Skip to main content

Modulators of Cyclin-Dependent Kinases

A Novel Therapeutic Approach for the Treatment of Neoplastic Diseases

  • Chapter
Cell Cycle Inhibitors in Cancer Therapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 153 Accesses

Abstract

Upon activation of several growth factor/mitogenic signaling cascades, cells commit to entry into a series of regulated steps allowing traverse of the cell cycle. First, synthesis of DNA (genome duplication), also known as S phase, occurs followed by separation of two daughter cells (chromatid separation) or M phase. The time between the S and M phases is known as G2 phase (see Fig. 1). This period is where cells can repair errors that occur during DNA duplication, preventing the propagation of these errors to daughter cells. In contrast, the G1 phase represents the period of commitment to cell cycle progression that separates M and S phases as cells prepare for DNA duplication upon mitogenic signals (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sherr CJ. Cancer cell cycles, Science 1996; 274: 1672–1677.

    Article  PubMed  CAS  Google Scholar 

  2. Hatakeyama M, Weinberg RA. The role of RB in cell cycle control. Prog Cell Cycle Res 1995; 1: 9–19.

    Article  PubMed  CAS  Google Scholar 

  3. Sellers WR, Kaelin, WG, Jr. Role of the retinoblastoma protein in the pathogenesis of human cancer. J Clin Oncol 1997; 15: 3301–3312.

    PubMed  CAS  Google Scholar 

  4. Morgan DO. Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu Rev Cell Dey Biol 1997; 13: 261–291.

    Article  CAS  Google Scholar 

  5. Rickert P, Seghezzi W, Shanahan F, Cho H, Lees E. Cyclin C/CDK8 is a novel CTD kinase associated with RNA polymerase II. Oncogene 1996; 12: 2631–2640.

    PubMed  CAS  Google Scholar 

  6. Wei P, Garber ME, Fang SM, Fischer WH, Jones KA. A novel CDK9-associated C-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA. Cell 1998; 92: 451–462.

    Article  PubMed  CAS  Google Scholar 

  7. Grana X, De Luca A, Sang N, Fu Y, Claudio PP, Rosenblatt J, et al. PITALRE, a nuclear CDC2-related protein kinase that phosphorylates the retinoblastoma protein in vitro. Proc Natl Acad Sci USA 1994; 91: 3834–3838.

    Article  PubMed  CAS  Google Scholar 

  8. MacLachlan TK, Sang N, Giordano A. Cyclins, cyclin-dependent kinases and cdk inhibitors: implications in cell cycle control and cancer. Crit Rev Eukaryot Gene Expr 1995; 5: 127–156.

    Article  PubMed  CAS  Google Scholar 

  9. Edwards MC, Wong C, Elledge SJ. Human cyclin K, a novel RNA polymerase II-associated cyclin possessing both carboxy-terminal domain kinase and Cdk-activating kinase activity. Mol Cell Biol 1998; 18: 4291–4300.

    PubMed  CAS  Google Scholar 

  10. Peng J, Zhu Y, Milton JT, Price DH. Identification of multiple cyclin subunits of human P-TEFb. Genes Dey 1998; 12: 755–762.

    Article  CAS  Google Scholar 

  11. Kaldis P, Russo AA, Chou HS, Pavletich NP, Solomon MJ. Human and yeast Cdk-activating kinases (CAKs) display distinct substrate specificities. Mol Biol Cell 1998; 9: 2545–2560.

    PubMed  CAS  Google Scholar 

  12. Tassan JP, Schultz SJ, Bartek J, Nigg EA. Cell cycle analysis of the activity, subcellular localization, and subunit composition of human CAK (CDK-activating kinase). J Cell Biol 1994; 127: 467–478.

    Article  PubMed  CAS  Google Scholar 

  13. Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G l -phase progression. Genes Dey 1999; 13: 1501–1512.

    Article  CAS  Google Scholar 

  14. Bates S, Ryan KM, Phillips AC, Vousden KH. Cell cycle arrest and DNA endoreduplication following p2lWafl/Cipl expression. Oncogene 1998; 17: 1691–1703.

    Article  PubMed  CAS  Google Scholar 

  15. Dulic V, Stein GH, Far DF, Reed SI. Nuclear accumulation of p21 Cip l at the onset of mitosis: a role at the G2/M-phase transition. Mol Cell Biol 1998; 18: 546–557.

    PubMed  CAS  Google Scholar 

  16. Niculescu AB, 3rd, Chen X, Smeets M, Hengst L, Prives C, Reed SI. Effects of p21(Cip1/ Wafl) at both the G1/S and the G2/M cell cycle transitions: pRb is a critical determinant in blocking DNA replication and in preventing endoreduplication [published erratum appears in Mol Cell Biol 1998 Mar; 18(3):1763]. Mol Cell Biol 1998; 18: 629–643.

    PubMed  CAS  Google Scholar 

  17. LaBaer J, Garrett MD, Stevenson LF, Slingerland JM, Sandhu C, Chou HS, et al. New functional activities for the p21 family of CDK inhibitors. Genes Dev 1997; 11: 847–862.

    Article  PubMed  CAS  Google Scholar 

  18. Cheng M, Olivier P, Diehl JA, Fero M, Roussel MF, Roberts JM, Sherr CJ. The p21(Cipl) and p27(Kipl) CDK `inhibitors’ are essential activators of cyclin D-dependent kinases in murine fibroblasts. EMBO J 1999; 18: 1571–1583.

    Article  PubMed  CAS  Google Scholar 

  19. Zhang HS, Postigo AA, Dean DC. Active transcriptional repression by the Rb-E2F complex mediates G1 arrest triggered by p16INK4a, TGFbeta, and contact inhibition. Cell 1999; 97: 53–61.

    Article  PubMed  CAS  Google Scholar 

  20. Dyson N. The regulation of E2F by pRB-family proteins. Genes Dev 1998; 12: 2245–2262.

    Article  PubMed  CAS  Google Scholar 

  21. DelSal G, Loda M, Pagano M. Cell cycle and cancer: critical events at the G1 restriction point. Crit Rev Oncol 1996; 7: 127–142.

    Article  CAS  Google Scholar 

  22. Grana X, Reddy EP. Cell cycle control in mammalian cells: role of cyclins, cyclin dependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors (CKIs). Oncogene 1995; 11: 211–219.

    PubMed  CAS  Google Scholar 

  23. Pardee AB. Multiple molecular levels of cell cycle regulation. J Cell Biochem 1994; 54: 375–378.

    Article  PubMed  CAS  Google Scholar 

  24. Pines J. Cyclins and cyclin-dependent kinases: theme and variations. Adv Cancer Res 1995; 66: 181–212.

    Article  PubMed  CAS  Google Scholar 

  25. Weinberg RA. The retinoblastoma protein and cell cycle control. Cell 1995; 81: 323–330.

    Article  PubMed  CAS  Google Scholar 

  26. Senderowicz AM, Sausville EA. Preclinical and clinical development of cyclin-dependent kinase modulators. J Natl Cancer Inst 2000; 92: 376–387.

    Article  PubMed  CAS  Google Scholar 

  27. Kasten MM, Giordano A. pRb and the cdks in apoptosis and the cell cycle. Cell Death Differ 1998; 5: 132–140.

    Article  PubMed  CAS  Google Scholar 

  28. Chiarugi V, Magnelli L, Cinelli M, Basi G. Apoptosis and the cell cycle. Cell Mol Biol Res 1994; 40: 603–612.

    PubMed  CAS  Google Scholar 

  29. Shimizu T, O’Connor P, Kohn KW, Pommier Y. Unscheduled activation of cyclin B l/Cdc2 kinase in human promyelocytic leukemia cell line HL60 cells undergoing apoptosis induced by DNA damage. Cancer Res 1995; 55: 228–231.

    PubMed  CAS  Google Scholar 

  30. Meikrantz W, Schlegel R. Suppression of apoptosis by dominant negative mutants of cyclindependent protein kinases. J Biol Chem 1996; 271, 10205–10209.

    Article  PubMed  CAS  Google Scholar 

  31. Senderowicz AM, Headlee D, Stinson S, Lush RM, Tompkins A, Brawley O, et al. Phase I trial of a novel cyclin-dependent kinase inhibitor flavopiridol in patients with refractory neoplasms, in 9th National Cancer Institute-European Organization for Research on Treatment of Cancer Symposium Proceedings, Amsterdam, Holland, 1996, p. 77.

    Google Scholar 

  32. Senderowicz AM, Messmann R, Arbuck S, Headlee D, Zhai S, Murgo A, et al. A Phase I trial of 1 hour infusion of flavopiridol (Fla), a novel cyclin-dependent kinase inhibitor, in patients with advanced neoplasms, in Proceedings of the Annual Meeting of the American Society of Clinical Oncology, New Orleans, May, 2000.

    Google Scholar 

  33. Tan A, Messmann R., Sausville E, et al. Phase I clinical and pharmacokinetic study of Flavopiridol administered as a daily 1-hour infusion in patients with advanced neoplasms. J Clin Oncol (in press).

    Google Scholar 

  34. Senderowicz AM, Headlee D, Lush R, Bauer K, Figg W, Murgo A, et al. Phase I trial of infusional UCN-01, a novel protein kinase inhibitor, in patients with refractory neoplasms, in 10th National Cancer Institute-European Organization for Research on Treatment of Cancer Symposium Proceedings, Amsterdam, Holland, June, 1998.

    Google Scholar 

  35. Schwartz G, Kaubisch A, Saltz L, Ilson D, O’Reilly E, Barazzuol J, et al. Phase I trial of sequential paclitaxel and the cyclin-dependent kinase inhibitor flavopiridol, in Proceedings of the American Society of Clinical Oncology, Atlanta, GA, 1999, p. 160.

    Google Scholar 

  36. Thomas J, Cleary J, Tutsch K, Arzoomanian R, Alberti D, Simon K, et al. Phase I clinical and pharmacokinetic trial of flavopiridol, in Proceedings of the Eighty-Eightieth Annual Meeting of the American Association of Cancer Research, San Diego, CA, 1997.

    Google Scholar 

  37. Dees E, O’Reilly S, Figg W, Elza-Brown K, Aylesworth C, Carducci M, et al. A Phase I and pharmacologic study of UCN-01, a protein kinase C inhibitor, in Proceedings of the American Society of Clinical Oncology, New Orleans, 2000.

    Google Scholar 

  38. Tamura T, Sasaki Y, Minami H, Fujii H, Ito K, Igarashi T, et al. Phase I study of UCN-01 by 3-hour infusion, in Proceedings of the American Society of Clinical Oncology, Atlanta, GA, 1999, p. 159.

    Google Scholar 

  39. Sausville EA, Arbuck SG, Messmann R, Headlee D, Bauer KS, Lush RM, et al. Phase I trial of 72-hour continuous infusion UCN-01 in patients with refractory neoplasms. J Clin Oncol 2001; 19: 2319–2333.

    PubMed  CAS  Google Scholar 

  40. Hartwell LH, Kastan MB. Cell cycle control and cancer. Science 1994; 266: 1821–1828.

    Article  PubMed  CAS  Google Scholar 

  41. Pardee S. A restriction point for control of normal animal cell proliferation. Proc Nat Acad Sci USA 1974; 71: 1286–1290.

    Article  PubMed  CAS  Google Scholar 

  42. Harper J, Elledge S. Cdk inhibitors in development and cancer. Curr Opin Genet Dey 1996; 6: 56–64.

    Article  CAS  Google Scholar 

  43. Cordon-Cardo C. Mutations of cell cycle regulators. Biological and clinical implications for human neoplasia. Am J Pathol 1995; 147: 545–560.

    PubMed  CAS  Google Scholar 

  44. Elledge SJ. Cell cycle checkpoints: preventing an identity crisis. Science 1996; 274: 1664–1672.

    Article  PubMed  CAS  Google Scholar 

  45. Paulovich A, Toczyski D, Hartwell L. When checkpoints fail. Cell 1997; 88: 315–321.

    Article  PubMed  CAS  Google Scholar 

  46. Carlson B, Pearlstein R, Naik R, Sedlacek H, Sausville E, Worland P. Inhibition of CDK2, CDK4 and CDK7 by flavopiridol and structural analogs, in Proceedings of the American Association for Cancer Research, San Francisco, CA, 1996, p. 424.

    Google Scholar 

  47. Sedlacek HH, Czech J, Naik R, Kaur G, Worland P, Losiewicz M, et al. Flavopiridol (L86–8275, NSC-649890), a new kinase inhibitor for tumor therapy. Intl J Oncol 1996; 9: 1143–1168.

    CAS  Google Scholar 

  48. Bartek J, Bartkova J, Lukas J. The retinoblastoma protein pathway and the restriction point. Curr Opin Cell Biol 1996; 8: 805–814.

    Article  PubMed  CAS  Google Scholar 

  49. Carlson BA, Dubay MM, Sausville EA, Brizuela L, Worland PJ. Flavopiridol induces G1 arrest with inhibition of cyclin-dependent kinase (CDK) 2 and CDK4 in human breast carcinoma cells. Cancer Res 1996; 56: 2973–2978.

    PubMed  CAS  Google Scholar 

  50. Meijer L, Borgne A, Mulner O, Chong JP, Blow JJ, Inagaki N, et al. Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur J Biochem 1997; 243: 527–536.

    Article  PubMed  CAS  Google Scholar 

  51. Chen YN, Sharma SK, Ramsey TM, Jiang L, Martin MS, Baker K, et al. Selective killing of transformed cells by cyclin/cyclin-dependent kinase 2 antagonists [see comments]. Proc Natl Acad Sci USA 1999; 96: 4325–4329.

    Article  PubMed  CAS  Google Scholar 

  52. Senderowicz A. Small molecule modulators of cyclin-dependent kinases for cancer therapy. Oncogene 2000; 19: 6600–6606.

    Article  PubMed  CAS  Google Scholar 

  53. Meijer L, Kim SH. Chemical inhibitors of cyclin-dependent kinases. Methods Enzymol 1997; 283: 113–128.

    Article  PubMed  CAS  Google Scholar 

  54. Zaharevitz DW, Gussio R, Leost M, Senderowicz AM, Lahusen T, KunickC, et al. Discovery and initial characterization of the paullones, a novel class of small-molecule inhibitors of cyclin-dependent kinases [in process citation]. Cancer Res 1999; 59: 2566–2569.

    PubMed  CAS  Google Scholar 

  55. De Azevedo WF, Leclerc S, Meijer L, Havlicek L, Strnad M, Kim SH. Inhibition of cyclindependent kinases by purine analogues: crystal structure of human cdk2 complexed with roscovitine. Eur J Biochem 1997; 243: 518–526.

    Article  PubMed  Google Scholar 

  56. Meijer L, Pondaven, P. Cyclic activation of histone H1 kinase during sea urchin egg mitotic divisions. Exp Cell Res 1988; 174: 116–129.

    Article  PubMed  CAS  Google Scholar 

  57. Rialet V, Meijer L. A new screening test for antimitotic compounds using the universal M phase-specific protein kinase, p34cdc2/cyclin Bcdc13, affinity-immobilized on pl3suclcoated microtitration plates. Anticancer Res 1991; 11: 1581–1590.

    PubMed  CAS  Google Scholar 

  58. Schulze-Gahmen U, Brandsen J, Jones HD, Morgan DO, Meijer L, Vesely J, Kim SH. Multiple modes of ligand recognition: crystal structures of cyclin-dependent protein kinase 2 in complex with ATP and two inhibitors, olomoucine and isopentenyladenine. Proteins 1995; 22: 378–391.

    Article  PubMed  CAS  Google Scholar 

  59. Brooks EE, Gray NS, Joly A, Kerwar SS, Lum R, Mackman RL, et al. CVT-313, a specific and potent inhibitor of CDK2 that prevents neointimal proliferation. J Biol Chem 1997; 272:29, 207–29, 211.

    Google Scholar 

  60. Gray NS, Wodicka L, Thunnissen AM, Norman TC, Kwon S, Espinoza FH, et al. Exploiting chemical libraries, structure, and genomics in the search for kinase inhibitors. Science 1998; 281: 533–538.

    Article  PubMed  CAS  Google Scholar 

  61. Paull KD, Shoemaker RH, Hodes L, Monks A, Scudiero DA, Rubinstein L, et al. Display and analysis of patterns of differential activity of drugs against human tumor cell lines: development of mean graph and COMPARE algorithm. J Natl Cancer Inst 1989; 81: 1088–1092.

    Article  PubMed  CAS  Google Scholar 

  62. Schultz C, Link A, Leost M, Zaharevitz DW, Gussio R, Sausville EA, et al. Paullones, a series of cyclin-dependent kinase inhibitors: synthesis, evaluation of CDK1/cyclin B inhibition, and in vitro antitumor activity. J Med Chem 1999; 42: 2909–2919.

    Article  PubMed  CAS  Google Scholar 

  63. Lahusen J, Singh S, Sausville EA, Senderowicz AM. Alsterpaullone (Alp) blocks cell cycle progression at Gl/S and G2/M with altered expression of G1 and G2 cyclins, in Proceedings of the Twentieth Annual Meeting of the American Association of Cancer Research, San Francisco, CA, 2000.

    Google Scholar 

  64. Lahusen T, Singh SS, Sausville E, Senderowicz AM. Cell cycle arrest at G1/S and G2/M by alsterpaullone (alp) is independent of p53 function or p21WAF1 expression, in Proceedings of the AACR, New Orleans, 2001.

    Google Scholar 

  65. Kent LL, Hull-Campbell NE, Lau T, Wu JC, Thompson SA, Non M. Characterization of novel inhibitors of cyclin-dependent kinases. Biochem Biophys Res Commun 1999; 260: 768–774.

    Article  PubMed  CAS  Google Scholar 

  66. Walker DH. Small-molecule inhibitors of cyclin-dependent kinases: molecular tools and potential therapeutics. Curr Top Microbiol Immunol 1998; 227: 149–165.

    Article  PubMed  CAS  Google Scholar 

  67. van den Heuvel S, Harlow E. Distinct roles for cyclin-dependent kinases in cell cycle control. Science 1993; 262: 2050–2054.

    Article  PubMed  Google Scholar 

  68. Buquet-Fagot C, Lallemand F, Montagne M, Mester J. Effects of olomucine, a selective inhibitor of cyclin-dependent kinases, on cell cycle progression in human cancer cell lines. Anti-Cancer Drugs 1997; 8: 623–631.

    Article  PubMed  CAS  Google Scholar 

  69. Chien M, Astumian M, Liebowitz D, Rinker-Schaeffer, C, Stadler W. In vitro evaluation of flavopiridol, a novel cell cycle inhibitor, in bladder cancer. Cancer Chemother Pharmacol 1999; 44: 81–87.

    Article  PubMed  CAS  Google Scholar 

  70. Parker B, Kaur G, Nieves-Neira W, Taimi M, Kolhagen G, Shimizu T, et al. Early induction of apoptosis in hematopoietic cell lines after exposure to flavopiridol. Blood 1998; 91: 458–465.

    PubMed  CAS  Google Scholar 

  71. Park DS, Farinelli SE, Greene LA. Inhibitors of cyclin-dependent kinases promote survival of post-mitotic neuronally differentiated PC12 cells and sympathetic neurons. J Biol Chem 1996; 271: 8161–8169.

    Article  PubMed  Google Scholar 

  72. Park DS, Moms EJ, Greene LA, Geller HM. G 1/S cell cycle blockers and inhibitors of cyclindependent kinases suppress camptothecin-induced neuronal apoptosis. J Neurosci 1997; 17: 1256–1270.

    PubMed  CAS  Google Scholar 

  73. Gervais JL, Seth P, Zhang H. Cleavage of CDK inhibitorp21(Cip1/Wafl) by caspases is an early event during DNA damage-induced apoptosis. J Biol Chem 1998; 273: 19207–19212.

    Article  PubMed  CAS  Google Scholar 

  74. Levkau B, Koyama H, Raines EW, Clurman BE, Herren B, Orth K, et al. Cleavage of p21Cip1/Wafl and p27Kip1 mediates apoptosis in endothelial cells through activation of Cdk2: role of a caspase cascade. Mol Cell 1998; 1: 553–563.

    Article  PubMed  CAS  Google Scholar 

  75. Zhou BB, Li H, Yuan J, Kirschner MW. Caspase-dependent activation of cyclin-dependent kinases during Fas-induced apoptosis in Jurkat cells. Proc Natl Acad Sci USA 1998; 95: 6785–6790.

    Article  PubMed  CAS  Google Scholar 

  76. Lee HR, Chang TH, Tebalt MJ, 3rd, Senderowicz AM, Szabo E. Induction of differentiation accompanies inhibition of cdk2 in a non-small cell lung cancer cell line. Int J Oncol 1999; 15: 161–166.

    PubMed  CAS  Google Scholar 

  77. Rosania GR, Merlie J, Jr, Gray N, Chang YT, Schultz PG, Heald R. A cyclin-dependent kinase inhibitor inducing cancer cell differentiation: biochemical identification using Xeno-pus egg extracts. Proc Natl Acad Sci USA 1999; 96: 4797–4802.

    Article  PubMed  CAS  Google Scholar 

  78. Liu M, Subramanyam YV, Baskaran N. Preparation and analysis of cDNA from a small number of hematopoietic cells [in process citation]. Methods Enzymol 1999; 303: 45–55.

    Article  PubMed  CAS  Google Scholar 

  79. Kaur G, Stetler-Stevenson M, Sebers S, Worland P, Sedlacek H, Myers C, et al. Growth inhibition with reversible cell cycle arrest of carcinoma cells by flavone L86–8275. J Natl Cancer Inst 1992; 84: 1736–1740.

    Article  PubMed  CAS  Google Scholar 

  80. Losiewicz MD, Carlson BA, Kaur G, Sausville EA, Worland PJ. Potent inhibition of CDC2 kinase activity by the flavonoid L86–8275. Biochem Biophys Res Commun 1994; 201: 589–595.

    Article  PubMed  CAS  Google Scholar 

  81. Worland PJ, Kaur G, Stetler-Stevenson M, Sebers S, Sartor O, Sausville EA. Alteration of the phosphorylation state of p34cdc2 kinase by the flavone L86–8275 in breast carcinoma cells. Correlation with decreased Hl kinase activity. Biochem Pharmacol 1993; 46: 1831–1840.

    Article  PubMed  CAS  Google Scholar 

  82. De Azevedo WF, Jr, Mueller-Dieckmann HJ, Schulze-Gahmen U, Worland PJ, Sausville E, Kim SH. Structural basis for specificity and potency of a flavonoid inhibitor of human CDK2, a cell cycle kinase. Proc Natl Acad Sci USA 1996; 93, 2735–2740.

    Article  PubMed  Google Scholar 

  83. Michalides R, van Veelen N, Hart A, Loftus B, Wientjens E, Balm A. Overexpression of cyclin D1 correlates with recurrence in a group of forty-seven operable squamous cell carcinomas of the head and neck. Cancer Res 1995; 55: 975–978.

    PubMed  CAS  Google Scholar 

  84. Gansauge S, Gansauge F, Ramadani M, Stobbe H, Rau B, Harada N, Beger HG. Over-expression of cyclin D1 in human pancreatic carcinoma is associated with poor prognosis. Cancer Res 1997; 57: 1634–1637.

    PubMed  CAS  Google Scholar 

  85. Fredersdorf S, Burns J, Milne AM, Packham G, Fallis L, Gillett CE, et al. High level expression of p27(kip1) and cyclin D1 in some human breast cancer cells: inverse correlation between the expression of p27(kip 1) and degree of malignancy in human breast and colorectal cancers. Proc Natl Acad Sci USA 1997; 94: 6380–6385.

    Article  PubMed  CAS  Google Scholar 

  86. Carlson B, Lahusen T, Singh S, Loaiza-Perez A, Worland PJ, Pestell R, et al. Downregulation of cyclin D1 by transcriptional repression in MCF-7 human breast carcinoma cells induced by flavopiridol. Cancer Res 1999; 59: 4634–4641.

    PubMed  CAS  Google Scholar 

  87. Melillo G, Sausville EA, Cloud K, Lahusen T, Varesio L, Senderowicz AM. Flavopiridol, a protein kinase inhibitor, down-regulates hypoxic induction of vascular endothelial growth factor expression in human monocytes. Cancer Res 1999; 59: 5433–5437.

    PubMed  CAS  Google Scholar 

  88. Chao SH, Fujinaga K, Marion JE, Taube R, Sausville EA, Senderowicz AM, et al. Flavopiridol inhibits P-TEFb and blocks HIV-1 replication. J Biol Chem 2000; 275: 28345–28348.

    Article  PubMed  CAS  Google Scholar 

  89. Arguello F, Alexander M, Sterry J, Tudor G, Smith E, Kalavar N, et al. Flavopiridol induces apoptosis of normal lymphoid cells, causes immunosuppresion, and has potent antitumor activity in vivo against human and leukemia xenografts. Blood 1998; 91: 2482–2490.

    PubMed  CAS  Google Scholar 

  90. Byrd JC, Shinn C, Waselenko JK, Fuchs EJ, Lehman TA, Nguyen PL, et al. Flavopiridol induces apoptosis in chronic lymphocytic leukemia cells via activation of caspase-3 without evidence of bc1–2 modulation or dependence on functional p53. Blood 1998; 92: 3804–3816.

    PubMed  CAS  Google Scholar 

  91. Konig A, Schwartz GK, Mohammad RM, Al-Katib A, Gabrilove JL. The novel cyclindependent kinase inhibitor flavopiridol downregulates Bc1–2 and induces growth arrest and apoptosis in chronic B-cell leukemia lines. Blood 1997; 90: 4307–4312.

    PubMed  CAS  Google Scholar 

  92. Shapiro GI, Koestner DA, Matranga CB, Rollins BJ. Flavopiridol induces cell cycle arrest and p53-independent apoptosis in non-small cell lung cancer cell lines. Clin Cancer Res 1999; 5: 2925–2938.

    PubMed  CAS  Google Scholar 

  93. Lahusen J, Loaiza-Perez A, Sausville EA, Senderowicz AM. Flavopiridol-induced apoptosis is associated with p38 and MEK activation and is prevented by caspase and MAPK inhibitors, in Proceedings of the Twentieth Annual Meeting of the American Association of Cancer Research, San Francisco, CA, 2000.

    Google Scholar 

  94. Patel V, Senderowicz AM, Pinto D, Igishi T, Raffeld M, Quintanilla-Martinez L, et al. Flavopiridol, a novel cyclin-dependent kinase inhibitor, suppresses the growth of head and neck squamous cell carcinomas by inducing apoptosis. J Clin Invest 1998; 102: 1674–1681.

    Article  PubMed  CAS  Google Scholar 

  95. Schrump DS, Matthews W, Chen GA, Mixon A, Altorki NK. Flavopiridol mediates cell cycle arrest and apoptosis in esophageal cancer cells. Clin Cancer Res 1998; 4: 2885–2890.

    PubMed  CAS  Google Scholar 

  96. Bible KC, Kaufmann SH. Flavopiridol: a cytotoxic flavone that induces cell death in noncycling A549 human lung carcinoma cells. Cancer Res 1996; 56: 4856–4861.

    PubMed  CAS  Google Scholar 

  97. Brusselbach S, Nettelbeck DM, Sedlacek HH, Muller, R. Cell cycle-independent induction of apoptosis by the anti-tumor drug Flavopiridol in endothelial cells. MI J Cancer 1998; 77: 146–152.

    CAS  Google Scholar 

  98. Kerr JS, Wexler RS, Mousa SA, Robinson CS, Wexler EJ, Mohamed S, et al. Novel small molecule alpha v integrin antagonists: comparative anti-cancer efficacy with known angiogenesis inhibitors [in process citation]. Anticancer Res 1999; 19: 959–968.

    PubMed  CAS  Google Scholar 

  99. Schwartz G, Farsi K, Maslak P, Kelsen D, Spriggs D. Potentiation of apoptosis by flavopiridol in mitomycin-C-treated gastric and breast cancer cells. Clin Cancer Res 1997; 3: 1467–1472.

    PubMed  CAS  Google Scholar 

  100. Bible KC, Kaufmann SH. Cytotoxic synergy between flavopiridol (NSC 649890, L86–8275) and various antineoplastic agents: the importance of sequence of administration. Cancer Res 1997; 57: 3375–3380.

    PubMed  CAS  Google Scholar 

  101. Drees M, Dengler W, Roth T, Labonte H, Mayo J, Malspeis L, et al. Flavopiridol (L86–8275): Selective antitumor activity in vitro and activity in vivo for prostate carcinoma cells. Clin Cancer Res 1997; 32: 273–279.

    Google Scholar 

  102. Senderowicz AM, Headlee D, Stinson SF, Lush RM, Kalil N, Villalba L, et al. Phase I trial of continuous infusion flavopiridol, a novel cyclin-dependent kinase inhibitor, in patients with refractory neoplasms. J Clin Oncol 1998; 16: 2986–2999.

    PubMed  CAS  Google Scholar 

  103. Wright J, Blamer GL, Cheson BD. Clinical trials referral resource. Clinical trials of flavopiridol. Oncology (Huntingt) 1998; 12: 1018, 1023–1024.

    Google Scholar 

  104. Werner J, Kelsen D, Karpeh M, Inzeo D, Barazzuol J, Sugarman A, Schwartz GK. The cyclin-dependent kinase inhibitor flavopiridol is an active and unexpectedly toxic agent in advanced gastric cancer, in Proceedings of the American Society of Clinical Oncology, Los Angeles, CA, 1998.

    Google Scholar 

  105. Shapiro G, Patterson A, Lynch C, Lucca J, Anderson I, Boral A, et al. A Phase II trial of flavopiridol in patients with stage IV non-small cell lung cancer, in Proceedings of the American Society of Clinical Oncology, Atlanta, GA, 1999.

    Google Scholar 

  106. Bennett S, Mani S, O’Reilly S, Wright J, Schilsky R, Vokes E, Grochow L. Phase II trial of flavopiridol in metastatic colorectal cancer: preliminary results, in Proceedings of the American Society of Clinical Oncology, Atlanta, GA, 1999.

    Google Scholar 

  107. Stadler WM, Vogelzang NJ, Amato R, Sosman J, Taber D, Liebowitz D, Vokes EE. Flavopiridol, a novel cyclin-dependent kinase inhibitor, in metastatic renal cancer: a University of Chicago Phase II Consortium study. J Clin Oncol 2000; 18: 371–375.

    PubMed  CAS  Google Scholar 

  108. Innocenti F, Stadler W, Iyer L, Vokes E, Ratain M. Flavopiridol-induced diarrhea is related to the systemic metabolism of flavopiridol to its glucuronide, in Proceedings of the American Society of Clinical Oncology, New Orleans, 2000.

    Google Scholar 

  109. Tamaoki T. Use and specificity of staurosporine, UCN-01, and calphostin C as protein kinase inhibitors. Methods Enzymol 1991; 201: 340–347.

    Article  PubMed  CAS  Google Scholar 

  110. Takahashi I, Kobayashi E, Asano K, Yoshida M, Nakano H. UCN-01, a selective inhibitor of protein kinase C from Streptomyces. JAntibiot (Tokyo) 1987; 40: 1782–1784.

    Article  CAS  Google Scholar 

  111. Takahashi I, Saitoh Y, Yoshida M, Sano H, Nakano H, Morimoto M, Tamaoki T. UCN-01 and UCN-02, new selective inhibitors of protein kinase C. II. Purification, physico-chemical properties, structural determination and biological activities. J Antibiot (Tokyo) 1989; 42: 571–576.

    Article  CAS  Google Scholar 

  112. Seynaeve CM, Kazanietz MG, Blumberg PM, Sausville EA, Worland PJ. Differential inhibition of protein kinase C isozymes by UCN-01, a staurosporine analogue. Mol Pharmacol 1994; 45: 1207–1214.

    PubMed  CAS  Google Scholar 

  113. Seynaeve CM, Stetler-Stevenson M, Sebers S, Kaur G, Sausville EA, Worland PJ. Cell cycle arrest and growth inhibition by the protein kinase antagonist UCN-01 in human breast carcinoma cells. Cancer Res 1993; 53: 2081–2086.

    PubMed  CAS  Google Scholar 

  114. Wang Q, Worland PJ, Clark JL, Carlson BA, Sausville EA. Apoptosis in 7-hydroxystaurosporine-treated T lymphoblasts correlates with activation of cyclin-dependent kinases 1 and 2. Cell Growth Differ 1995; 6: 927–936.

    PubMed  CAS  Google Scholar 

  115. Akinaga S, Gomi K, Morimoto M, Tamaoki T, Okabe M. Antitumor activity of UCN-01, a selective inhibitor of protein kinase C, in murine and human tumor models. Cancer Res 1991; 51: 4888–4892.

    PubMed  CAS  Google Scholar 

  116. Akinaga S, Nomura K, Gomi K, Okabe M. Effect of UCN-01, a selective inhibitor of protein kinase C, on the cell-cycle distribution of human epidermoid carcinoma, A431 cells. Cancer Chemother Pharmacol 1994; 33: 273–280.

    Article  PubMed  CAS  Google Scholar 

  117. Akiyama T, Yoshida T, Tsujita T, Shimizu M, Mizukami T, Okabe M, Akinaga S. Gl phase accumulation induced by UCN-01 is associated with dephosphorylation of Rb and CDK2 proteins as well as induction of CDK inhibitor p21/Cip l/WAF1/Sdi 1 in p53-mutated human epidermoid carcinoma A431 cells. Cancer Res 1997; 57: 1495–1501.

    PubMed  CAS  Google Scholar 

  118. Wang Q, Fan S, Eastman A, Worland PJ, Sausville EA, O’Connor P. UCN-01: a potent abrogator of G2 checkpoint function in cancer cells with disrupted p53. J Natl Cancer Inst 1996; 88: 956–965.

    Article  PubMed  CAS  Google Scholar 

  119. Yu L, Orlandi L, Wang P, On M, Senderowicz AM, Sausville EA, et al. UCN-01 abrogates G2 arrest through a cdc2-dependent pathway that involves inactivation of the Wee1Hu kinase. J Biol Chem 1998; 273: 33455–33464.

    Article  PubMed  CAS  Google Scholar 

  120. Sarkaria JN, Busby EC, Tibbetts RS, Roos P, Taya Y, Karnitz LM, Abraham RT. Inhibition of ATM and ATR kinase activities by the radiosensitizing agent, caffeine. Cancer Res 1999; 59: 4375–4382.

    PubMed  CAS  Google Scholar 

  121. Graves PR, Yu L, Schwarz JK, Gales J, Sausville EA, O’Connor PM, Piwnica-Worms H. The Chkl protein kinase and the Cdc25C regulatory pathways are targets of the anticancer agent UCN-0 1. J Biol Chem 2000; 275: 5600–5605.

    Article  CAS  Google Scholar 

  122. Busby EC, Leistritz DF, Abraham RT, Karnitz LM, Sarkaria JN. The radiosensitizing agent 7-hydroxystaurosporine (UCN-01) inhibits the DNA damage checkpoint kinase hChkl. Cancer Res 2000; 60: 2108–2112.

    PubMed  CAS  Google Scholar 

  123. Shao RG, Cao CX, Shimizu T, O’Connor PM, Kohn KW, Pommier Y. Abrogation of an S-phase checkpoint and potentiation of camptothecin cytotoxicity by 7-hydroxystaurosporine (UCN-01) in human cancer cell lines, possibly influenced by p53 function. Cancer Res 1997; 57: 4029–4035.

    PubMed  CAS  Google Scholar 

  124. Bunch RT, Eastman A. 7-Hydroxystaurosporine (UCN-01) causes redistribution of proliferating cell nuclear antigen and abrogates cisplatin-induced S-phase arrest in Chinese hamster ovary cells. Cell Growth Differ 1997; 8: 779–788.

    PubMed  CAS  Google Scholar 

  125. Akiyama T, Shimizu M, Okabe M, Tamaoki T, Akinaga S. Differential effects of UCN-01, staurosporine and CGP 41 251 on cell cycle progression and CDC2/cyclin B1 regulation in A431 cells synchronized at M phase by nocodazole in process citation]. Anticancer Drugs 1999; 10: 67–78.

    Article  PubMed  CAS  Google Scholar 

  126. Kawakami K, Futami H, Takahara J, Yamaguchi K. UCN-01, 7-hydroxyl-staurosporine, inhibits kinase activity of cyclin-dependent kinases and reduces the phosphorylation of the retinoblastoma susceptibility gene product in A549 human lung cancer cell line. Biochem Biophys Res Commun 1996; 219: 778–783.

    Article  PubMed  CAS  Google Scholar 

  127. Shimizu E, Zhao MR, Nakanishi H, Yamamoto A, Yoshida S, Takada M, et al. Differing effects of staurosporine and UCN-01 on RB protein phosphorylation and expression of lung cancer cell lines. Oncology 1996; 53: 494–504.

    Article  PubMed  CAS  Google Scholar 

  128. Chen X, Lowe M, Keyomarsi K. UCN-01-mediated G1 arrest in normal but not tumor breast cells is pRb-dependent and p53-independent. Oncogene 1999; 18: 5691–5702.

    Article  CAS  Google Scholar 

  129. Usuda J, Saijo N, Fukuoka K, Fukumoto H, Kuh HJ, Nakamura T, et al. Molecular determinants of UCN-01-induced growth inhibition in human lung cancer cells. Int J Cancer 2000; 85: 275–280.

    PubMed  CAS  Google Scholar 

  130. Marchetti A, Buttitta F, Merlo G, Diella F, Pellegrini S, Pepe S, et al. p53 alterations in non-small cell lung cancers correlate with metastatic involvement of hilar and mediastinal lymph nodes. Cancer Res 1993; 53: 2846–2851.

    PubMed  CAS  Google Scholar 

  131. Lowe SW, Bodis S, Bardeesy N, McClatchey A, Remington L, Ruley HE, et al. Apoptosis and the prognostic significance of p53 mutation. Cold Spring Harb Symp Quant Biol 1994; 59: 419–426.

    Article  PubMed  CAS  Google Scholar 

  132. Akinaga S, Nomura K, Gomi K, Okabe M. Enhancement of antitumor activity of mitomycin C in vitro and in vivo by UCN-01, a selective inhibitor of protein kinase C. Cancer Chemother Pharmacol 1993; 32: 183–189.

    Article  PubMed  CAS  Google Scholar 

  133. Bunch RT, Eastman A Enhancement of cisplatin-induced cytotoxicity by 7-hydroxystaurosporine (UCN-01), a new G2-checkpoint inhibitor. Clin Cancer Res 1996; 2: 791–797.

    PubMed  CAS  Google Scholar 

  134. Hsueh CT, Kelsen D, Schwartz GK. UCN-01 suppresses thymidylate synthase gene expression and enhances 5-fluorouracil-induced apoptosis in a sequence-dependent manner [in process citation]. Clin Cancer Res 1998; 4: 2201–2206.

    PubMed  CAS  Google Scholar 

  135. Husain A, Yan Xi, Rosales N, Aghajanian C, Schwartz GK, Spriggs DR. UCN-01 in ovary cancer cells: effective as a single agent and in combination with cis-diamminedichloroplatinum(II)independent of p53 status. Clin Cancer Res 1997; 3: 2089–2097.

    PubMed  CAS  Google Scholar 

  136. Pollack IF, Kawecki S, Lazo JS. Blocking of glioma proliferation in vitro and in vivo and potentiating the effects of BCNU and cisplatin: UCN-01, a selective protein kinase C inhibitor. J Neurosurg 1996; 84: 1024–1032.

    Article  PubMed  CAS  Google Scholar 

  137. Tsuchida E, Urano M. The effect of UCN-01 (7-hydroxystaurosporine), a potent inhibitor of protein kinase C, on fractionated radiotherapy or daily chemotherapy of a murine fibrosarcoma. Int J Radiat Oncol Biol Phys 1997; 39: 1153–1161.

    Article  PubMed  CAS  Google Scholar 

  138. Sugiyama K, Shimizu M, Akiyama T, Tamaoki T, Yamaguchi K, Takahashi R, et al. UCN01 selectively enhances mitomycin C cytotoxicity in p53 defective cells which is mediated through S and/or G(2) checkpoint abrogation. Int J Cancer 2000; 85: 703–709.

    Article  PubMed  CAS  Google Scholar 

  139. Jones CB, Clements MK, Wasi S, Daoud SS. Enhancement of camptothecin-induced cytotoxicity with UCN-01 in breast cancer cells: abrogation of S/G(2) arrest. Cancer Chemother Pharmacol 2000; 45: 252–258.

    Article  PubMed  CAS  Google Scholar 

  140. Sausville EA, Lush RD, Headlee D, Smith AC, Figg WD, Arbuck SG, et al. Clinical pharmacology of UCN-01: initial observations and comparison to preclinical models. Cancer Chemother Pharmacol 1998; 42 Suppl:S54–S59.

    Article  Google Scholar 

  141. Fuse E, Tanii H, Kurata N, Kobayashi H, Shimada Y, Tamura T, et al. Unpredicted clinical pharmacology of UCN-01 caused by specific binding to human alphal-acid glycoprotein. Cancer Res 1998; 58: 3248–3253.

    PubMed  CAS  Google Scholar 

  142. Senderowicz AM, Headlee D, Lush R, Bauer K, Figg W, Murgo A, et al. Phase I trial of infusional UCN-01, a novel protein kinase inhibitor, in patients with refractory neoplasms, in Proceedings of the Thirty-fifth Annual Meeting of the American Society of Clinical Oncology, Atlanta, GA, May 15–18, 1999.

    Google Scholar 

  143. Wilson WH, Sorbara L, Figg WD, Mont EK, Sausville E, Warren KE, et al. Modulation of clinical drug resistance in a B cell lymphoma patient by the protein kinase inhibitor 7-hydroxystaurosporine: presentation of a novel therapeutic paradigm. Clin Cancer Res 2000; 6: 415–421.

    PubMed  CAS  Google Scholar 

  144. Fowler L, Dong L, Bowes RC, 3rd, van de Water B, Stevens JL, Jaken S. Transformation-sensitive changes in expression, localization, and phosphorylation of adducins in renal proximal tubule epithelial cells. Cell Growth Differ 1998; 9: 177–184.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Senderowicz, A.M. (2003). Modulators of Cyclin-Dependent Kinases. In: Giordano, A., Soprano, K.J. (eds) Cell Cycle Inhibitors in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-401-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-401-6_8

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-257-5

  • Online ISBN: 978-1-59259-401-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics