Skip to main content

Fatty Acid Binding Protein as an Early Plasma Marker of Myocardial Ischemia and Risk Stratification

  • Chapter
Cardiac Markers

Part of the book series: Pathology and Laboratory Medicine ((PLM))

  • 180 Accesses

Abstract

Biochemical markers of myocardial injury are universally accepted as important determinants for the diagnosis of patients with suspected acute myocardial infarction (AMI), especially in those cases in which electrocardiographic (ECG) changes are equivocal or absent (1,2). In the last decade, interest in these biochemical markers has increased for two reasons. First, the introduction of new therapeutic strategies has called for earlier and more appropriate diagnosis of patients admitted to the emergency room with chest pain, so as to begin the proper therapy as early as possible. Second, several new plasma markers have been introduced, and some (e.g., cardiac troponin T [eTnT]) allow for the assessment of patients with not only MI but also unstable angina and prolonged chest pains, and even provide prognostic value (3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams JE, Abendschein DR, Jaffe AS. Biochemical markers of myocardial injury. Is MB creatine kinase the choice for the 1990s? Circulation 1993; 88: 750–763.

    Article  PubMed  CAS  Google Scholar 

  2. Christenson RH, Azzazy HME. Biochemical markers of the acute coronary syndromes. Clin Chem 1998; 44: 1855–1864.

    PubMed  CAS  Google Scholar 

  3. Mair J. Progress in myocardial damage detection: new biochemical markers for clinicians. Crit Rev Clin Lab Sci 1997; 34: 1–66.

    Article  PubMed  CAS  Google Scholar 

  4. Glatz JFC, Van der Vusse GJ. Cellular fatty acid-binding proteins. Their function and physiological significance. Prog Lipid Res 1996; 35: 243–282.

    Article  PubMed  CAS  Google Scholar 

  5. Banaszak L, Winter N, Xu Z, et al. Lipid binding proteins: a family of fatty acid and retinoid transport proteins. Adv Protein Chem 1994; 45: 89–151.

    Article  PubMed  CAS  Google Scholar 

  6. Young AC, Scapin G, Kromminga A, et al. Structural studies on human muscle fatty acid binding protein at 1.4 A resolution: binding interactions with three C18 fatty acids. Structure 1994; 2: 523–534.

    Article  PubMed  CAS  Google Scholar 

  7. Lücke C, Rademacher M, Zimmerman AW, et al. Spin-system heterogeneities indicate a selected-fit mechanism in fatty acid binding to heart-type fatty acid-binding protein (H-FABP). Biochem J 2001; 354: 259–266.

    Article  PubMed  Google Scholar 

  8. Schaap FG, Specht B, Van der Vusse GJ, et al. One-step purification of rat heart-type fatty acid-binding protein expressed in Escherichia coli. J Chromatogr 1996;B 679: 61–67.

    Google Scholar 

  9. Schreiber A, Specht B, Pelsers MMAL, et al. Recombinant human heart-type fatty acid-binding protein as standard in immunochemical assays. Clin Chem Lab Med 1998; 36: 283–288.

    Article  PubMed  CAS  Google Scholar 

  10. Van Breda E, Keizer HA, Vork MM, et al. Modulation of fatty acid-binding protein content of rat heart and skeletal muscle by endurance training and testosterone treatment. Eur J Physiol 1992; 421: 274–279.

    Article  Google Scholar 

  11. Glatz JFC, Van Breda E, Keizer HA, et al. Rat heart fatty acid-binding protein content is increased in experimental diabetes. Biochem Biophys Res Commun 1994; 199: 639–646.

    Article  PubMed  CAS  Google Scholar 

  12. Vork MM, Trigault N, Snoeckx LHEH, Glatz JFC, Van der Vusse GJ. Heterogeneous distribution of fatty acid-binding protein in the hearts of Wistar Kyoto and spontaneously hypertensive rats. J Mol Cell Cardiol 1992; 24: 317–321.

    Article  PubMed  CAS  Google Scholar 

  13. Kragten JA, Van Nieuwenhoven FA, Van Dieijen-Visser MP, et al. Distribution of myoglobin and fatty acid-binding protein in human cardiac autopsies. Clin Chem 1996; 42: 337–338.

    PubMed  CAS  Google Scholar 

  14. Glatz JFC, Storch J. Unravelling the significance of cellular fatty acid-binding proteins. Curr Opinion Lipidol 2001; 12: 267–274.

    Article  CAS  Google Scholar 

  15. Schaap FG, Binas B, Danneberg H, et al. Impaired long-chain fatty acid utilization by cardiac myocytes isolated from mice lacking the heart-type fatty acid binding protein gene. Circ Res 1999; 85: 329–337.

    Article  PubMed  CAS  Google Scholar 

  16. Glatz JFC, Börchers T, Spener F, et al. Fatty acids in cell signalling: modulation by lipid binding proteins. Prostagland Leukotr Essen Fatty Acids 1995; 52: 121–127.

    Article  CAS  Google Scholar 

  17. Van der Lee KAJM, Vork MM, De Vries JE, et al. Long-chain fatty acid-induced changes in gene expression in neonatal cardiac myocytes. J Lipid Res 2000; 41: 41–47.

    PubMed  Google Scholar 

  18. Van der Vusse GJ, Glatz JFC, Stam HCG, et al. Fatty acid homeostasis in the normoxic and ischemic heart. Physiol Rev 1992; 72: 881–940.

    PubMed  Google Scholar 

  19. Wodzig KWH, Pelsers MMAL, Van der Vusse GJ, et al. One-step enzyme-linked immunosorbent assay (ELISA) for plasma fatty acid-binding protein. Ann Clin Biochem 1997; 34: 263–268.

    PubMed  CAS  Google Scholar 

  20. Tanaka T, Hirota Y, Sohmiya K, et al. Serum and urinary human heart fatty acid-binding protein in acute myocardial infarction. Clin Biochem 1991; 24: 195–201.

    Article  PubMed  CAS  Google Scholar 

  21. Kleine AH, Glatz JFC, van Nieuwenhoven FA, et al. Release of heart fatty acid-binding protein into plasma after acute myocardial infarction in man. Mol Cell Biochem 1992; 116: 155–162.

    Article  PubMed  CAS  Google Scholar 

  22. Ohkaru Y, Asayama K, Ishii H, et al. Development of a sandwich enzyme-linked immunosorbent assay for the determination of human heart type fatty acid-binding protein in plasma and urine by using two different monoclonal antibodies specific for human heart fatty acid-binding protein. J Immunol Methods 1995; 178: 99–111.

    Article  PubMed  CAS  Google Scholar 

  23. Knowlton AA, Burrier RE, Brecher P. Rabbit heart fatty acid-binding protein. Isolation, characterization, and application of a monoclonal antibody. Circ Res 1989; 165: 981–988.

    Article  Google Scholar 

  24. Katrukha A, Bereznikova A, Filatov V, et al. Development of sandwich time-resolved immunofluorometric assay for the quantitative determination of fatty acid-binding protein (FABP) (abstract). Clin Chem 1997; 43: S106.

    Google Scholar 

  25. Roos W, Eymann E, Symannek M, et al. Monoclonal antibodies to human heart fatty acid-binding protein. J Immunol Methods 1995; 183: 149–153.

    Article  PubMed  CAS  Google Scholar 

  26. Robers M, Van der Hu1st FF, Fischer MAJG, et al. Development of a rapid microparticleenhanced turbidimetric immunoassay for plasma fatty acid-binding protein, an early marker of acute myocardial infarction. Clin Chem 1998; 44: 1564–1567.

    PubMed  CAS  Google Scholar 

  27. Sanders GT, Schouten Y, De Winter RJ, et al. Evaluation of human heart type fatty acid-binding protein assay for early detection of myocardial infarction (abstract). Clin Chem 1998; 44: A132.

    Google Scholar 

  28. Ghani F, Wu AHB, Graff L, et al. Role of heart-type fatty acid-binding protein in early detection of acute myocardial infarction. Clin Chem 2000; 46: 718–719.

    PubMed  CAS  Google Scholar 

  29. Siegmann-Thoss C, Renneberg R, Glatz JFC, et al. Enzyme immunosensor for diagnosis of myocardial infarction. Sensors Actuators 1996; B30: 7l - 76.

    Article  Google Scholar 

  30. Schreiber A, Feldbrügge R, Key G, et al. An immunosensor based on disposable electrodes for rapid estimation of fatty acid-binding protein, an early marker of myocardial infarction. Biosens Bioelectr 1997; 12: 1131–1137.

    Article  CAS  Google Scholar 

  31. Renneberg R, Cheng S, Kaptein WA, et al. Novel immunosensors for rapid diagnosis of acute myocardial infarction: a case report. Adv Biosens 1999; 4: 241–272.

    Article  CAS  Google Scholar 

  32. Key G, Schreiber A, Feldbrügge R, et al. Multicenter evaluation of an amperometric immunosensor for plasma fatty acid-binding protein: an early marker for acute myocardial infarction. Clin Biochem 1999; 32: 229–231.

    Article  PubMed  CAS  Google Scholar 

  33. Robers M, Rensink IJAM, Hack CE, et al. A new principle for rapid immunoassay of proteins based on in situ precipitate-enhanced ellipsometry. Biophys J 1999; 76: 2769–2776.

    Article  PubMed  CAS  Google Scholar 

  34. Watanabe T, Ohkubo Y, Matsuoka H, et al. Development of a simple whole blood panel test for detection of human heart-type fatty acid-binding protein. Clin Biochem 2001; 34: 257–263.

    Article  PubMed  CAS  Google Scholar 

  35. Glatz JFC, Van Bilsen M, Paulussen RJA, et al. Release of fatty acid-binding protein from isolated rat heart subjected to ischemia and reperfusion or to the calcium paradox. Biochim Biophys Acta 1988; 961: 148–152.

    Article  PubMed  CAS  Google Scholar 

  36. Tsuji R, Tanaka T, Sohmiya K, et al. Human heart-type cytoplasmic fatty acid-binding protein in serum and urine during hyperacute myocardial infarction. Int J Cardiol 1993; 41: 209–217.

    Article  PubMed  CAS  Google Scholar 

  37. Wodzig KWH, Kragten JA, Hermens WT, et al. Estimation of myocardial infarct size from plasma myoglobin or fatty acid-binding protein. Influence of renal function. Eur J Clin Chem Clin Biochem 1997; 35: 191–198.

    PubMed  CAS  Google Scholar 

  38. van Nieuwenhoven FA, Kleine AH, Wodzig KWH, et al. Discrimination between myocardial and skeletal muscle injury by assessment of the plasma ratio of myoglobin over fatty acid-binding protein. Circulation 1995; 92: 2848–2854.

    Article  PubMed  Google Scholar 

  39. Kragten JA, Hermens WT, Van Dieijen-Visser MP. Cardiac troponin T release into plasma after acute myocardial infarction: only fractional recovery compared with enzymes. Ann Clin Biochem 1996; 33: 314–223.

    PubMed  Google Scholar 

  40. Hermens WT. Mechanisms of protein release from injured heart muscle. Dev Cardiovasc Med 1998; 205: 85–98.

    Article  CAS  Google Scholar 

  41. Van Nieuwenhoven FA. Heart fatty acid-binding proteins. Role in cardiac fatty acid uptake and marker for cellular damage. Thesis, Maastricht University, 1996; 65–71.

    Google Scholar 

  42. Van Nieuwenhoven FA, Musters RJP, Post JA, et al. Release of proteins from isolated neonatal rat cardiac myocytes subjected to simulated ischemia or metabolic inhibition is independent of molecular mass. J Mol Cell Cardiol 1996; 28: 1429–1434.

    Article  PubMed  Google Scholar 

  43. Ishii J, Wang JH, Naruse H, et al. Serum concentrations of myoglobin vs human heart-type cytoplasmic fatty acid-binding protein in early detection of acute myocardial infarction. Clin Chem 1997; 43: 1372–1378.

    PubMed  CAS  Google Scholar 

  44. Glatz JFC, Van der Vusse GJ, Simoons M, et al. Fatty acid-binding protein and the early detection of acute myocardial infarction. Clin Chim Acta 1998; 272: 87–92.

    Article  PubMed  CAS  Google Scholar 

  45. Pelsers MMAL, Chapelle JP, Knapen M, et al. Influence of age and sex and day-to-day and within-day biological variation on plasma concentrations of fatty acid-binding protein and myoglobin in healthy subjects. Clin Chem 1999; 45: 441–443.

    PubMed  CAS  Google Scholar 

  46. Yoshimoto K, Tanaka T, Somiya K, et al. Human heart-type cytoplasmic fatty acid-binding protein as an indicator of acute myocardial infarction. Heart Vessels 1995; 10: 304–309.

    Article  PubMed  CAS  Google Scholar 

  47. Górski J, Hermens WT, Borawski J, et al. Increased fatty acid-binding protein concentration in plasma of patients with chronic renal failure. Clin Chem 1997; 43: 193–195.

    PubMed  Google Scholar 

  48. Nayashida N, Chihara S, Tayama E, et al. Influence of renal function on serum and urinary heart fatty acid-binding protein levels. J Cardiovasc Surg 2001; 42: 735–740.

    CAS  Google Scholar 

  49. Kristensen SR, Haastrup B, Herder M, et al. Fatty acid-binding protein: a new early marker of AMI (abstract). Scand J Clin Lab Invest 1996;56(Suppl)225:36–37.

    Google Scholar 

  50. Glatz JFC, Haastrup B, Hermens WT, et al. Fatty acid-binding protein and the early detction of acute myocardial infarction: the EUROCARDI multicenter trial (abstract). Circulation 1997; 96: I - 215.

    Google Scholar 

  51. Panteghini M, Bonora R, Pagani F, et al. Heart fatty acid-binding protein in comparison with myoglobin for the early detection of acute myocardial infarction (abstract). Clin Chem 1997; 43: S157.

    Google Scholar 

  52. Abe S, Saigo M, Yamashita T, et al. Heart fatty acid-binding protein is useful in early and myocardial-specific diagnosis of acute myocardial infarction (abstract). Circulation 1996; 94: 1–323.

    Article  Google Scholar 

  53. Okamoto F, Sohmiya K, Ohkaru Y, et al. Human heart-type cytoplasmic fatty acid-binding protein (H-FABP) for the diagnosis of acute myocardial infarction. Clinical evaluation of H-FABP in comparison with myoglobin and creatine kinase isoenzyme MB. Clin Chem Lab Med 2000; 38: 231–238.

    Article  PubMed  CAS  Google Scholar 

  54. Hamm CW, Ravkilde J, Gerhardt W, et al. The prognostic value of serum troponin T in unstable angina. N Engl J Med 1992; 327: 146–150.

    Article  PubMed  CAS  Google Scholar 

  55. Ravkilde J, Herder M, Gerhardt W. Diagnostic performance and prognostic value of serum troponin T in suspected acute myocardial infarction. Scand J Clin Lab Invest 1993; 53: 677–683.

    Article  PubMed  CAS  Google Scholar 

  56. Katrukha A, Bereznekiva A, Filatov V., et al. Improved detection of minor ischemic cardiac injury in patients with unstable angina by measurement of cTnI and fatty acid binding protein (FABP) (abstract). Clin Chem 1999; 45: A139.

    Google Scholar 

  57. Hermens WT, Van der Veen FH, Willems GM, et al. Complete recovery in plasma of enzymes lost from the heart after permanent coronary occlusion in the dog. Circulation 1990; 81: 649–659.

    Article  PubMed  CAS  Google Scholar 

  58. Glatz JFC, Kleine AH, Van Nieuwenhoven FA, et al. Fatty acid-binding protein as a plasma marker for the estimation of myocardial infarct size in humans. Br Heart J 1994; 71: 135–140.

    Article  PubMed  CAS  Google Scholar 

  59. Simoons ML, Serruys PW, Van den Brand M, et al. Early thrombolysis in acute myocardial infarction: limitation of infarct size and improved survical. J Am Coll Cardiol 1986; 7: 717–728.

    Article  PubMed  CAS  Google Scholar 

  60. van der Laarse A. Rapid estimation of myocardial infarct size. Cardiovasc Res 1999; 44: 247–248.

    Article  PubMed  Google Scholar 

  61. de Groot MJM, Wodzig KWH, Simoons ML, et al. Measurement of myocardial infarct size from plasma fatty acid-binding protein or myoglobin, using individually estimated clearance rates. Cardiovasc Res 1999; 44: 315–324.

    Article  PubMed  Google Scholar 

  62. Ishii J, Nagamura Y, Nomura M, et al. Early detection of successful coronary reperfusion based on serum concentration of human heart-type cytoplasmic fatty acid-binding protein. Clin Chim Acta 1997; 262: 13–27.

    Article  PubMed  CAS  Google Scholar 

  63. de Lemos JA, Antman EM, Morrow D, et al. Heart-type fatty acid binding protein as a marker of reperfusion after thrombolytic therapy. Clin Chim Acta 2000; 298: 85–97.

    Article  PubMed  Google Scholar 

  64. de Groot MJM, Muijtjens AMM, Simoons ML, et al. Assessment of coronary reperfusion in patients with myocardial infarction using fatty acid binding protein concentrations in plasma. Heart 2001; 85: 278–285.

    Article  PubMed  Google Scholar 

  65. Noble MIM. Can negative results for protein markers of myocardial damage justify discharge of acute chest pain patients after a few hours in hospital? Eur Heart J 1999; 20: 925–927.

    Article  PubMed  CAS  Google Scholar 

  66. Haastrup B, Gill S, Kristensen SR, et al. Biochemical markers of ischaemia for the early identification of acute myocardial infarction without ST segment elevation. Cardiology 2000; 94: 254–261.

    Article  PubMed  CAS  Google Scholar 

  67. Hermens WT, Pelsers MMAL, Mullers-Boumans ML, et al. Combined use of markers of muscle necrosis and fibrinogen conversion in the early differentiation of myocardial infarction and unstable angina. Clin Chem 1998; 44: 890–892.

    PubMed  CAS  Google Scholar 

  68. Jesse RL, Kontos MC. Evaluation of chest pain in the emergency department. Curr Prob Cardiol 1997; 22: 149–236.

    Article  CAS  Google Scholar 

  69. Merlini PA, Bauer KA, Oltrona L, et al. Persistent actvation of coagulation mechanism in unstable angina and myocardial infarction. Circulation 1994; 90: 61–68.

    Article  PubMed  CAS  Google Scholar 

  70. Carville DGM, Dimitrijevic N, Walsh M, et al. Thrombus precursor protein (TpP): marker of thrombosis early in the pathogenesis of myocardial infarction. Clin Chem 1996; 42: 1537–1541.

    PubMed  CAS  Google Scholar 

  71. van der Putten RFM, Hermens WT, Giesen PLA, et al. Plasma tissue factor in the early differentiation of myocardial infarction and unstable angina (abstract). In: Abstract Book of the European Meeting on Biomarkers of Organ Damage and Dysfunction, Cambridge UK, April 3–7, 2000: 116.

    Google Scholar 

  72. Fransen EJ, Maessen JG, Hermens WT, Glatz JF. Demonstration of ischaemia-reperfusion injury separate from postoperative infarction in CABG patients. Ann Thoracic Surg 1998; 65: 48–53.

    Article  CAS  Google Scholar 

  73. Hayashida N, Chihara S, Akasu K, et al. Plasma and urinary levels of heart fatty acid-binding protein in patients undergoing cardiac surgery. Jpn Circ J 2000; 64: 18–22.

    Article  PubMed  CAS  Google Scholar 

  74. Petzold T, Feindt P, Sunderdiek U, et al. Heart-type fatty acid binding protein (hFABP) in the diagnosis of myocardial damage in coronary artery bypass grafting. Eur J Cardiothor Surg 2001; 19: 859–864.

    Article  CAS  Google Scholar 

  75. Kleine AH, Glatz JFC, Havenith MG, et al Immunohistochemical detection of very recent myocardial infarctions in man with antibodies against heart type fatty acid-binding protein. Cardiovasc Pathol 1993; 2: 63–69.

    Article  Google Scholar 

  76. Watanabe K, Wakabayashi H, Veerkamp JH, et al Immunohistochemical distribution of heart-type fatty acid-binding protein immunoreactivity in normal human tissues and in acute myocardial infarct. J Pathol 1993; 170: 59–65.

    Article  PubMed  CAS  Google Scholar 

  77. Ortmann C, Pfeiffer H, Brinkmann B A comparative study on the immunohistochemical detection of early myocardial damage. Int J Legal Med 2000; 113: 215–220.

    Article  PubMed  CAS  Google Scholar 

  78. Knowlton AA, Apstein CS, Saouf R, et al. Leakage of heart fatty acid binding protein with ischemia and reperfusion in the rat. J Mol Cell Cardiol 1989; 21: 577–583.

    Article  PubMed  CAS  Google Scholar 

  79. Volders PGA, Vork MM, Glatz JFC, et al. Fatty acid-binding proteinuria diagnosis myocardial infarction in the rat. Mol Cell Biochem 1993; 123: 185–190.

    Article  PubMed  CAS  Google Scholar 

  80. Sohmiya K, Tanaka T, Tsuji R, et al. Plasma and urinary heart-type cytoplasmic fatty acid-binding protein in coronary occlusion and reperfusion induced myocardial injury model. J Mol Cell Cardiol 1993; 25: 1413–1426.

    Article  PubMed  CAS  Google Scholar 

  81. Aartsen WM, Pelsers MMAL, Hermens WT, et al. Heart fatty acid binding protein and cardiac troponin T plasma concentrations as markers for myocardial infarction after coronary artery ligation in mice. Eur J Physiol 2000; 439: 416–422.

    Article  CAS  Google Scholar 

  82. Wu AHB, Apple FA, Gibler WB, et al. National Academy of Clinical Biochemistry Standards on Laboratory Practice: recommendations for the use of cardiac markers in coronary artery diseases. Clin Chem 1999; 45: 1104–1121.

    PubMed  CAS  Google Scholar 

  83. Panteghini M, Apple FS, Christenson RH, et al. Use of biochemical markers in acute coronary syndromes. IFCC Scientific Division, Committee on Standardization of Markers of Cardiac Damage. Clin Chem Lab Med 1999; 37: 687–693.

    PubMed  CAS  Google Scholar 

  84. Storrow AB, Gibier WB. The role of cardiac markers in the emergency department. Clin Chim Acta 1999; 284: 187–196.

    Article  PubMed  CAS  Google Scholar 

  85. Alpert JS, Thygesen K, Antman E, et al. Myocardial infarction redefined—a consensus document of The Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction. J Am Coll Cardiol 2000; 36: 959–969.

    Article  PubMed  CAS  Google Scholar 

  86. Wu AH. Analytical and clinical evaluation of new diagnostic tests for myocardial damage. Clin Chim Acta 1998; 272: 11–21.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Glatz, J.F.C., van der Putten, R.F.M., Hermens, W.T. (2003). Fatty Acid Binding Protein as an Early Plasma Marker of Myocardial Ischemia and Risk Stratification. In: Wu, A.H.B. (eds) Cardiac Markers. Pathology and Laboratory Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-385-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-385-9_20

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-319-0

  • Online ISBN: 978-1-59259-385-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics