Skip to main content

Analysis of Apoptosis

Basic Principles and Procedures

  • Chapter
Essentials of Apoptosis

Abstract

Apoptosis is a distinct form of cell death. Originally defined by cellular morphology, apoptosis can now be characterized at molecular, biochemical, and cellular levels. Detection of apoptosis has become more important, not only because of scientific interests but also because of the significance in clinical practice. For example, because apoptosis has been implicated in the development of a variety of devastating diseases such as cancer, a therapeutic approach using apoptosis-inducing drugs is expected. To evaluate the effectiveness of the treatment, one may have to assess the apoptotic response following the treatment. In typical apoptosis, a set of cell structure and biochemical characteristics has been well-defined. In combination, these provide the basis for apoptosis detection in a given setting. The methodology for analyzing these characteristics is as diverse as the research subjects. Several books devoted to the methodology of apoptosis analysis have been published recently (1–3). Readers are advised to review the detailed experimental protocols in these books. This chapter aims to provide an overview of the basic approaches used in analyzing apoptosis, the principles, and the basic methodology, in order to provide a quick reference guide that readers can use to decide what method is available for their own studies. We start with the determination of cell viability and the morphology of dying cells. We then discuss the approaches available to examine apoptotic changes on the cell membrane, in both the cytosol and nucleus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Reed, J. C., Abelson, J. N., and Simon, M. I. (2000) Apoptosis, In: Methods in Enzymology vol. 322 (Reed, J. C., Abelson, J. N., and Simon, M. I., eds.), Academic Press, San Diego, CA.

    Google Scholar 

  2. Schwartz, L., Ashwell, J., Wilson, L., and Matsudairaand, P. (2001) Apoptosis, In: Methods Cell Biology vol. 66 (Schwartz, L., Ashwell, J., Wilson, L., and Matsudairaand, P.), Academic Press, San Diego, CA.

    Google Scholar 

  3. LeBlanc, A. C. (2002) Neuromethods, In: Apoptosis: Techniques and Protocols, 2nd ed., vol. 37 ( LeBlanc, A. C., ed.), Humana Press, Totowa, NJ.

    Chapter  Google Scholar 

  4. Dong, Z., Venkatachalam, M. A., Weinberg, J. M., Saikumar, P., and Patel, Y. (2001) Protection of ATP-depleted cells by impermeant strychnine derivatives: implications for glycine cytoprotection. Am. J. Pathol. 158, 1021–1028.

    Article  PubMed  CAS  Google Scholar 

  5. Dong, Z., Patel, Y., Saikumar, P., Weinberg J. M., and Venkatachalam, M. A. (1998) Development of porous defects in plasma membranes of adenosine triphosphate-depleted madin-darby canine kidney cells and its inhibition by glycine. Lab. Invest. 78, 657–668.

    PubMed  CAS  Google Scholar 

  6. Kerr, J. F., Wyllie, A. H., and Currie, A. R. (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239–257.

    Article  PubMed  CAS  Google Scholar 

  7. Savill, J. and Fadok, V. (2000) Corpse clearance defines the meaning of cell death. Nature 407, 784–788.

    Article  PubMed  CAS  Google Scholar 

  8. Williamson, P., Eijnde van den, S., and Schlegel, R. A. (2001) Phosphatidylserine exposure and phagocytosis of apoptotic cells. Methods Cell Biol. 66, 339–364.

    Article  PubMed  CAS  Google Scholar 

  9. Roy, S. and Nicholson, D.W. (2000) Criteria for identifying authentic caspase substrates during apoptosis. Methods Enzymol. 322, 110–125.

    Article  PubMed  CAS  Google Scholar 

  10. Stennicke, H. R. and Salvesen, G. S. (2000) Caspase assays. Methods Enzymol. 322, 91–100.

    Article  PubMed  CAS  Google Scholar 

  11. Cao, G., Pei, W., Lan, J., Stetler, Y. R., Nagayama, A., Luo, T., et al. (2001) Caspase-activated DNase/DNA fragmentation factor 40 mediates apoptotic DNA fragmentation in transient cerebral ischemia and in neuronal cultures. J. Neurosci. 21, 4678–4690.

    PubMed  CAS  Google Scholar 

  12. Komoriya, A., Packard, B. Z., Brown, M. J., Wu, M-L., and Henkart, P. A. (2000) Assessment of caspase activities in intact apoptotic thymocytes using cell-permeable fluorogenic caspase substrates. J. Exp. Med. 191, 1819–1828.

    Article  PubMed  CAS  Google Scholar 

  13. Gross, A., Jockel, J., Wei, M. C., and Korsmeyer, S. J. (1998) Enforced dimerization of Bax results in its translocation, mitochondrial dysfunction and apoptosis. EMBO J. 17, 3878–3885.

    Article  PubMed  CAS  Google Scholar 

  14. Eskes, R., Desagher, S., Antonsson B., and Martinou, J. C. (2000) Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol. Cell. Biol. 20, 929–935.

    Article  PubMed  CAS  Google Scholar 

  15. Wei, M. C., Lindsten, V. T., Mootha, S., Weiler, K. A., Gross, A., Ashiya, M., Thompson, C. B., and Korsmeyer, S. J. (2000) Bid, a membrane-targeted death ligand, oligomerizes Bak to release cytochrome c. Genes Dev. 14, 2060–2071.

    PubMed  CAS  Google Scholar 

  16. Desagher, S., Osen-Sand, A., Nichols, A., Eskes, R., Montessuit, S., Lauper, S., et al. (1999) Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J. Cell. Biol. 144, 891–901.

    Article  PubMed  CAS  Google Scholar 

  17. Zhao, Y., Li, S., Childs, E. E., Kuharsky D. K., and Yin, X. M. (2001) Activation of pro-death bcl-2 family proteins and mitochondria apoptosis pathway in TNFa-induced liver injury. J. Biol. Chem. 276, 27432–27440.

    Article  PubMed  CAS  Google Scholar 

  18. Lemasters, J. J., Qian, T., Elmore, S. P., Trost, L. C., Nishimura, Y., Herman, B., et al. (1998) Confocal microscopy of the mitochondrial permeability transition in necrotic cell killing, apoptosis and autophagy. Biofactors 8, 283–285.

    Article  PubMed  CAS  Google Scholar 

  19. Reynolds, I. J. (1999) Mitochondrial membrane potential and the permeability transition in excitotoxicity. Ann. NY Acad. Sci. 893, 33–41.

    Article  PubMed  CAS  Google Scholar 

  20. Matsuyama, S. and Reed, J. C. (2000) Mitochondria-dependent apoptosis and cellular pH regulation. Cell Death Differ. 7, 1155–1165.

    Article  PubMed  CAS  Google Scholar 

  21. Hsu, Y. T., Wolter, K. G., and Youle, R. J. (1997) Cytosol-to-membrane redistribution of Bax and Bcl-X(L) during apoptosis. Proc. Natl. Acad. Sci. USA 94, 3668–3672.

    Article  PubMed  CAS  Google Scholar 

  22. Ott, M., Robertson, J. D., Gogvadze, V., Zhivotovsky B., and Orrenius, S. (2002) Cytochrome c release from mitochondria proceeds by a two-step process. PNAS 99, 1259–1263.

    Article  PubMed  CAS  Google Scholar 

  23. Gross, A., Yin, X. M., Wang, K., Wei, M. C., Jockel, J., Milliman, C., et al. (1999) Caspase cleaved Bid targets mitochondria and is required for cytochrome c release, while Bcl-XL prevents this release but not tumor necrosis factorr1/fas death. J. Biol. Chem. 274, 1156–1163.

    Article  PubMed  CAS  Google Scholar 

  24. Kamo, N., Muratsugu, M., Hongoh, R., and Kobatake, Y. (1979) Membrane potential of mitochondria measured with an electrode sensitive to tetraphenyl phosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady state. J. Membr. Biol. 49, 105–1021.

    Article  PubMed  CAS  Google Scholar 

  25. Zamzami, N., Metivier D., and Kroemer, G. (2000) Quantitation of mitochondrial transmembrane potential in cells and in isolated mitochondria. Methods Enzymol. 322, 208–213.

    Article  PubMed  CAS  Google Scholar 

  26. Cossarizza, A. and Salvioli, S. (2001) Analysis of mitochondria during cell death. Methods Cell Biol. 63, 467–486.

    Article  PubMed  CAS  Google Scholar 

  27. Cossarizza, A., Baccarani-Contri, M., Kalashnikova G., and Franceschi, C. (1993) A new method for the cytofluorimetric analysis of mitochondrial membrane potential using the j-aggregate forming lipophilic cation 5,5’,6,6’-tetrachloro-1, 1’,3,3’-tetraethylbenzimidazolcarbocyanine iodide (JC-1). Biochem. Biophys. Res. Commun. 197, 40–45.

    Article  PubMed  CAS  Google Scholar 

  28. Bernardi, P., Scorrano, L., Colonna, R. V., Petronilli, V., and Di Lisa, F. (1999) Mitochondria and cell death. Mechanistic aspects and methodological issues (published erratum appears in Eur. J Biochem. 1999;265(2), 847). Eur. J. Biochem. 264, 687–701.

    Article  PubMed  CAS  Google Scholar 

  29. Salvioli, S., Ardizzoni, A., Franceschi C., and Cossarizza, A. (1997) JC-1, but not DiOC6(3) or rhodamine 123, is a reliable fluorescent probe to assess delta psi changes in intact cells: implications for studies on mitochondrial functionality during apoptosis. FEBS Lett. 411, 77–82.

    Article  PubMed  CAS  Google Scholar 

  30. Scorrano, L., Petronilli, V., Colonna, R., Di Lisa F., and Bernardi, P. (1999) Chloromethyltetramethylrosamine (mitotracker orange) induces the mitochondrial permeability transition and inhibits respiratory complex I. Implications for the mechanism of cytochrome c release. J. Biol. Chem. 274, 24657–24663.

    Article  PubMed  CAS  Google Scholar 

  31. Wyllie, A. H. (1980) Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284, 555–556.

    Article  PubMed  CAS  Google Scholar 

  32. Loo, D. T. and Rillema, J. R. (1998) Measurement of cell death. Methods Cell Biol. 57, 251–264.

    Article  PubMed  CAS  Google Scholar 

  33. Wyllie, A. (1998) Apoptosis. An endonuclease at last. Nature 391, 20–21.

    Article  PubMed  CAS  Google Scholar 

  34. Dong, Z., Saikumar, P., Weinberg, J. M., and Venkatachalam, M. A. (1997) Internucleosomal DNA cleavage triggered by plasma membrane damage during necrotic cell death. Involvement of serine but not cysteine proteases. Am. J. Pathol. 151, 1205–1213.

    PubMed  CAS  Google Scholar 

  35. Collins, R. J., Harmon, B. V., Gobe, G. C., and Kerr, J. F. (1992) Internucleosomal DNA cleavage should not be the sole criterion for identifying apoptosis. Int. J. Radiat. Biol. 61, 451–453.

    Article  PubMed  CAS  Google Scholar 

  36. Oberhammer, F., Wilson, J. W., Dive, C., Morris, I. D., Hickman, J. A., Wakeling, A. E., et al. (1993) Apoptotic death in epithelial cells: cleavage of DNA to 300 and/or 50 kb fragments prior to or in the absence of internucleosomal fragmentation. EMBO J. 12, 3679–3684.

    PubMed  CAS  Google Scholar 

  37. Darzynkiewicz, Z., Li X., and Bedner, E. (2001) Use of flow and laser-scanning cytometry in analysis of cell death. Methods Cell Biol. 66, 69–109.

    Article  PubMed  CAS  Google Scholar 

  38. Li, Y., Sharov, V. G., Jiang, N., Zaloga, C., Sabbah, H., and Chopp, M. (1995) Ultrastructural and light microscopic evidence of apoptosis after middle cerebral artery occlusion in the rat. Am. J. Pathol. 146, 1045–1051.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bai, L., Wang, J., Yin, XM., Dong, Z. (2003). Analysis of Apoptosis. In: Yin, XM., Dong, Z. (eds) Essentials of Apoptosis. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-361-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-361-3_16

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-5172-7

  • Online ISBN: 978-1-59259-361-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics