Skip to main content

Biology and Treatment of Acute Leukemias in Infants

Perspective 2

  • Chapter
Treatment of Acute Leukemias

Part of the book series: Current Clinical Oncology ((CCO))

  • 163 Accesses

Abstract

Acute leukemia occurring during the first year of life is characterized by unique epidemiologic, clinical, and biologic characteristics and exhibits gender-specific differences in incidence and distribution frequencies distinct from those of acute leukemia during childhood (1–4). Whereas the incidence of acute lymphoblastic leukemia (ALL) is nearly four times that of acute myeloid leukemia (AML) in children older than 1 yr, the incidence of ALL is only twice that of AML in infants (5). Infants account for approx 3% of ALL cases diagnosed annually in the United States, but they represent 10–12% of cases of AML diagnosed each year.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pui C-H, Kane JR, Crist WM. Biology and treatment of infant leukemias. Leukemia 1995;9:762–769.

    PubMed  CAS  Google Scholar 

  2. Reaman G, Zeltzer P, Bleyer A, et al. Acute lymphoblastic leukemia in infants less than 1 year of age: A cumulative experience of the Children’s Cancer Study Group. J Clin Oncol 1985;3:1513–1521.

    PubMed  CAS  Google Scholar 

  3. Ludwig W-D, Bartram CR, Harbott J, et al. Phenotypic and genotypic heterogeneity in infant acute lymphoblastic leukemia. Leukemia 1989;3:431–439.

    PubMed  CAS  Google Scholar 

  4. Chen CS, Sorensen PHB, Domer PH, et al. Molecular rearrangements on chromosome 11q23 predominate in infant acute lymphoblastic leukemia and are associated with specific biologic variables and poor outcome. Blood 1993;81:2386–2393.

    PubMed  CAS  Google Scholar 

  5. Ross JA, Davies SM, Potter JD, Robison LL. Childhood leukemia with a focus on infants. Epidemiol Rev 1994;16:243–272.

    PubMed  CAS  Google Scholar 

  6. Felix CA, Reaman GH, Korsmeyer SJ, et al. Immunoglobulin and T cell receptor gene configuration in acute lymphoblastic leukemia in infancy. Blood 1987;70:536–541.

    PubMed  CAS  Google Scholar 

  7. Basso G, Rondelli R, Covezzoli A, Putti M. The role of immunophenotype in acute lymphoblastic leukemia of infant age. Leuk Lymphoma 1994;15:51–60.

    PubMed  CAS  Google Scholar 

  8. Cimino G, Lo Coco F, Biondi A, et al. ALL-1 gene at chromosome 11q23 is consistently altered in acute leukemia of early infancy. Blood 1993; 82:544–546.

    PubMed  CAS  Google Scholar 

  9. Rubnitz JE, Link MP, Shuster JJ, et al. Frequency and prognostic significance of HRX rearrangements in infant acute lymphoblastic leukemia: a Pediatric Oncology Group Study. Blood 1994; 84:570–573.

    PubMed  CAS  Google Scholar 

  10. Heerema NA, Arthur DC, Sather H, et al. Cytogenetic features of infants less than 12 months of age at diagnosis of acute lymphoblastic leukemia: impact of the 11q23 breakpoint on outcome: a report of the Children’s Cancer Group. Blood 1994;83:2274–2284.

    PubMed  CAS  Google Scholar 

  11. Heerema NA, Sather HN, Ge J, et al. Cytogenetic studies of infant acute lymphoblastic leukemia: poor prognosis of infants with t(4;11). A report of the Children’s Cancer Group. Leukemia 1999;13:679–686.

    PubMed  CAS  Google Scholar 

  12. Gurney JG, Severson RK, Davis S, Robison LL. Incidence of cancer in children in the United States: sex-, race-, and 1-year agespecific rates by histologic types. Cancer 1995;75:2186–2195.

    PubMed  CAS  Google Scholar 

  13. Kenney LB, Reaman GH. Special considerations for the infant with cancer. In: Principles and Practice of Pediatric Oncology, 3 . (Pizzo PA, Poplack DG, eds.) Philadelphia: Lippincott-Raven, 1997. pp. 343–356.

    Google Scholar 

  14. Reaman G, Sposto R, Sensel M, et al. Treatment outcome and prognostic factors for infants with acute lymphoblastic leukemia treated on two consecutive trials of the Children’s Cancer Group. J Clin Oncol 1999;17:445–455.

    PubMed  CAS  Google Scholar 

  15. Pui C-H, Ribeiro RC, Campana D, et al. Prognostic factors in the acute lymphoid and myeloid leukemias of infants. Leukemia 1996;10:952–956.

    PubMed  CAS  Google Scholar 

  16. Cimino C, Rapanotti MC, LoCoco F, et al. Prognostic relevance of ALL-1 gene rearrangement in infant acute leukemias. Leukemia 1995;9:391–395.

    PubMed  CAS  Google Scholar 

  17. Sorensen PHB, Chen C-S, Smith FO, et al. Molecular rearrangements of the MLL gene are present in most cases of infant acute myeloid leukemia and are strongly correlated with monocytic or myelomonocytic phenotypes. J Clin Invest 1994;93:429–437.

    PubMed  CAS  Google Scholar 

  18. Martinez-Climent JA, Thirman MJ, Espinosa R, Le Beau MM, Rowley JD. Detection of 11q23/MLL rearrangements in infant leukemias with fluorescence in situ hybridization and molecular analysis. Leukemia 1995;9:1299–1304.

    PubMed  CAS  Google Scholar 

  19. Haas OA. Cytogenetic abnormalities associated with childhood acute myeloblastic leukemia. Recent Results Cancer Res 1993; 131:103–112.

    PubMed  CAS  Google Scholar 

  20. Gurney JG, Ross JA, Wall DA, et al. Infant cancer in the US: Histology-specific incidence and trends, 1973–1992. J Pediatr Hematol Oncol 1997;19:428–432.

    PubMed  CAS  Google Scholar 

  21. Luna-Fineman S, Shannon KM, Atwater SK, et al. Myelodysplastic and myeloproliferative disorders of childhood: a study of 167 patients. Blood 1999;93:459–466.

    PubMed  CAS  Google Scholar 

  22. Bader-Meunier B, Mielot F, Tchernia G, et al. Myelodysplastic syndromes in childhood: report of 49 patients from a French multicentre study. French Society of Paediatric Haematology and Immunology. Br J Haematol 1996;92:344–350.

    PubMed  CAS  Google Scholar 

  23. Bader-Meunier B, Tchernia G, Mielot F, et al. Occurrence of myeloproliferative disorder in patients with Noonan syndrome. J Pediatr 1997;130:885–889.

    PubMed  CAS  Google Scholar 

  24. Buckley JD, Robison LL, Swotinsky R, et al. Occupational exposures of parents of children with acute nonlymphocytic leukemia: a report from the Children’s Cancer Study Group. Cancer Res 1989; 49:4030–4037.

    PubMed  CAS  Google Scholar 

  25. Buckley JD. The aetiology of cancer in the very young. Br J Cancer Suppl 1992; XVIII:S8–12.

    Google Scholar 

  26. Robison LL, Buckley JD, Daigle AE, et al. Maternal drug use and risk of childhood nonlymphoblastic leukemia among offspring: an epidemiologic investigation implicating marijuana (a report from the Children’s Cancer Study Group). Cancer 1989;63:1904–1911.

    PubMed  CAS  Google Scholar 

  27. Yeazel MW, Buckley JD, Woods WG, Ruccione K, Robison LL. History of maternal fetal loss and increased risk of childhood acute leukemia at an early age. Cancer 1995;75:1718–1727.

    PubMed  CAS  Google Scholar 

  28. Ross JA, Potter JD, Shu X-O, et al. Evaluating the relationships among maternal and reproductive history, birth characteristics, and infant leukemia: a report from the Children’s Cancer Group. Ann Epidemiol 1997;7:172–179.

    PubMed  CAS  Google Scholar 

  29. Shu X-O, Stewart P, Wen WQ, Han D, et al. Parental exposure to hydrocarbons and risk for acute lymphoblastic leukemia in offspring. Proc Am Assoc Cancer Res 1999;40:210.

    Google Scholar 

  30. Djabali M, Selleri L, Parry P, et al. A trithorax-like gene is interrupted by chromosome 11q23 translocations in acute leukemias. Nat Genet 1993;4:431–434.

    PubMed  CAS  Google Scholar 

  31. Pui C-H, Relling MV, Rivera GK, et al. Epipodophyllotoxinrelated acute myeloid leukemia: A study of 35 cases. Leukemia 1995;9:199–196.

    Google Scholar 

  32. Aplan PD, Chervinsky DS, Stanulla M, Burhans WC. Site-specific DNA cleavage within the MLL breakpoint cluster region induced by topoisomerase II inhibitors. Blood 1996;87:2649–2658.

    PubMed  CAS  Google Scholar 

  33. Ross JA, Potter JD, Robison LL. Infant leukemia, topoisomerase II inhibitors, and the MLL gene. J Natl Cancer Inst 1994;86: 1678–1680.

    PubMed  CAS  Google Scholar 

  34. Greaves MF. Aetiology of acute leukaemia. Lancet 1997;349: 344–349.

    PubMed  CAS  Google Scholar 

  35. Ferguson LR, Peason A. Chromosomal changes in Chinese hamster AA8 cells caused by podophyllin, a common treatment for genital warts. Mutat Res 1992;266:236–239.

    Google Scholar 

  36. Ross JA, Potter JD, Reaman GH, et al. A preliminary investigation examining maternal exposure to potential DNA topoisomerase II inhibitors and infant leukemia: a report from the Children’s Cancer Group. Cancer Causes Control 1996;7:581–590.

    PubMed  CAS  Google Scholar 

  37. Reynolds T. Causes of childhood leukemia beginning to emerge. J Natl Cancer Inst 1998;90:8–10.

    PubMed  CAS  Google Scholar 

  38. Setchell KDR, Zimmer-Nechemias L, Cai J, Heubi JE. Exposure of infants to photo-oestrogens from soy-based infant formula. Lancet 1997;350:23–27.

    PubMed  CAS  Google Scholar 

  39. Cimino G, Rapanotti MC, Biondi A, et al. Infant acute leukemias show the same biased distribution of ALL1 gene breaks as topoisomerase II related secondary acute leukemias. Cancer Res 1997;57:2879–2883.

    PubMed  CAS  Google Scholar 

  40. Mahmoud HH, Ridge SA, Behm FG, et al. Intrauterine monoclonal origin of neonatal concordant acute lymphoblastic leukemia in monozygotic twins. Med Pediatr Oncol 1995;24:77–81.

    PubMed  CAS  Google Scholar 

  41. Gill-Super HJ, Rothberg PG, Kobayashi H, Freeman AI, Diaz MO, Rowley JD. Clonal, nonconstitutional rearrangements of the MLL gene in infant twins with acute lymphoblastic leukemia: in utero chromosome rearrangement of 11q23. Blood 1994;83: 641–644.

    PubMed  CAS  Google Scholar 

  42. Ford AM, Ridge SA, Cabrera ME, et al. In utero rearrangements in the trithorax-related oncogene in infant leukaemias. Nature 1993;363:358–360.

    PubMed  CAS  Google Scholar 

  43. Bayar E, Kurczynski TW, Robinson MG, Tyrkus M, Al Saadi A. Monozygotic twins with congenital acute lymphoblastic leukemia (ALL) and t(4;11)(q21;q23). Cancer Genet Cytogenet 1996;89: 177–180.

    PubMed  CAS  Google Scholar 

  44. Megonigal MD, Rappaport EF, Jones DH, et al. t(11;22)(q23;q 11.2) in acute myeloid leukemia of infant twins fuses MLL with hCDCrel, a cell division cycle gene in the genomic region of deletion in DiGeorge and velocardiofacial syndromes. Proc Natl Acad Sci USA 1998;95:6413–6418.

    PubMed  CAS  Google Scholar 

  45. Gale K, Ford A, Repp R, et al. Backtracking leukemia to birth: identification of clonotypic gene fusion sequences in neonatal bloodspots. Proc Natl Acad Sci USA 1997;94:13,950–13,954.

    Google Scholar 

  46. Hess JL, Yu BD, Li B, Hanson R, Korsmeyer SJ. Defects in yolk-sac hematopoiesis in MLL-null embryos. Blood 1997;90:1799–1806.

    PubMed  CAS  Google Scholar 

  47. Fidanza V, Melotti P, Yano T, et al. Double knockout of the ALL-1 gene blocks hematopoietic differentiation in vitro. Cancer Res 1996;56:1179–1183.

    PubMed  CAS  Google Scholar 

  48. Corral J. Lavenir I, Impey H, et al. An MLL-AF9 fusion gene made by homologous recombination causes acute leukemia in chimeric mice: a method to create fusion oncogenes. Cell 1996;85:853–861.

    PubMed  CAS  Google Scholar 

  49. Gu Y, Cimino G, Alder H, et al. The (4;11)(q21;q23) chromosome translocations in acute leukemias involve the VDJ recombinase. Proc Natl Acad Sci USA 1992;89:10,464–10,468.

    CAS  Google Scholar 

  50. Negrini M, Felix CA, Martin C, et al. Potential topoisomerase II DNA binding sites at the breakpoints of a t(9;11) chromosome translocation in acute myeloid leukemia. Cancer Res 1993;53:4489–4492.

    PubMed  CAS  Google Scholar 

  51. Cimino G, Rapanotti MC, Rivolta A, et al. Prognostic relevance of ALL-1 gene rearrangement in infant acute elukemias. Leukemia 1995;9:391–395.

    PubMed  CAS  Google Scholar 

  52. Corral J, Forster A, Thompson S, et al. Acute leukemias of different lineages have similar MLL gene fusions encoding related chimeric proteins resulting from chromosomal translocation. Proc Natl Acad Sci USA 1993;90:8538–8542.

    PubMed  CAS  Google Scholar 

  53. Nakamura T, Alder H, Gu Y, et al. Genes on chromosomes 4, 9, and 19 involved in 11q23 abnormalities in acute leukemia share sequence homology and/or common motifs. Proc Natl Acad Sci USA 1993;90:4631–4635.

    PubMed  CAS  Google Scholar 

  54. Rubnitz JE, Morrissey J, Savage PA, Cleary ML. ENL, the gene fused with HRX in t(11;19) leukemias, encodes a nuclear protein with transcriptional activation potential in lymphoid and myeloid cells. Blood 1994;84:1747–1752.

    PubMed  CAS  Google Scholar 

  55. Prasad R, Gu Y, Alder H, et al. Cloning of the ALL-1 fusion partner, the AF-6 gene, involved in acute myeloid leukemias with the t(6;11) chromosome translocation. Cancer Res 1993;53:5624–5628.

    PubMed  CAS  Google Scholar 

  56. Thirman MJ, Levitan DA, Kobayashi H, Simon MC, Rowley JD. Cloning of ELL, a gene that fuses to MLL in a t(11;19)(q23;p 13.1) in acute myeloid leukemia. Proc Natl Acad Sci USA 1994; 91:12,110–12,114.

    Google Scholar 

  57. Cimino G, Moir DT, Canaani O, et al. Cloning of ALL-1, the locus involved in leukemias with the t(4;11)(q21;q23), t(9;11)(p22;q23), and t(11;19)(q23;p 13) chromosome translocations. Cancer Res 1991;51:6712–6714.

    PubMed  CAS  Google Scholar 

  58. Cimino G, Nakamura T, Gu Y, et al. An altered 11-kilobase transcript in leukemic cell lines with the t(4;11)(q21;q23) chromosome translocation. Cancer Res 1992;52:3811–3813.

    PubMed  CAS  Google Scholar 

  59. Bernard OA, Berger R. Molecular basis of 11q23 rearrangements in hematopoietic malignant proliferations. Genes Chromosomes Cancer 1995; 13:75–85.

    PubMed  CAS  Google Scholar 

  60. Rubnitz JE, Heerema NA, Behm FG, Downing JR. 11q23 rearrangements in acute leukemia. Leukemia 1996;10:74–82.

    PubMed  CAS  Google Scholar 

  61. Rowley JD. Backtracking leukemia to birth. Nat Med 1998;4:150–151.

    PubMed  CAS  Google Scholar 

  62. Hunger SP, Cleary ML. What significance should we attribute to the detection of MLL fusion transcripts? [comment]. Blood 1998;92:709–711.

    PubMed  CAS  Google Scholar 

  63. Uckun FM, Herman-Hatten K, Crotty ML, et al. Clinical significance of MLL-AF4 fusion transcript expression in the absence of a cytogenetically detectable t(4;11)(q21;q23) chromosomal translocation. Blood 1998;92:810–821.

    PubMed  CAS  Google Scholar 

  64. Sun L, Heerema N, Crotty L, et al. Expression of dominant-negative and mutant isoforms of the antileukemic transcription factor Ikaros in infant acute lymphoblastic leukemia. Proc Natl Acad Sci USA 1999;96:680–685.

    PubMed  CAS  Google Scholar 

  65. Georgopoulos K, Winandy S, Avitahl N. The role of the Ikaros gene in lymphocyte development and homeostasis. Am Rev Immunol 1997;15:155–176.

    CAS  Google Scholar 

  66. Winandy S, Wu P, Georgopoulos K. A dominant mutation in the Ikaros gene leads to rapid development of leukemia and lymphoma. Cell 1995;83:289–299.

    PubMed  CAS  Google Scholar 

  67. Greaves MF. Infant leukaemia biology, aetiology and treatment. Workshop Report. Leukemia 1996;10:372–377.

    PubMed  CAS  Google Scholar 

  68. Odom LF, Gordon EM. Acute monoblastic leukemia in infancy and early childhood: successful treatment with an epipodophyllotoxin. Blood 1984;64:875–882.

    PubMed  CAS  Google Scholar 

  69. Wells RJ, Woods WG, Buckley JD, et al. Treatment of newly diagnosed children and adolescents with acute myeloid leukemia: a Children’s Cancer Group Study. J Clin Oncol 1994;12: 2367–2377.

    PubMed  CAS  Google Scholar 

  70. Woods WG, Kobrinsky N, Buckley JD, et al. Timed-sequential induction therapy improves postremission outcome in acute myeloid leukemia: a report from the Children’s Cancer Group. Blood 1996;87:4979–4989.

    PubMed  CAS  Google Scholar 

  71. Hann IM, Stevens RF, Goldstone AH, et al. Randomized comparison of DAT versus ADE as induction chemotherapy in children and younger adults with acute myeloid leukemia. Results of the Medical Research Council’s 10th AML trial (MRC AML 10). Adult and Childhood Leukaemia Working Parties of the Medical Research Council. Blood 1997;89:2311–2318.

    PubMed  CAS  Google Scholar 

  72. Woolfrey AE, Gooley TA, Sievers EL, et al. Bone marrow transplantation for children less than 2 years of age with acute myelogenous leukemia or myelodysplastic syndrome. Blood 1998;92: 3546–3535.

    PubMed  CAS  Google Scholar 

  73. Pui C-H. Childhood leukemias. N Engl J Med 1995;332: 1618–1630.

    PubMed  CAS  Google Scholar 

  74. Pui C, Kane JR, Crist WM. Biology and treatment of infant leukemias [review]. Leukemia 1995;9:762–769.

    PubMed  CAS  Google Scholar 

  75. Reaman GH, Sposto R, Sensel MG, et al. Treatment outcome and prognostic factors for infants with acute lymphoblastic leukemia treated on two consecutive trials of the Children’s Cancer Group. J Clin Oncol 1999;17:1–11.

    Google Scholar 

  76. Silverman LB, McLean TW, Gelber RD, et al. Intensified therapy for infants with acute lymphoblastic leukemia: results from the Dana-Farber Cancer Institute Consortium. Cancer 1997;80:2285–2295.

    PubMed  CAS  Google Scholar 

  77. Chessells JM, Eden OB, Bailey CC, Lilleyman JS, Richards SM. Acute lymphoblastic leukaemia in infancy: experience in MRC UKALL trials. Report from the Medical Research Council Working Party on Childhood Leukaemia. Leukemia 1994;8:1275–1279.

    PubMed  CAS  Google Scholar 

  78. Ferster A, Bertrand Y, Benoit Y, et al. Improved survival for acute lymphoblastic leukaemia in infancy: the experience of EORTC-Childhood Leukaemia Cooperative Group. Br J Haematol 1994; 86:284–290.

    PubMed  CAS  Google Scholar 

  79. Frankel LS, Ochs J, Shuster JJ, et al. Therapeutic trial for infant acute lymphoblastic leukemia: the Pediatric Oncology Group experience (POG 8493). J Pediatr Hematol Oncol 1997;19:35–42.

    PubMed  CAS  Google Scholar 

  80. Katz FE, Ball S, Gibbons B. Acute lymphoblastic leukaemia in infancy: clinical and biological features. Leuk Lymphoma 1990;2:259–269.

    Google Scholar 

  81. Dordelman M, Harbott J, Reiter A, et al. Prednisone response is the strongest predictor of treatment outcome in infant acute lymphoblastic leukemia. Blood 1998;92(suppl):1982.

    Google Scholar 

  82. Lauer SJ, Camitta BM, Leventhal BG, et al. Intensive alternating drug pairs after remission induction for treatment of infants with acute lymphoblastic leukemia: a Pediatric Oncology Group pilot study. J Pediatr Hematol Oncol 1998;20:229–233.

    PubMed  CAS  Google Scholar 

  83. Nishimura S, Kobayashi M, Ueda K, et al. Treatment of infant acute lymphoblastic leukemia in Japan. Int J Hematol 1999;69:224–232.

    Google Scholar 

  84. Isoyama K, Iguchi M, Hibi S, et al. Improved survival of acute lymphoblastic leukemia in infants more than 6 months of age with MLL gene rearrangement. Results of the Japan infant leukemia study. Blood.

    Google Scholar 

  85. Pieters R, Kaspers GJL, Huismans DR, et al. Cellular drug resistance profiles that might explain the prognostic value of immunophenotype and age in childhood acute lymphoblastic leukemia. Leukemia 1993;7:392–397.

    PubMed  CAS  Google Scholar 

  86. Pieters R, den Boer ML, Durian M, et al. Relation between age, immunophenotype and in vitro drug resistance in 395 children with acute lymphoblastic leukemia∇implications for treatment of infants. Leukemia 1998;12:1344–1348.

    PubMed  CAS  Google Scholar 

  87. Barredo JC, Yusuf U, Abboud M, Laver J. Successful treatment of relapsed infant acute lymphoblastic leukemia with intensive antimetabolite-based chemotherapy. Med Pediatr Oncol 1997;4: 256–259.

    Google Scholar 

  88. Ludwig W-D, Rieder H, Bartram CR, et al. Immunophenotypic and genotypic features, clinical characteristics, and treatment outcome of adult pro-B acute lymphoblastic leukemia: results of the German Multicenter trials GMALL 03/87 and 04/89. Blood 1998;92:1898–909.

    PubMed  CAS  Google Scholar 

  89. Mulhern RK, Kovnar E, Langston J, et al. Long-term survivors of leukemia treated in infancy: factors associated with neuropsychologic status. J Clin Oncol 1992;10:1095–1101.

    PubMed  CAS  Google Scholar 

  90. Bleyer A, Reaman G, Poplack D, et al. Central nervous system (CNS) pharmacology of high dose methotrexate (HDMTX) in infants with acute lymphoblastic leukemia (ALL) (abstract). Proc Am Soc Clin Oncol 1984;3:199.

    Google Scholar 

  91. Kaleita TA, MacLean WE, Reaman GH. Neurodevelopmental outcome of children diagnosed will ALL during infancy: a preliminary report from the Children’s Cancer Group. Med Pediatr Oncol 1992;5:385–392.

    Google Scholar 

  92. Kaleita TA, Reaman GH, MacLean WE, Sather HN, Whitt JK. Neurodevelopmental outcome of infants with acute lymphoblastic leukemia: a Children’s Cancer Group report. Cancer 1999; 85:1859–1865.

    PubMed  CAS  Google Scholar 

  93. Crist W, Pullen J, Boyett J, et al. Clinical and biologic features predict a poor prognosis in acute lymphoid leukemias in infants: a Pediatric Oncology Group study. Blood 1986;67:135–140.

    PubMed  CAS  Google Scholar 

  94. Taki T, Ida K, Hanada R, et al. Frequency and clinical significance of the MLL gene rearrangements in infant acute leukemia. Leukemia 1996;10:1303–1307.

    PubMed  CAS  Google Scholar 

  95. Gaynon PS, Desai AA, Bostrom BC, et al. Early response to therapy and outcome in childhood acute lymphoblastic leukemia. A review. Cancer 1997;80:1717–1726.

    PubMed  CAS  Google Scholar 

  96. Gaynon PS, Bostrom BC, Reaman GH, et al. Children’s Cancer Group initiatives in childhood acute lymphoblastic leukemia. Int J Pediatr Hematol Oncol 1998;5:99–114.

    Google Scholar 

  97. Behm FG, Raimondi SC, Frestedt JL, et al. Rearrangement of the MLL gene confers a poor prognosis in childhood acute lymphoblastic leukemia, regardless of presenting age. Blood 1996;87: 2870–2877.

    PubMed  CAS  Google Scholar 

  98. Pui C-H, Rivera GK, Hancock ML, et al. Clinical significance of CD 10 expression in childhood acute lymphoblastic leukemia. Leukemia 1993;7:35–40.

    PubMed  CAS  Google Scholar 

  99. Pui C, Ribeiro RC, Campana D, et al. Prognostic factors in the acute lymphoid and myeloid leukemias of infants. Leukemia 1996; 10:952–956.

    PubMed  CAS  Google Scholar 

  100. Ravindranath Y, Yeager AM, Chang MN, et al. Autologous bone marrow transplantation versus intensive consolidation chemotherapy for acute myeloid leukemia in childhood. Pediatric Oncology Group. N Engl J Med 1996;334:1428–1434.

    PubMed  CAS  Google Scholar 

  101. Stevens RF, Hann IM, Wheatley K, Gray RG. Marked improvements in outcome with chemotherapy alone in paediatric acute myeloid leukaemia: results of the United Kingdom Medical Research Council’s 10th AML trial. Br J Haematol 1998;101:130–140.

    PubMed  CAS  Google Scholar 

  102. Emminger W, Emminger-Schmidmeier W, Haas OA, et al. Treatment of infant leukaemia with busulfan, cyclophosphamide etoposide and bone marrow transplantation. Bone Marrow Transplant 1992;9:313–318.

    PubMed  CAS  Google Scholar 

  103. Sanders JE. Bone marrow transplantation for pediatric malignancies. Pediatr Clin North A 1997;44:1005–1020.

    CAS  Google Scholar 

  104. Sanders JE. The impact of marrow transplant preparative regimens on subsequent growth and development. The Seattle Marrow Transplant Team. Semin Hematol 1991;28:244–249.

    PubMed  CAS  Google Scholar 

  105. Pirich L, Haut P, Morgan E, Marymount M, Kletzel M. Total body irradiation, cyclophosphamide, and etoposide with stem cell transplant as treatment for infants with acute lymphocytic leukemia. Med Pediatr Oncol 1999;32:1–6.

    PubMed  CAS  Google Scholar 

  106. Jansen B, Kersey JH, Jaszcz WB, et al. Effective immunochemotherapy of human t(4;11) leukemia in mice with severe combined immunodeficiency (SCID) using B43 (anti-CD 19)-pokeweed antiviral immunotoxin plus cyclophosphamide. Leukemia 1993;7:290–297.

    PubMed  CAS  Google Scholar 

  107. Seibel NL, Krailo M, O’Neill K, et al. Phase I study of B43-PAP immunotoxin in combination with standard 4-drug induction for patients with CD 19+ acute lymphoblastic leukemia (ALL) in relapse, a Children’s Cancer Group study. Blood 1998;92:400.

    Google Scholar 

  108. Jansen B, Uckun FM, Jaszcz WB, Kersey JH. Establishment of a human t(4;11) leukemia in severe combined immunodeficient mice and successful treatment using anti-CD19 (B43)-pokeweed antiviral protein immunotoxin. Cancer Res 1992;52:406–412.

    PubMed  CAS  Google Scholar 

  109. Pieters R, Loonen AH, Huismans DR, et al. In vitro drug sensitivity of cells from children with leukemia using the MTT assay with improved culture conditions. Blood 1990;76:2327–2336.

    PubMed  CAS  Google Scholar 

  110. Pieters R, Huismans DR, Leyva A, Veerman AJP. Adaptation of the rapid automated tetrazolium dye based MTT assay for chemosensitivity testing in childhood leukemia. Cancer Lett 1988; 41:323–332.

    PubMed  CAS  Google Scholar 

  111. Pieters R, Huismans DR, Leyva A, Veerman AJP. Comparison of a rapid automated tetrazolium based (MTT) assay with a dye exclusion assay for chemosensitivity testing in childhood leukemia. Br J Cancer 1989;59:217–220.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Reaman, G.H. (2003). Biology and Treatment of Acute Leukemias in Infants. In: Pui, CH. (eds) Treatment of Acute Leukemias. Current Clinical Oncology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-307-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-307-1_4

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-212-4

  • Online ISBN: 978-1-59259-307-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics