Skip to main content

The Meyer-Overton Relationship and Its Exceptions

  • Chapter
Neural Mechanisms of Anesthesia

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

  • 372 Accesses

Abstract

General anesthesia is induced by a large group of structurally unrelated compounds. Hans Meyer and Ernest Overton, working independently, observed at the end of the 19th century that the potencies of general anesthetics are directly proportional to their hydrophobicities (Fig. 1). This seminal observation became known as the Meyer-Overton rule, and it has influenced all subsequent research into the mechanisms of general anesthesia. Early theories of anesthesia postulated that general anesthetics interacted with membrane lipids and embraced the notion that anesthesia might result from indirect effects on membrane protein. Lipid-based theories of anesthesia fail because anesthetic induced effects are small, and modern work focuses on interactions between anesthetics and proteins. Despite the change in proposed targets of anesthetic action, the Meyer-Overton correlation still holds true, and any theory of anesthetic action, whether membrane-or protein-based, must account for it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernard, C. (1875) Lecons sur les Anesthetiques et sur l’Asphyxie., Paris: Bailliere.

    Google Scholar 

  2. Kita, Y., Bennett, L., and Miller, K. (1981) The Partial Molar Volumes of Anesthetics in Lipid Bilayers. Biochim. Biophys. Acta 647, 130–139.

    Article  PubMed  CAS  Google Scholar 

  3. Miller, K., et al. (1973) The Pressure Reversal of General Anesthesia and the Critical Volume Hypothesis. Mol. Pharmacol. 9, 131–143.

    PubMed  CAS  Google Scholar 

  4. Seeman, P. (1969) Temperature Dependence of Erythrocyte Membrane Expansion by Alcohol Anesthetics. Possible Support for the Partition Theory of Anesthesia. Biochim. Biophys. Acta 183, 520–529.

    Article  PubMed  CAS  Google Scholar 

  5. Melchior, D., Scavitto, F., and Steim, J. (1980) Dilatometry of Diplamitoyllecithin-Cholesterol Bilayers. Biochemistry 19, 4828–4834.

    Article  PubMed  CAS  Google Scholar 

  6. Rand, R. and Pangborn, W. (1973) A Structural Transition in Egg Lecithin-Cholesterol Bilayers at 12°C. Biochim. Biophys. Acta 318, 299–305.

    Article  CAS  Google Scholar 

  7. Metcalfe, J., Seeman, P., and Burgen, A. (1968) The Proton Relaxation of Benzyl Alcohol in Erythrocyte Membranes. Mol. Pharmacol. 4, 87–95.

    CAS  Google Scholar 

  8. Trudell, J. R. (1977) A unitary theory of anesthesia based on lateral phase separations in nerve membranes. Anesthesiology 46, 5–10.

    Article  PubMed  CAS  Google Scholar 

  9. Mountcastle, D., Biltonen, R., and Halsey, M. (1978) Effect of Anesthetics and Pressure on the Thermotropic Behavior of Multilamellar Dipalmitoylphosphatidylcholine Liposomes. Proc. Nat. Acad. Sci. USA 75, 4906–4910.

    Article  PubMed  CAS  Google Scholar 

  10. Kamaya, H., et al. (1979) Antagonism Between High Pressure and Anesthetics in the Thermal Phase-transition of Dipalmitoyl Phosphatidylcholine Bilayer. Biochim. Biophys. Acta 550, 131–137.

    Article  PubMed  CAS  Google Scholar 

  11. Lieb, W., Kovalycsik, M., and Mendelsohn, R. (1982) Do Clinical Levels of General Anaesthetics Affect Lipid Bilayers? Evidence form Raman Scattering. Biochim. Biophys. Acta 688, 388–398.

    CAS  Google Scholar 

  12. Pang, K.-Y., et al. (1980) The Perturbation of Lipid Bilayers by General Anesthetics: A Quantitative Test of the Disordered Lipid Hypothesis. Mol. Pharmacol. 18, 84–90.

    PubMed  CAS  Google Scholar 

  13. Bradley, D. and Richards, C. (1984) Temperature Dependence of the Action of Nerve Blocking Agents and Its Relationship to Membrane-buffer Partition Coefficients: Thermodynamic Implications for the Site of Action of Local Anesthetics. Brit. J. Pharmacol. 81, 161–167.

    Article  CAS  Google Scholar 

  14. Eger, E., 2nd, Saidman, L., and Brandstater, B. (1965) Temperature Dependence of Halothane and Cyclopropane Anesthesia in Dogs: Correlation with Some Theories of Anesthetic Action. Anesthesiology 26, 764–770.

    Article  PubMed  CAS  Google Scholar 

  15. Steffey, E. and Eger, E., 2nd (1974) Hyperthermia and Halothane MAC in the Dog. Anesthesiology 41, 392–396.

    Article  PubMed  CAS  Google Scholar 

  16. Johnson, S. and Bangham, A. (1969) The Action of Anesthetics on Phospolipid Membranes. Biochim. Biophys. Acta 193, 92–104.

    Article  PubMed  CAS  Google Scholar 

  17. Johnson, S., Miller, K., and Bangham, A. (1973) The Opposing Effects of Pressure and General Anesthetics on the Cation Permeability of Liposomes of Varying Lipid Composition. Biochim. Biophys. Acta 307, 42–57.

    Article  PubMed  CAS  Google Scholar 

  18. Bangham, A., Standish, M., and Miller, N. (1965) Cation Permeability of Phospolipid Model Membranes: Effect of Narcotics. Nature 208, 1295–1297.

    Article  PubMed  CAS  Google Scholar 

  19. Bangham, A. and Mason, W. (1980) Anesthetics May Act by Collapsing pH Gradients. Anesthesiology 53, 135–141.

    Article  PubMed  CAS  Google Scholar 

  20. Akeson, M. and Deamer, D. (1989) Steady-State Catecholamine Distribution in Chromaffin Granule Preparations: A Test of the Pump-Leak Hypothesis of General Anesthesia. Biochemistry 28, 5120–5127.

    Article  PubMed  CAS  Google Scholar 

  21. Raines, D. E. and Cafiso, D. S. (1989) The enhancement of proton/hydroxyl flow across lipid vesicles by inhalation anesthetics. Anesthesiology 70, 57–63.

    Article  PubMed  CAS  Google Scholar 

  22. Raines, D. E. and Miller, K. W. (1994) On the importance of volatile agents devoid of anesthetic action. Anesth. Analg. 79, 1031–1033.

    Article  PubMed  CAS  Google Scholar 

  23. Pringle, M., Brown, K., and Miller, K. (1981) Can the Lipid Theories of Anesthesia Account for the Cutoff in Anesthetic Potency in Homologous Series of Alcohols? Mol. Pharmacol. 19, 49–55.

    PubMed  CAS  Google Scholar 

  24. Raines, D. E., et al. (1993) Anesthetic cutoff in cycloalkanemethanols. A test of current theories. Anesthesiology 78, 918–927.

    Article  PubMed  CAS  Google Scholar 

  25. Liu, J., et al., (1994) A Cutoff in Potency Exists in the Perfluoroalkanes. Anesth. Analg. 79, 238–244.

    PubMed  CAS  Google Scholar 

  26. Liu, J., et al. (1993) Is There a Cutoff in Anesthetic Potency for the Normal Alkanes. Anesth. Analg. 77, 12–18.

    Article  PubMed  CAS  Google Scholar 

  27. Franks, N. and Lieb, W. (1986) Partitioning of Long-chain Alcohols into Lipid Bilayers: Implications For Mechanisms of General Anesthesia. Proc. Natl. Acad. Sci. USA 83, 5116–5120.

    Article  PubMed  CAS  Google Scholar 

  28. Miller, K., et al. (1989) Nonanesthetic Alcohols Dissolve in Synaptic Membranes without Perturbing Their Lipids. Proc. Natl. Acad. Sci. USA 86, 1084–1087.

    Article  PubMed  CAS  Google Scholar 

  29. Bull, M., Brailsford, J., and Bull, B. (1982) Erythrocyte Membrane Expansion Due to the Volatile Anesthetics, the 1-Alkanols, and Benzyl Alcohol. Anesthesiology 57, 399–403.

    Article  PubMed  CAS  Google Scholar 

  30. Franks, N. and Lieb, W. (1984) Do General Anaesthetics Act by Competitive Binding to Specific Receptors? Nature 310, 599–601.

    Article  PubMed  CAS  Google Scholar 

  31. Alifimoff, J., Firestone, L., and Miller, K. (1989) Anesthetic Potencies of Primary Alkanols: Implications for the Molecular Dimensions of the Anesthetic Site. Brit. J. Pharmacol. 96, 9–16.

    Article  CAS  Google Scholar 

  32. Eckenhoff, R. G., Tanner, J. W., and Johansson, J. S. (1999) Steric hindrance is not required for n-alkanol cutoff in soluble proteins. Mol. Pharmacol. 56 414–418.

    PubMed  CAS  Google Scholar 

  33. Alifimoff, J., Firestone, L., and Miller, K. (1987) Anesthetic Potencies of Secondary Alcohol Enantiomers. Anesthesiology 66, 55–59.

    Article  PubMed  CAS  Google Scholar 

  34. Franks, N. and Lieb, W. (1991) Stereospecific Effects of Inhalational General Anesthetic Optical Isomers on Nerve Ion Channels Science 254, 427–430.

    Article  PubMed  CAS  Google Scholar 

  35. Dickinson, R., Franks, N. P., and Lieb, W. R. (1994) Can the stereoselective effects of the anesthetic isoflurane be accounted for by lipid solubility? Biophys. J. 66, 2019–2023.

    Article  PubMed  CAS  Google Scholar 

  36. Lysko, G., et al. (1994) The Stereopecific Effects of Isoflurane Isomers In vivo. Eur. J. Pharmacol. 263, 25–29.

    Article  PubMed  CAS  Google Scholar 

  37. Dickinson, R., et al. (2000) Stereoselective loss of righting reflex in rats by isoflurane. Anesthesiology 93, 837–843.

    Article  PubMed  CAS  Google Scholar 

  38. Eger, E.I., 2nd, et al. (1997) Minimum alveolar anesthetic concentration values for the enantiomers of isoflurane differ minimally. Anesth. Analg. 85, 188–192.

    PubMed  CAS  Google Scholar 

  39. Harris, B. D., et al. (1994) Volatile anesthetics bidirectionally and stereospecifically modulate ligand binding to GABA receptors. Eur. J. Pharmacol. 267, 269–274.

    Article  PubMed  CAS  Google Scholar 

  40. Moody, E., Harris, B., and Skolnick, P. (1993) Stereospecific Actions of the Inhalation Anesthetic Isoflurane at the GABA,, Receptor Complex. Brain Res. 615, 101–106.

    Article  PubMed  CAS  Google Scholar 

  41. Olsen, R. W., Fischer, J. B., and Dunwiddie, T. V. (1986) Barbiturate enhancement of y-aminobutyric acid receptor binding and function as a mechanism of anesthesia, in Molecular and Cellular Mechanisms of Anesthesia ( Roth S. H., and Miller, K. W., eds.) Plenum, NY, pp. 165–178.

    Chapter  Google Scholar 

  42. Huang, L.-Y. M. and Barker, J. L. (1980) Pentobarbital: Stereospecific Actions of (+) and (—) Isomers Revealed on Cultured Mammalian Neurons. Science 207, 195–197.

    Article  PubMed  CAS  Google Scholar 

  43. Akaike, N., et al. (1985) y-Aminobutyric-acid-and Pentobarbitone-gated Chloride Currents in Internally Perfused Frog Sensory Neurones. J. Physiol. 360, 367–386.

    PubMed  CAS  Google Scholar 

  44. Roth, S. H., et al. (1989) Actions of pentobarbital enantiomers on nicotinic cholinergic receptors. Mol. Pharmacol. 36, 874–880.

    PubMed  CAS  Google Scholar 

  45. Miller, K., Sauter, J., and Braswell, L. (1982) A Stereoselective Pentobarbital Binding Site in Cholinergic Membranes from Torpedo californica. Biochem. Biophys. Res. Comm. 105, 659–666.

    Article  PubMed  CAS  Google Scholar 

  46. Ashton, D. and Wauquier, A. (1985) Modulation of a GABA-ergic inhibitory circuit in the in vitro hippocampus by etomidate isomers. Anesth. Analg. 64, 975–980.

    Article  PubMed  CAS  Google Scholar 

  47. Tomlin, S., et al. (1998) Stereoselective Effects of Etomidate Optical Isomers on Gamma-aminobutyric Acid Type A Receptors and Animals. Anesthesiology 88, 708–717.

    Article  PubMed  CAS  Google Scholar 

  48. Taheri, S., et al. (1991) What solvent best represents the site of action of inhaled anesthetics in humans, rats, and dogs? Anesth. Analg. 72, 627–634.

    Article  PubMed  CAS  Google Scholar 

  49. Taheri, S., et al. (1993) Anesthesia by n-alkanes not consistent with the Meyer-Overton hypothesis: determinations of the solubilities of alkanes in saline and various lipids. Anesth. Analg. 77, 7–11.

    Article  PubMed  CAS  Google Scholar 

  50. Liu, J., et al. (1994) Effect of n-alkane kinetics in rats on potency estimations and the Meyer-Overton hypothesis. Anesth. Analg. 79, 1049–1055.

    PubMed  CAS  Google Scholar 

  51. Fang, Z., et al. (1996) Anesthetic and convulsant properties of aromatic compounds and cycloalkanes: implications for mechanisms of narcosis. Anesth. Analg. 83, 1097–1104.

    PubMed  CAS  Google Scholar 

  52. Fang, Z., et al. (1997) Anesthetic potencies of n-alkanols: results of additivity and solubility studies suggest a mechanism of action similar to that for conventional inhaled anesthetics. Anesth. Analg. 84, 1042–1048.

    PubMed  CAS  Google Scholar 

  53. Koblin, D. D., et al. (1998) Minimum alveolar concentrations of noble gases, nitrogen, and sulfur hexafluoride in rats: helium and neon as nonimmobilizers (nonanesthetics). Anesth. Analg. 87, 419–424.

    PubMed  CAS  Google Scholar 

  54. Eger, E. I., 2nd, et al. (1999) Minimum alveolar anesthetic concentration of fluorinated alkanols in rats: relevance to theories of narcosis. Anesth. Analg. 88, 867–876.

    PubMed  CAS  Google Scholar 

  55. Koblin, D. D., et al. (1999) Polyhalogenated methyl ethyl ethers: solubilities and anesthetic properties. Anesth. Analg. 88, 1161–1167.

    PubMed  CAS  Google Scholar 

  56. Zhang, Y., et al. (2000) The anesthetic potencies of alkanethiols for rats: relevance to theories of narcosis. Anesth. Analg. 91, 1294–1299.

    PubMed  CAS  Google Scholar 

  57. Koblin, D., et al. (1994) Polyhalogenated and Perfluorinated Compounds that Disobey the Meyer-Overton Hypothesis. Anesth. Analg. 79, 1043–1048.

    Article  PubMed  CAS  Google Scholar 

  58. Eger II, E., et al. (1994) Molecular Properties of the “Ideal” Inhaled Anesthetic, Studies of Fluorinated Methanes, Ethanes, Propanes and Butanes. Anesth. Analg. 79, 245–251.

    Article  PubMed  CAS  Google Scholar 

  59. Franks, N. and Lieb, W. (1978) Where Do General Anesthetics Act? Nature 274, 339–342.

    Article  PubMed  CAS  Google Scholar 

  60. Janoff, A., Pringle, M., and Miller, K. (1981) Correlation of General Anesthetic Potency with Solubility in Membranes. Biochim. Biophys. Acta 649, 125–128.

    Article  PubMed  CAS  Google Scholar 

  61. Johansson, J. S. and Zou, H. (1999) Partitioning of four modern volatile general anesthetics into solvents that model buried amino acid side-chains. Biophys Chem. 79, 107–116.

    Article  PubMed  CAS  Google Scholar 

  62. Sandberg, W. S. and Terwilliger, T. C. (1989) Influence of interior packing and hydrophobicity on the stability of a protein. Science 245, 54–57.

    Article  PubMed  CAS  Google Scholar 

  63. Sandberg, W. S. and Terwilliger, T. C (1991) Energetics of repacking a protein interior. Proc. Natl. Acad. Sci. USA 88, 1706–1710.

    Article  PubMed  CAS  Google Scholar 

  64. Sandberg, W. S. and Terwilliger, T. C (1991) Repacking protein interiors. Trends Biotechnol. 9, 59–63.

    PubMed  CAS  Google Scholar 

  65. Xu, J., et al. (1998) The response of T4 lysozyme to large-to-small substitutions within the core and its relation to the hydrophobic effect. Protein Sci. 7, 158–177.

    Article  PubMed  CAS  Google Scholar 

  66. Eriksson, A. E., et al. (1992) Response of a protein structure to cavity-creating mutations and its relation to the hydrophobic effect. Science 255, 178–183.

    Article  PubMed  CAS  Google Scholar 

  67. Zhang, H., et al. (1996) Context dependence of mutational effects in a protein: the crystal structures of the V35I, 147V and V35I/I47V gene V protein core mutants. J. Mol. Biol. 259, 148–159.

    Article  PubMed  CAS  Google Scholar 

  68. Tilton, R. F., Jr., et al. (1988) Protein-ligand dynamics. A 96 picosecond simulation of a myoglobin-xenon complex. J. Mol. Biol. 199, 195–211.

    Article  PubMed  CAS  Google Scholar 

  69. LaBella, F. and Queen, G. (1993) General Anesthetics Inhibit Cytochrome P450 Monooxygenases and Arachidonic Acid Metabolism. Can. J. Physiol. Pharmacol. 71, 48–53.

    Article  PubMed  CAS  Google Scholar 

  70. Slater, S., et al. (1993) Inhibition of Protein Kinase C by Alcohols and Anesthetics. Nature 364, 82–84.

    Article  PubMed  CAS  Google Scholar 

  71. Richards, F. M. (1977) Areas, Volumes, Packing, and Protein Structure. Ann. Rev. Biohphys. Bioeng. 6, 151–176.

    Article  CAS  Google Scholar 

  72. Sleigh, S. H., et al. (1999) Crystallographic and calorimetric analysis of peptide binding to OppA protein. J. Mol. Biol. 291, 393–415.

    Article  PubMed  CAS  Google Scholar 

  73. Tilton, R. F., Jr., Kuntz, I. D., Jr., and Petsko, G. A. (1984) Cavities in proteins: structure of a metmyoglobin-xenon complex solved to 1.9 A. Biochemistry 23, 2849–2857.

    Article  PubMed  CAS  Google Scholar 

  74. Tilton, R. F., Jr. and Petsko, G. A. (1988) A structure of sperm whale myoglobin at a nitrogen gas pressure of 145 atmospheres. Biochemistry 27, 6574–6582.

    Article  PubMed  CAS  Google Scholar 

  75. Gursky, O., et al. (1994) Stereospecific dihaloalkane binding in a pH-sensitive cavity in cubic insulin crystals. Proc. Natl. Acad. Sci. USA 91(26), 12,388–12, 392.

    Google Scholar 

  76. Bhattacharya, A. A., Curry, S., and Franks, N. P. (2000) Binding of the General Anesthetics Propofol and Halothane to Human Serum Albumin. HIGH RESOLUTION CRYSTAL STRUCTURES. J. Biol. Chem. 275, 38,731–38, 738.

    Google Scholar 

  77. Franks, N. P., et al. (1998) Structural basis for the inhibition of firefly luciferase by a general anesthetic. Biophys. J. 75, 2205–2211.

    Article  PubMed  CAS  Google Scholar 

  78. Johansson, J. S., Zou, H., and Tanner, J. W. (1999) Bound volatile general anesthetics alter both local protein dynamics and global protein stability. Anesthesiology 90, 235–245.

    Article  PubMed  CAS  Google Scholar 

  79. Chothia, C. (1976) The Nature of the Accessible and Buried Surfaces in Proteins. J. Mol. Biol. 105, 1–14.

    Article  PubMed  CAS  Google Scholar 

  80. Eckenhoff, R. G. and Johansson, J. S. (1997) Molecular interactions between inhaled anesthetics and proteins. Pharmacol. Rev. 49, 343–367.

    PubMed  CAS  Google Scholar 

  81. Eckenhoff, R. G. and Tanner, J. W. (1998) Differential halothane binding and effects on serum albumin and myoglobin. Biophys. J. 75, 477–483.

    Article  PubMed  CAS  Google Scholar 

  82. LaBella, F., et al. (1997) The Site of General Anaesthesia and Cytochrome P450 Oxygenases: Similarities Defined by Straight Chain and Cyclic Alcohols. Brit. J. Pharmacol. 120, 1158–1164.

    Article  CAS  Google Scholar 

  83. Harris, B., et al. (1995) Different Subunit Requirements for Volatile and Nonvolatile Anesthetics at y-Aminobutyric Acid Type A Receptors. Mol. Pharmacol. 47, 363–367.

    PubMed  CAS  Google Scholar 

  84. Moody, E., et al. (1997) Distinct Loci Mediate the Direct and Indirect Actions of the Anesthetic Etomidate at GABAA Receptors. J. Neurochem. 69, 1310–1313.

    Article  PubMed  CAS  Google Scholar 

  85. Wood, S., Forman, S., and Miller, K. (1991) Short Chain and Long Chain Alkanols Have Different Sites of Action on Nicotinic Acetylcholine Receptor Channels from Torpedo. Mol. Pharmacol. 39, 332–338.

    PubMed  CAS  Google Scholar 

  86. Pratt, M. B., et al. (2000) Identification of Sites of Incorporation in the Nicotinic Acetylcholine Receptor of a Photoactivatible General Anesthetic. J. Biol. Chem. 275, 29,441–29, 451.

    Google Scholar 

  87. Colley, C. and Metcalfe, J. (1972) The Localisation of Small Molecules in Lipid Bilayers. FEBS Lett. 24, 241–246.

    Article  PubMed  CAS  Google Scholar 

  88. Pope, J., Walker, L., and Dubro, D. (1984) On the Ordering of N-Alkane and N-Alcohol Solutes in Phospholipid Bilayer Model Membrane Systems. Chem. Phys. Lipids 35, 259–277.

    Article  CAS  Google Scholar 

  89. Jacobs, R. and White, S. (1984) Behavior of Hexane Dissolved in Dimyristoylphosphatidylcholine Bilayers: An NMR and Calorimetric Study. J. Amer. Chem. Soc. 106, 915–920.

    Article  CAS  Google Scholar 

  90. Pohorille, A., et al. (1998) Concentrations of anesthetics across the water-membrane interface; the Meyer-Overton hypothesis revisited. Toxicol. Lett. 100–101, 421–30.

    Article  Google Scholar 

  91. North, C. and Cafiso, D. S. (1997) Contrasting membrane localization and behavior of halogenated cyclobutanes that follow or violate the Meyer-Overton hypothesis of general anesthetic potency. Biophys. J. 72, 1754–1761.

    Article  PubMed  CAS  Google Scholar 

  92. Tang, P., Yan, B., and Xu, Y. (1997) Different distribution of fluorinated anesthetics and nonanesthetics in model membrane: a 19F NMR study. Biophys. J. 72, 1676–1682.

    Article  PubMed  CAS  Google Scholar 

  93. Baber, J., Ellena, J., and Cafiso, D. (1995) Distribution of General Anesthetics in Phospholipid Bilayers Determined Using 2H NMR and 1H–1H NOE Spectroscopy. Biochemistry 34, 6533–6539.

    Article  PubMed  CAS  Google Scholar 

  94. Qin, Z., Szabo, G., and Cafiso, D. (1995) Anesthetics Reduce the Magnitude of the Membrane Dipole Potential. Measurements in Lipid Vesicles Using Voltage Sensitive Spin Probes. Biochemistry 34, 5536–5543.

    Article  PubMed  CAS  Google Scholar 

  95. Cafiso, D. (1995) Influence of Charges and Dipoles on Macromolecular Adsorption and Permeability, in Permeability and Stability of Lipid Bilayers ( Disalvo, E. and Simon, S., eds.) CRC Press, Boca Raton, FL, pp. 179–195.

    Google Scholar 

  96. Cantor, R. (1997) The Lateral Pressure Profile in Membranes: A Physical Mechanism of General Anesthesia. Biochemistry 36, 2339–2344.

    Article  PubMed  CAS  Google Scholar 

  97. Goodman, D., et al. (1996) Anesthetics Modulate Phospholipase C Hydrolysis of Monolayer Phospholipids by Surface Pressure. Chem. Phys. Lipids 84, 57–64.

    Article  PubMed  CAS  Google Scholar 

  98. Gruner, S. and Shyamsunder, E. (1991) Is the Mechanism of General Anesthesia Related to Lipid Membrane Spontaneous Curvature? Ann. NY Acad. Sci. 625, 685–697.

    Article  PubMed  CAS  Google Scholar 

  99. Navarro, J., Toivo-Kinnucan, M., and Racker, E. (1984) Effect of Lipid Composition on the Calcium/Adenosine 5’-Triphosphate Coupling Ratio of the Ca2+-ATPase of Sarcoplasmic Reticulum. Biochemistry 23, 130–135.

    Article  PubMed  CAS  Google Scholar 

  100. Lundbaek, J., Maer, A., and Anderson, O. (1997) Lipid Bilayer Electrostatic Energy, Curvature Stress, and the Assembly of Gramicidin Channels. Biochemistry 36, 5695–5701.

    Article  PubMed  CAS  Google Scholar 

  101. Killian, J. A. (1992) Gramicidin and gramicidin-lipid interactions. Biochim. Biophys. Acta 1113, 391–425.

    Article  PubMed  CAS  Google Scholar 

  102. Ketchem, R. R., Hu, W., and Cross, T. A. (1993) High-resolution conformation of gramicidin A in a lipid bilayer by solid-state NMR. Science 261, 1457–1460.

    Article  PubMed  CAS  Google Scholar 

  103. Hu, W. and Cross, T. A. (1995) Tryptophan hydrogen bonding and electric dipole moments: functional roles in the gramicidin channel and implications for membrane proteins. Biochemistry 34, 14, 147–14, 155.

    Google Scholar 

  104. Hu, W., Lee, K. C., and Cross, T. A. (1993) Tryptophans in membrane proteins: indole ring orientations and functional implications in the gramicidin channel. Biochemistry 32, 7035–7047.

    Article  PubMed  CAS  Google Scholar 

  105. Woolf, T. B. and Roux, B. T (1997) The binding site of sodium in the gramicidin A channel: comparison of molecular dynamics with solid-state NMR data. Biophys. J. 72, 1930–1945.

    Article  PubMed  CAS  Google Scholar 

  106. Tang, P., et al. (1999) Distinctly different interactions of anesthetic and nonimmobilizer with transmembrane channel peptides. Biophys J. 77, 739–746.

    Article  PubMed  CAS  Google Scholar 

  107. Tang, P., Simplaceanu, V., and Xu, Y. (1999) Structural consequences of anesthetic and nonimmobilizer interaction with gramicidin A channels. Biophys J. 76, 2346–2350.

    Article  PubMed  CAS  Google Scholar 

  108. Tang, P., Eckenhoff, R. G. and Xu, Y. (2000) General anesthetic binding to gramicidin A: the structural requirements. Biophys J. 78, 1804–1809.

    Article  PubMed  CAS  Google Scholar 

  109. Langs, D. A., et al. (1991) Monoclinic uncomplexed double-stranded, antiparallel, left-handed beta 5.6-helix (increases decreases beta 5.6) structure of gramicidin A: alternate patterns of helical association and deformation. Proc. Nall. Acad. Sci. USA 88 (12), 5345–5349.

    Article  CAS  Google Scholar 

  110. Marsh, D. and Barrantes, F. (1978) Immobilized Lipid in Acetylcholine Receptor-Rich Membranes from Torpedo marmorata. Proc. Natl. Acad. Sci. USA 75, 4329–4333.

    Article  PubMed  CAS  Google Scholar 

  111. Antollini, S., et al. (1996) Physical State of Bulk and Protein-Associated Lipid in Nicotinic Acetylcholine Receptor-Rich Membrane Studied by Laurdan Generalized Polarization and Fluorescence Energy Transfer. Biophys. J. 70, 1275–1284.

    Article  PubMed  CAS  Google Scholar 

  112. Dreger, M., et al. (1997) Interactions of the Nicotinic Acetylcholine Receptor Transmembrane Segments with the Lipid Bilayer in Native Receptor-Rich Membranes. Biochemistry 36, 839–847.

    Article  PubMed  CAS  Google Scholar 

  113. Raines, D. and Miller, K. (1993) The Role of Charge in Lipid Selectivity for the Nicotinic Acetylcholine Receptor. Biophys. J. 64, 632–641.

    Article  PubMed  CAS  Google Scholar 

  114. Fong, T. and McNamee, M. (1986) Correlation between Acetylcholine Receptor Function and Structural Properties of Membranes. Biochemistry 25, 830–840.

    Article  PubMed  CAS  Google Scholar 

  115. Jones, O. and McNamee, M. (1988) Annular and Nonannular Binding Sites for Cholesterol Associated with the Nicotinic Acetylcholine Receptor. Biochemistry 27, 2364–2374.

    Article  PubMed  CAS  Google Scholar 

  116. Raines, D. E. and McClure, K. B. (1997) Halothane interactions with nicotinic acetylcholine receptor membranes. Steady-state and kinetic studies of intrinsic fluorescence quenching. Anesthesiology 86, 476–486.

    Article  PubMed  CAS  Google Scholar 

  117. Sunshine, C. and McNamee, M. (1992) Lipid Modulation of Nicotinic Acetylcholine Receptor Function: the Role of Neutral and Negatively Charged Lipids. Biochim. Biophys. Acta 1108, 240–246.

    Article  PubMed  CAS  Google Scholar 

  118. Rankin, S., et al. (1997) The Cholesterol Dependence of Activation and Fast Desensitization of the Nicotinic Acetylcholine Receptor. Biophys. J. 73, 2446–2455.

    Article  PubMed  CAS  Google Scholar 

  119. Addona, G., et al. (1998) Where Does Cholesterol Act During Activation of the Nicotinic Acetylcholine Receptor? Biochim. Biophys. Acta In Press.

    Google Scholar 

  120. Firestone, L. L., Miller, J. C., and Miller, K. W. (1986) Tables of Physical and Pharmacological Properties of Anesthetics, in Molecular and Cellular Mechanisms of Anesthetics (Roth, S. H. and Miller, K. W., eds.) Plenum, NY 455–470.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sandberg, W.S., Miller, K.W. (2003). The Meyer-Overton Relationship and Its Exceptions. In: Antognini, J.F., Carstens, E., Raines, D.E. (eds) Neural Mechanisms of Anesthesia. Contemporary Clinical Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-322-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-322-4_22

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-294-0

  • Online ISBN: 978-1-59259-322-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics