Kapoor L, Gan M. Bulldog with spikes: clamp for coronary artery operations. Ann Thorac Surg 1999; 67 (2): 594–595.

    PubMed  CAS  Google Scholar 

  50. Hangler HB, Pfaller K, Antretter H, Dapunt 0E, Bonatti JO. Coronary endothelial injury after local occlusion on the human beating heart. Ann Thorac Surg 2001; 71 (1): 122–127.

    Article  PubMed  CAS  Google Scholar 

  51. Perrault LP, Menasche P, Biolouard JP, et al. Snaring of the target vessel in less invasive bypass operations does not cause endothelial dysfunction. Ann Thorac Surg 1997; 63 (3): 751–755.

    Article  PubMed  CAS  Google Scholar 

  52. Sokullu O, Karabulut H, Gercekoglu H, et al. Coronary artery stabilization causes endothelial damage: an electron microscopic study on dogs. Cardiovasc Surg 2001; 9 (4): 407–410.

    Article  PubMed  CAS  Google Scholar 

  53. Fonger JD, Yang XM, Cohen RA, Haudenschild CC, Shemin RJ. Human mammary artery endothelial sparing with fibrous jaw clamping. Ann Thorac Surg 1995; 60 (3): 551–555.

    Article  PubMed  CAS  Google Scholar 

  54. Burfeind WR Jr, Duhaylongsod FG, Annex BH, Samuelson D. High-flow gas insufflation to facilitate MIDCABG: effects on coronary endothelium. Ann Thorac Surg 1998; 66 (4): 1246–1249.

    Article  PubMed  Google Scholar 

  55. Hall RI, O’Regan N, Gardner M. Detection of intraoperative myocardial ischaemia-a comparison among electrocardiographic, myocardial metabolic, and haemodynamic measurements in patients with reduced ventricular function. Can J Anaesth 1995; 42 (6): 487–494.

    Article  PubMed  CAS  Google Scholar 

  56. Elsasser A, Suzuki K, Lorenz-Meyer S, Bode C, Schaper J. The role of apoptosis in myocardial ischemia: a critical appraisal. Basic Res Cardiol 2001; 96 (3): 219–226.

    Article  PubMed  CAS  Google Scholar 

  57. Boyle EM Jr, Canty TG Jr, Morgan EN, Yun W, Pohlman TH, Varrier ED. Treating myocardial ischemia-reperfusion injury by targeting endothelial cell transcription. Ann Thorac Surg 1999; 68 (5): 1949–1953.

    Article  PubMed  Google Scholar 

  58. Faller DV. Endothelial cell responses to hypoxic stress. Clin Exp Pharmacol Physiol 1999; 26 (I): 74–84.

    Article  PubMed  CAS  Google Scholar 

  59. Pohlman TH, Harlan JM. Adaptive responses of the endothelium to stress. J Surg Res 2000; 89 (1): 85–119.

    Article  PubMed  CAS  Google Scholar 

  60. Parry GCN, Mackman N. NF-kB mediated transcription in human monocytic cells and endothelial cells. Trends Cardiovasc Med 1998; 8: 138–142.

    Article  PubMed  CAS  Google Scholar 

  61. De Martin R, Hoeth M, Hofer-Warbinek R, Schmid JA. The transcription factor NF-kappa B and the regulation of vascular cell function. Arterioscler Thromb Vasc Biol 2000; 20 (11): E83 - E88.

    Article  PubMed  Google Scholar 

  62. Collins T, Read MA, Neish AS, Whitley MZ, Thanos D, Maniatis T. Transcriptional regulation of endothelial cell adhesion molecules: NF-kappa B and cytokine-inducible enhancers. FASEB J 1995; 9 (10): 899–909.

    CAS  Google Scholar 

  63. Johnson M, Pohlman TH, Verrier ED. Neutrophil antiadhesion therapy for myocardial ischemia: clinical potential. Clin Immunother 1995; 3: 8–14.

    Article  Google Scholar 

  64. Shreeniwas R, Koga S, Karakurum M, et al. Hypoxia-mediated induction of endothelial cell interleukin1 alpha. An autocrine mechanism promoting expression of leukocyte adhesion molecules on the vessel surface. J Clin Invest 1992; 90 (6): 2333–2339.

    Article  PubMed  CAS  Google Scholar 

  65. Shen I, Verrier ED. Expression of E-selectin on coronary endothelium after myocardial ischemia and reperfusion. J Card Surg 1994; 9 (3 suppl): 437–441.

    PubMed  CAS  Google Scholar 

  66. Winn RK, Liggitt P, Vedder NB, Paulson JC, Harlan JM. Anti-P-selectin monoclonal antibody attenuates reperfusion injury to the rabbit ear. J Clin Invest 1993; 92 (4): 2042–2047.

    Article  PubMed  CAS  Google Scholar 

  67. Burton PB, Owen VJ, Hafizi S, et al. Vascular endothelial growth factor release following coronary artery bypass surgery: extracorporeal circulation versus “beating heart” surgery. Eur Heart J 2000; 21 (20): 1708–1713.

    Article  PubMed  CAS  Google Scholar 

  68. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 1986; 74 (5): 1124–1136.

    Article  PubMed  CAS  Google Scholar 

  69. Baxter GF, Goma FM, Yellon DM. Characterisation of the infarct-limiting effect of delayed preconditioning: timecourse and dose-dependency studies in rabbit myocardium. Basic Res Cardiol 1997; 92 (3): 159–167.

    Article  PubMed  CAS  Google Scholar 

  70. Sun JZ, Tang XL, Knowlton AA, Park SW, Qiu Y, Bolli R. Late preconditioning against myocardial stunning. An endogenous protective mechanism that confers resistance to postischemic dysfunction 24 h after brief ischemia in conscious pigs. J Clin Invest 1995; 95 (1): 388–403.

    Article  PubMed  CAS  Google Scholar 

  71. Laurikka J, Wu ZK, Iusalo P, et al. Regional ischemic preconditioning enhances myocardial performance in off-pump coronary artery bypass grafting. Chest 2002; 121 (4): 1183–1189.

    Article  PubMed  Google Scholar 

  72. Hale SL, Kloner RA. Myocardial hypothermia: a potential therapeutic technique for acute regional myocardial ischemia. J Cardiovasc Electrophysiol 1999; 10 (3): 405–413.

    Article  PubMed  CAS  Google Scholar 

  73. Dave RH, Hale SL, Kloner RA. Hypothermic, closed circuit pericardioperfusion: a potential cardioprotective technique in acute regional ischemia. J Am Coll Cardiol 1998; 31 (7): 1667–1671.

    Article  PubMed  CAS  Google Scholar 

  74. Hendrikx M, Rega F, Jamaer L, Valkenborgh T, Gutermann H, Mecs U. Na(+)/H(+)-exchange inhibition and aprotinin administration: promising tools for myocardial protection during minimally invasive CABG. Eur J Cardiothorac Surg 2001; 19 (5): 633–639.

    Article  PubMed  CAS  Google Scholar 

  75. Allaire E, Clowes AW. Endothelial cell injury in cardiovascular surgery: the intimai hyperplastic response. Ann Thorac Surg 1997; 63 (2): 582–591.

    Article  PubMed  CAS  Google Scholar 

  76. Gundry SR, Romano MA, Shattuck OH, Razzouk AJ, Bailey LL. Seven-year follow-up of coronary artery bypasses performed with and without cardiopulmonary bypass. J Thorac Cardiovasc Surg 1998;115(6):1273–1277; discussion 1277–1278.

    Google Scholar 

  77. Jansen EW, Borst C, Lahpor JR, et al. Coronary artery bypass grafting without cardiopulmonary bypass using the octopus method: results in the first one hundred patients. J Thorac Cardiovasc Surg 1998; 116 (1): 60–67.

    Article  PubMed  CAS  Google Scholar 

  78. Schwartz SM, deBlois D, O’Brien ER. The intima. Soil for atherosclerosis and restenosis. Circ Res 1995; 77 (3): 445–465.

    Article  PubMed  CAS  Google Scholar 

  79. Ross R, Glomset JA. Atherosclerosis and the arterial smooth muscle cell: proliferation of smooth muscle is a key event in the genesis of the lesions of atherosclerosis. Science 1973; 180 (93): 1332–1339.

    Article  PubMed  CAS  Google Scholar 

  80. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 1993; 362 (6423): 801–809.

    Article  PubMed  CAS  Google Scholar 

  81. Ross R. Cell biology of atherosclerosis. Annu Rev Physiol 1995; 57: 791–804.

    Article  PubMed  CAS  Google Scholar 

  82. Billiar TR. Nitric oxide. Novel biology with clinical relevance. Ann Surg 1995; 221 (4): 339–349.

    Article  PubMed  CAS  Google Scholar 

  83. Lerman A, Edwards BS, Hallett JW, Heublein DM, Sandberg SM, Burnett JC Jr. Circulating and tissue endothelin immunoreactivity in advanced atherosclerosis. N Engl J Med 1991; 325 (14): 997–1001.

    Article  PubMed  CAS  Google Scholar 

  84. Selzman CH, Miller SA, Harken AH. Therapeutic implications of inflammation in atherosclerotic cardiovascular disease. Ann Thorac Surg 2001; 71 (6): 2066–2074.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dabal, R.J., Hampton, C.R., Verrier, E.D. (2004). Endothelial Injury During Minimally Invasive Bypass Grafting. In: Goldstein, D.J., Oz, M.C. (eds) Minimally Invasive Cardiac Surgery. Contemporary Cardiology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-416-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-416-0_2

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-400-5

  • Online ISBN: 978-1-59259-416-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics