Skip to main content

Antipurines in Childhood Acute Lymphoblastic Leukemia

  • Chapter
Treatment of Acute Leukemias

Part of the book series: Current Clinical Oncology ((CCO))

  • 160 Accesses

Abstract

6-Mercaptopurine (6MP), an antipurine, remains a mainstay of contemporary treatment of acute lymphoblastic leukemia (ALL) in infants, children, and adolescents. Its antileukemic activity was first reported in 1953 almost a half century ago. 6MP found a place in ALL therapy in the late 1960s, about 30 yr ago (1,2). Since then, more novel, perhaps more interesting, and certainly more fashionable agents have garnered much attention and enthusiasm. Tried and true 6MP differs from these exciting agents in that it has already contributed to the cure of literally tens of thousands of children with ALL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pinkel D. Intravenous mercaptopurine: life begins at 40. J Clin Oncol 1993;11:1826–1831.

    PubMed  CAS  Google Scholar 

  2. Bokkerink J, Damen F, Huylscher M, Bakker M. Biochemical evidence for synergistic combination treatment with methorexate and 6-mercaptopurine in acute lymphoblastic leukemia. Haematol Blood Transfus 1990;33:110–117.

    PubMed  CAS  Google Scholar 

  3. Group CAC. Duration and intensity of maintenance chemotherapy in acute lymphoblastic leukaemia: overview of 42 trials involving 12,000 randomised children. Lancet 1996;347:1783–1788.

    Article  Google Scholar 

  4. Toyoda T, Manabe A, Tsuchida M, et al. Six months maintenance chemotherapy after intensified treatment for acute lymphoblastic leukemia of childhood. J Clin Oncol 2000;18:1508–1516.

    PubMed  CAS  Google Scholar 

  5. Smith M, Arthur D, Camitta B, et al. Uniform approach to risk classification and treatment assignment for children with acute lymphoblastic leukemia [see comments]. J Clin Oncol 1996;14: 18–24.

    PubMed  CAS  Google Scholar 

  6. Bostrom B, Erdmann G. Cellular pharmacology of 6-mercaptopurine in acute lymphoblastic leukemia. [Review]. Am J Pediatr Hematol Oncol 1993;15:80–86.

    Article  PubMed  CAS  Google Scholar 

  7. Erdmann G. 6-Mercaptopurine and 6-thioguanine. In: A Clinician’s Guide to Chemotherapy Pharmacokinetics and Pharmacodynamics. (Grochow L, Ames M, eds.) Baltimore: Williams & Wilkins, 1998; pp. 411–426.

    Google Scholar 

  8. Hatse S, De Clerq E, Balzarini J. Role of antimetabolites of purine and [pyrimidine metabolism in tumor cell differentiation. Biochem Pharmacol 1999;58:539–555.

    Article  PubMed  CAS  Google Scholar 

  9. Pizzorno G, Cheng Y, Handschumacher R. Pyrimidine and purine antimetabolites. In: Cancer Medicine, vol. 1. (Holland J, Bast RJ, Morton D, et al., eds.) Baltimore: Williams & Wilkins, 1997; pp. 923–948.

    Google Scholar 

  10. Kwock R, Nandy P, Solorzano M, Avramis VI. Combination regimens of fludarabine and ara-C followed by taxanes (docetaxel and paclitaxel) against human leukemia T-cell lines, CEM/O and CEM/ara-C/7A (Meeting abstract). Proc Annu Meet Am Assoc Cancer Res 1996;37:A2573.

    Google Scholar 

  11. Dinndorf PA, Avramis VI, Wiersma S, et al. Phase I/II study of idarubicin given with continuous infusion fludarabine followed by continuous infusion cytarabine in children with acute leukemia: a report from the Children’s Cancer Group. J Clin Oncol 1997; 15:2780–2785.

    PubMed  CAS  Google Scholar 

  12. McCarthy AJ, Hann IM, Oakhill A. FLAG (fludarabine, high-dose cytarabine, and G-CSF) for refractory and high-risk relapsed acute leukemia in children. Med Pediatr Oncol 1999;32: 411–415.

    Article  PubMed  CAS  Google Scholar 

  13. Cheson BD. New prospects in the treatment of indolent lymphomas with purine analogues. Cancer J Sci Am 1998;4(suppl 2):S27–36.

    PubMed  Google Scholar 

  14. Kurtzberg J, Keating M, Moore J, et al. 2-Amino-9-B-arabinosyl6-methyl-9H-guanine (GW 506U) is highly active in patients with T-cell malignancies: results of a phase I trial in pediatric and adult patients with refractory hematologic malignancies. Blood 1996; 88:669a.

    Google Scholar 

  15. Gravatt LC, Chaffee S, Hebert ME, et al. Efficacy and toxicity of 9-beta-D-arabinofuranosylguanine (araG) as an agent to purge malignant T cells from murine bone marrow: application to an in vivo T-leukemia model. Leukemia 1993;7:1261–1267.

    PubMed  CAS  Google Scholar 

  16. Shewach DS, Mitchell BS. Differential metabolism of 9-beta-Darabinofuranosylguanine in human leukemic cells. Cancer Res 1989;49:6498–6502.

    PubMed  CAS  Google Scholar 

  17. Pieters R, Klumper E, Kapsers G, Veerman A. Everything you always wanted to know about cellular resistance in childhood acute lymphoblastic leukemia. Crit Rev Onocol Hematol 1997; 25:11–26.

    Article  CAS  Google Scholar 

  18. Pettersson B, Soderhall S, Almer S, Albertioni F, Peterson C. Role of thiopurine methyltransferase (TPMT) for the cytoxicity of thiopurines. Proc Am Assoc Cancer Res 1999;40:391.

    Google Scholar 

  19. Adamson PC, Poplack DG, Balis FM. The cytotoxicity of thioguanine vs mercaptopurine in acute lymphoblastic leukemia [see comments]. Leuk Res 1994;18:805–810.

    Article  PubMed  CAS  Google Scholar 

  20. Lancaster D, Lennard L, Rowland K, Vora A, Lilleyman J. Thioguanine versus mercaptopurine for therapy of childhood lympoblastic leukaemia. Br J Haematol 1998;102:439–443.

    Article  PubMed  CAS  Google Scholar 

  21. Glaab WE, Risinger JI, Umar A, et al. Resistance to 6-thioguanine in mismatch repair-deficient human cancer cell lines correlates with an increase in induced mutations at the HPRT locus. Carcinogenesis 1998;19:1931–1937.

    Article  PubMed  CAS  Google Scholar 

  22. Swann PF, Waters TR, Moulton DC, et al. Role of postreplicative DNA mismatch repair in the cytotoxic action of thioguanine. Science 1996;273:1109–1111.

    Article  PubMed  CAS  Google Scholar 

  23. Evans W, Relling M. Commentary: mercaptopurine vs thioguanine for the treatment of acute lymphoblastic leukemia. Leuk Res 1994;18:811–814.

    Article  PubMed  CAS  Google Scholar 

  24. French BT, Patrick DE, Grever MR, Trewyn RW. Queuine, a tRNA anticodon wobble base, maintains the proliferative and pluripotent potential of HL-60 cells in the presence of the differentiating agent 6-thioguanine. Proc Natl Acad Sci USA 1991;88:370–374.

    Article  PubMed  CAS  Google Scholar 

  25. Morgan CJ, Chawdry RN, Smith AR, Siravo-Sagraves G, Trewyn RW. 6-Thioguanine-induced growth arrest in 6-mercaptopurine-resistant human leukemia cells. Cancer Res 1994;54:5387–5393.

    PubMed  CAS  Google Scholar 

  26. Pieters R, den Boer M, Kazemier K, et al. Multidrug resistance in acute lymphoblastic leukemia is related to LRP but not to MRP or P-glycoprotein expression. Med Pediatr Oncol 1996;27:228a.

    Google Scholar 

  27. Kaspers GJ, Kardos G, Pieters R, et al. Different cellular drug resistance profiles in childhood lymphoblastic and non-lymphoblastic leukemia: a preliminary report. Leukemia 1994;8:1224–1229.

    PubMed  CAS  Google Scholar 

  28. Klumper E, Pieters R, Veerman AJ, et al. In vitro cellular drug resistance in children with relapsed/refractory acute lymphoblastic leukemia. Blood 1995;86:3861–3868.

    PubMed  CAS  Google Scholar 

  29. Keuzenkamp-Jansen C, De Abreu R, Bokkerink J, vd Heijden M, Trijbels J. Metabolism of intravenous 6-mercaptopurine in childhood acute lymphoblastic leukemia (ALL). Proc Am Soc Clin Oncol 1994;13:146.

    Google Scholar 

  30. Bo J, Schroder H, Kristinsson J, et al. Possible carcinogenic effect of 6-mercaptopurine on bone marrow stem cells: relation to thiopurine metabolism. Cancer 1999;86:1080–1086.

    Article  PubMed  CAS  Google Scholar 

  31. Zimm S, Collins J, Riccardi R, et al. Variable bioavailability of oral mercaptopurine. N Engl J Med 1983;308:1005–1009.

    Article  PubMed  CAS  Google Scholar 

  32. Arndt CA, Balis FM, McCully CL, et al. Bioavailability of lowdose vs high-dose 6-mercaptopurine. Clin Pharmacol Ther 1988; 43:588–591.

    Article  PubMed  CAS  Google Scholar 

  33. Zimm S, Collins J, O’Neill D, Chabner B, Poplack D. Inhibition of first-pass metabolism in cancer chemotherapy: interaction of 6-mercaptopurine and allopurinol. Clin Pharmacol Ther 1983; 34:810–817.

    Article  PubMed  CAS  Google Scholar 

  34. Rivard GE, Lin KT, Leclerc JM, David M. Milk could decrease the bioavailability of 6-mercaptopurine. Am J Pediatr Hematol Oncol 1989;11:402–406.

    PubMed  CAS  Google Scholar 

  35. Balis FM, Holcenberg JS, Poplack DG, et al. Pharmacokinetics and pharmacodynamics of oral methotrexate and mercaptopurine in children with lower risk acute lymphoblastic leukemia: a joint Children’s Cancer Group and Pediatric Oncology Branch study. Blood 1998;92:3569–3577.

    PubMed  CAS  Google Scholar 

  36. Zimm S, Ettinger L, Holcenberg J, et al. Phase I and clinical pharmacological study of mercaptopurine administered as a prolonged intravenous infusion. Cancer Res 1985;45:1869–1873.

    PubMed  CAS  Google Scholar 

  37. Heisel M, Ortega J, Seigel S. Chemotherapy of acute lymphoid leukemia. In: Childhood Acute Lymphopblastic Leukemia. (Pochedly C, ed.) New York: Praeger Publishers, 1985; pp. 133–163.

    Google Scholar 

  38. Frei E, Freireich EJ, Gehan E, et al. Studies of sequential and combination antimetabolite therapy in acute leukemia: mercaptopurine and methotrexate. Blood 1961;18:431–454.

    Google Scholar 

  39. Saha V, Eden T. The United Kingdom Medical Research Council trials for the treatment of childhood acute lymphoblastic leukemia. Int J Pediatr Hematol Oncol 1997;5:272–285.

    Google Scholar 

  40. Clavell LA, Gelber RD, Cohen HJ, et al. Four-agent induction and intensive asparaginase therapy for treatment of childhood acute lymphoblastic leukemia. N Engl J Med 1986;315:657–663.

    Article  PubMed  CAS  Google Scholar 

  41. Schorin MA, Blattner S, Gelber RD, et al. Treatment of childhood acute lymphoblastic leukemia: results of Dana-Farber Cancer Institute/Children’ s Hospital Acute Lymphoblastic Leukemia Consortium Protocol 85–01. J Clin Oncol 1994;12:740–747.

    PubMed  CAS  Google Scholar 

  42. Coccia P, Bleyer W, Siegel S, et al. Development and preliminary findings of Children’s Cancer Study Group protocols (161, 162 and 163) for low-, average- and high-risk acute lymphoblastic leukemia in children. In: Leukemia Research: Advances in Cell Biology and Treatment. (Murphy S, Gilbert J, eds.) Amsterdam: Elsevier, 1983.

    Google Scholar 

  43. Koizumi S, Fujimoto T, Takeda T, et al. Comparison of intermittent or continuous methotrexate plus 6-mercaptopurine in regimens for standard-risk acute lymphoblastic leukemia in childhood (JCCLSG-5811). The Japanese Children’s Cancer and Leukemia Study Group. Cancer 1988;61:1292–1300.

    Article  PubMed  CAS  Google Scholar 

  44. Pinkel D, Hernandez K, Borella L, et al. Drug dosage and remission duration in childhood lymphocytic leukemia. Cancer 1971;27: 247–256.

    Article  PubMed  CAS  Google Scholar 

  45. Aur R, Simone J, Verzosa M, et al. Childhood acute lymphocytic leukemia. Study VIII. Cancer 1978;42:2123–2134.

    Article  PubMed  CAS  Google Scholar 

  46. Bleyer WA, Sather HN, Nickerson HJ, et al. Monthly pulses of vincristine and prednisone prevent bone marrow and testicular relapse in low-risk childhood acute lymphoblastic leukemia: a report of the CCG-161 study by the Childrens Cancer Study Group. J Clin Oncol 1991;9:1012–1021.

    PubMed  CAS  Google Scholar 

  47. Hale J, Lilleyman, JS. Importance of 6-mercaptopurine dose in lymphoblastic leukaemia. Ach Dis Child 1991;66:462–466.

    Article  CAS  Google Scholar 

  48. Relling MV, Hancock ML, Boyett JM, Pui CH, Evans WE. Prognostic importance of 6-mercaptopurine dose intensity in acute lymphoblastic leukemia. Blood 1999;93:2817–2823.

    PubMed  CAS  Google Scholar 

  49. Bostrom B, Erdmann GR. Association of relapse with mercaptopurine (6MP) cellular pharmacokinetics (CPK) in children with acute lymphoblastic leukemia (ALL) (meeting abstract). Proc Am Soc Clin Oncol 1992;11.

    Google Scholar 

  50. Lilleyman JS, Lennard L. Mercaptopurine metabolism and risk of relapse in childhood lymphoblastic leukaemia. Lancet 1994;343: 1188–1190.

    Article  PubMed  CAS  Google Scholar 

  51. Davies H, Lennard L, Lilleyman J. Variable mercaptopurine metabolism in children with leukaemia: a problem in non-compliance. BMJ 1993;306:1239–1240.

    Article  PubMed  CAS  Google Scholar 

  52. Duchesne D, Latour S, Leclerc JM, Sallan SE, Theoret Y. Pharmacokinetics of oral and intravenous 6-mercaptopurine (6-MP) in childhood acute lymphoblastic leukemia (ALL) (Meeting abstract). Proc Annu Meeting Am So Clin Oncol 1994;13.

    Google Scholar 

  53. Lau RC, Matsui D, Greenberg M, Koren G. Electronic measurement of compliance with mercaptopurine in pediatric patients with acute lymphoblastic leukemia. Med Pediatr Oncol 1998;30: 85–90.

    Article  PubMed  CAS  Google Scholar 

  54. Lennard L, Lilleyman JS, Van Loon J, Weinshilboum RM. Genetic variation in response to 6-mercaptopurine for childhood acute lymphoblastic leukaemia. Lancet 1990;336:225–229.

    Article  PubMed  CAS  Google Scholar 

  55. McLeod HL, Relling MV, Liu Q, Pui CH, Evans WE. Polymorphic thiopurine methyltransferase in erythrocytes is indicative of activity in leukemic blasts from children with acute lymphoblastic leukemia. Blood 1995;85:1897–1902.

    PubMed  CAS  Google Scholar 

  56. Rabello CHA. Wide inter- and intra-patient variability of erythrocyte thioguanine nucleotides levels and thiopurine methyltransferase activity in childhood leukemia (meeting abstract). Proc Annu Meet Am Assoc Cancer Res 1996;37:A1231.

    Google Scholar 

  57. Coulthard SA, Howell C, Robson J, Hall AG. The relationship between thiopurine methyltransferase activity and genotype in blasts from patients with acute leukemia. Blood 1998;92: 2856–2862.

    PubMed  CAS  Google Scholar 

  58. Lennard L. Clinical implications of thiopurine methyltransferase-optimization of drug dosage and potential drug interactions [Review]. Therap Drug Monit 1998;20:527–531.

    Article  CAS  Google Scholar 

  59. Lennard L. Therapeutic drug monitoring of antimetabolic cytotoxic drugs [Review]. Brit J Clin Pharmacol 1999;47:131–143.

    Article  CAS  Google Scholar 

  60. Koren G, Ferrazini G, Sulh H, et al. Systemic exposure to mercaptopurine as a prognostic factor in acute lymphocytic leukemia in children. N Engl J Med 1990;323:17–21.

    Article  PubMed  CAS  Google Scholar 

  61. Peterson C, Lafolie P, Haydfer S, Bjork O. Mercaptopurine plasma levels in children with ALL: relation to relapse risk and myelotoxicity. Proc Am Assoc Cancer Res 1989;39:250.

    Google Scholar 

  62. Adamson P, Balis F, Steinberg S, Poplack D, Holcenberg J. Pharmacokinetics of mercaptopurine in children with acute lymphocytic leukemia (letter). N Engl J Med 1990;323:1565–1566.

    Article  PubMed  CAS  Google Scholar 

  63. van Eys J, Berry D, Crist W, et al. Treatment intensity and outcome for children with acute lymphocytic leukema of standard risk: a Pediatric Oncology Group study. Cancer 1989;63:1466–1471.

    Article  PubMed  Google Scholar 

  64. Rivard GE, Infante-Rivard C, Dresse MF, Leclerc JM, Champagne J. Circadian time-dependent response of childhood lymphoblastic leukemia to chemotherapy: a long-term follow-up study of survival. Chronobiol Int 1993;10:201–204.

    Article  PubMed  CAS  Google Scholar 

  65. Koren G, Langevin A, Olivieri N, et al. Diurnal variation in the pharmacokinetics and myelotoxicity of mercaptopurine in children with acute lymphocytic leukemia. 1990;144:1135–1137.

    CAS  Google Scholar 

  66. Schmiegelow K, Glomstein A, Kristinsson J, et al. Impact of morning versus evening schedule for oral methotrexate and 6-mercaptopurine on relapse risk for children with acute lymphoblastic leukemia. Nordic Society for Pediatric Hematology and Oncology (NOPHO). J Pediatr Hematol Oncol 1997;19:102–109.

    Article  PubMed  CAS  Google Scholar 

  67. Miller D, Leikin S, Albo V, Sather H, Hammond G. Three versus five years of maintenance therapy are equivalent in childhood acute lymphoblastic leukemia: a report from the Childrens Cancer Study Group. J Clin Oncol 1989;7:316–325.

    PubMed  CAS  Google Scholar 

  68. Riehm H, Gadner H, Henze G, et al. Results and significance of six randomized trials in four consecutive ALL-BFM studies. Hematol Blut Transfus 1990;33:439–450.

    Article  CAS  Google Scholar 

  69. Sunderland M, Latour S, Sallan S, Leclerc J. Intracellular pharmacokinetics of 6-thioguanine neucleotides (6-TGN) after high dose intravenous 6-mercaptopurine (6-MP). Proc Am Soc Clin Oncol 1993;12:162.

    Google Scholar 

  70. Adamson P, Zimm S, Ragab A, et al. A phase II trial of continuousinfusion 6-mercaptopurine for childhood leukemia. Cancer Chemother Pharmacol 1992;30:155–157.

    Article  PubMed  CAS  Google Scholar 

  71. Camitta B, Leventhal B, Lauer S, et al. Intermediate-dose intravenous methotrexate and mercaptopurine therapy for non-T, non-B acute lymphocytic leukemia of childhood: a Pediatric Oncology Group study [see comments]. J Clin Oncol 1989;7:1539–1544.

    PubMed  CAS  Google Scholar 

  72. Van der Werff ten Bosch J, Sucui S, Philippe N, et al. The value of 6-MP i.v. during maintenance treatment in childhood acute lymphoblastic leukemia (ALL) and nonHodgkins lymphoma (NHL): results of the randomized pahse III trial 58881 of the EORTC Childhood Leukemia Cooperative Group (CLCG). Blood 1999; 94:628a.

    Google Scholar 

  73. Kamps W, Bokkerink J, Hakvoort-Cammel F, et al. Results of the DCLSG-Study ALL8 (1991–1997): BFM oriented treatment without cranial irradiation (CI) and comparing conventional oral and high-dose 6-mercaptopurine. Med Pediatr Oncol 1999; 33:169.

    Google Scholar 

  74. Mahoney DJ, Shuster J, Ruprecht R, et al. Intensification with intermediate-dose intravenous methotrexate is effective therapy for children with lower-risk B-precursor acute lymphoblastic leukemia: a Pediatric Oncology Group study. J Clin Oncol 2000; 18:1285–1294.

    PubMed  CAS  Google Scholar 

  75. Tolar J, Bostrom B, Lee M, Sather H. Oral 6-mercaptopurine protects against fatal relapses in acute lymphoblastic leukema in children: report from Children’s Cancer Group (CCG) 1922 study. J Pediatr Hematol Oncol 2000;22:378.

    Article  Google Scholar 

  76. Liliemark J, Petersson B, Peterson C. On the biochemical modulation of 6-mercaptopurine by methotrexate in murine WEHI-3b leukemia cells in vitro. Leuk Res 1992;16:275–280.

    Article  PubMed  CAS  Google Scholar 

  77. Adamson P, Balis F, Hawkins M, Murphy R, Poplack D. Desulfuration of 6-mercaptopurine. The basis for the paradoxical cytotoxicity of thiopurines in cultured human cells. Biochem Pharmacol 1993;46:1627–1636.

    Article  PubMed  CAS  Google Scholar 

  78. Lennard L, Davies HA, Lilleyman JS. Is 6-thioguanine more appropriate than 6-mercaptopurine for children with acute lymphoblastic leukaemia? Brit J Cancer 1993;68:186–190.

    Article  PubMed  CAS  Google Scholar 

  79. Janka-Schaub G, Erb N, Harms D. Randomized comparison of 6mercaptourine (6-MP) vs. 6-thioguanine (6-TG) in maintenance treatment of childhood acute lymphoblastic leukemia (ALL): differing metabolism and hematologic toxicity. Med Pediatr Oncol 1994;23:197.

    Google Scholar 

  80. Erb N, Harms DO, Janka-Schaub G. Pharmacokinetics and metabolism of thiopurines in children with acute lymphoblastic leukemia receiving 6-thioguanine versus 6-mercaptopurine. Cancer Chemother Pharmacol 1998;42:266–272.

    Article  PubMed  CAS  Google Scholar 

  81. McLeod HL, Coulthard S, Thomas, AE, et al. Analysis of thiopurine methyltransferase variant alleles in childhood acute lymphoblastic leukaemia. Brit J Haematol 1999;105:696–700.

    Article  CAS  Google Scholar 

  82. Weinshilboum RM, Sladek SL. Mercaptopurine pharmacogenetics: monogenic inheritance of erythrocyte thiopurine methyltransferase activity. Am J Hum Genet 1980;32:651–662.

    PubMed  CAS  Google Scholar 

  83. Lennard L, Van Loon JA, Lilleyman JS, Weinshilboum RM. Thiopurine pharmacogenetics in leukemia: correlation of erythrocyte thiopurine methyltransferase activity and 6-thioguanine nucleotide concentrations. Clin Pharmacol Ther 1987;41:18–25.

    Article  PubMed  CAS  Google Scholar 

  84. Evans WE, Horner M, Chu YQ, Kalwinsky D, Roberts WM. Altered mercaptopurine metabolism, toxic effects, and dosage requirement in a thiopurine methyltransferase-deficient child with acute lymphocytic leukemia. J Pediatr 1991;119:985–989.

    Article  PubMed  CAS  Google Scholar 

  85. Lennard L, Gibson BE, Nicole T, Lilleyman JS. Congenital thiopurine methyltransferase deficiency and 6-mercaptopurine toxicity during treatment for acute lymphoblastic leukaemia. Arch Dis Child 1993;69:577–579.

    Article  PubMed  CAS  Google Scholar 

  86. Mc Bride K, Gilchrist G, Smithson W, Weinshilboum R, Szumlanmski C. Severe 6-thioguanine induced marrow aplasia in a child with acute lymphoblastic leukemia and inherited methyltransferase deficiency. J Pediatr Hematol Oncol 2000;22: 441–445.

    Article  CAS  Google Scholar 

  87. Alves S, Prata MJ, Ferreira F, Amorim A. Thiopurine methyltransferase pharmacogenetics: alternative molecular diagnosis and preliminary data from Northern Portugal. Pharmacogenetics 1999;9:257–261.

    PubMed  CAS  Google Scholar 

  88. Relling MV, Rubnitz JE, Rivera GK, et al. High incidence of secondary brain tumours after radiotherapy and antimetabolites. Lancet 1999;354:34–39.

    Article  PubMed  CAS  Google Scholar 

  89. Nussbaum R, Crowder W, Nyhan W, Caskey C. A three-allele restriction fragment-length polymorphism at the hypoxanthine phosphoribosyltransferase locus in man. Proc Natl Acad Sci USA 1983;80:4035–4039.

    Article  PubMed  CAS  Google Scholar 

  90. Bokkerink JP, Bakker MA, Hulscher TW, et al. Sequence-, timeand dose-dependent synergism of methotrexate and 6-mercaptopurine in malignant human T-lymphoblasts [published erratum appears in Biochem Pharmacol 1987;36:781. Biochem Pharmacol 1986;35:3549–3555.

    Article  PubMed  CAS  Google Scholar 

  91. Bokkerink JP, Schouten TJ, De Abreu RA, et al. 6-Mercaptopurine and methotrexate, rational use in sight after 35 years? Tijdschrift or Kindergeneeskunde 1984;52:118–123.

    CAS  Google Scholar 

  92. Bokkerink JP, Bakker MA, Hulscher TW, De Abreu RA, Schretlen ED. Purine de novo synthesis as the basis of synergism of methotrexate and 6-mercaptopurine in human malignant lymphoblasts of different lineages. Biochemical Pharmacology 1988;37:2321–2327.

    Article  PubMed  CAS  Google Scholar 

  93. Giverhaug T, Loennechen T, Aarbakke J. Increased concentrations of methylated 6-mercaptopurine metabolites and 6-thioguanine nucleotides in human leukemic cells in vitro by methotrexate. Biochem Pharmacol 1998;55:1641–1646.

    Article  PubMed  CAS  Google Scholar 

  94. Ramilo LV, Avramis VI. Synergism studies between 6-mercaptopurine and cytosine arabinoside (ara-C) in human leukemia cells (meeting abstract). Proc Annu Meet Am Assoc Cancer Res 1993; 34:A1775.

    Google Scholar 

  95. Avramis VI. Pharmacological models for 2 drug combinations against childhood leukemias (meeting abstract). Int J Oncol 1995; 7:984.

    Google Scholar 

  96. Avramis VI, Wiersma S, Krailo MD, et al. Pharmacokinetic and pharmacodynamic studies of fludarabine and cytosine arabinoside administered as loading boluses followed by continuous infusions after a phase I/II study in pediatric patients with relapsed leukemias. The Children’s Cancer Group. Clin Cancer Res 1998; 4:45–52.

    PubMed  CAS  Google Scholar 

  97. Sandoval A, Consoli U, Plunkett W. Fludarabine-mediated inhibition of nucleotide excision repair induces apoptosis in quiescent human lymphocytes. Clin Cancer Res 1996;2:1731–1741.

    PubMed  CAS  Google Scholar 

  98. Armstrong D, Vera R, Snyder P, Cadman E. Enhancement of 6-thioguanine cytotoxic activity with methotrexate. Biochem Biophys Res Commun 1982;109:595–601.

    Article  PubMed  CAS  Google Scholar 

  99. Avramis VI, Kwock R, Reaman G. Synergistic antileukemic activity of Fudarabine + ara-C + paclitaxel (Taxol) combination regimen against human leukemia cells (meeting abstract). Proc Annu Meet Am Assoc Cancer Res 1995;36:A1759.

    Google Scholar 

  100. Ramilo-Torno L, Avramis V. Intracellular pharmacodynamic studies of the synergistic combination of 6-mercaptopurine and cytosine arabinoside in human leukemia cell lines. Cancer Chemother Pharmacol 1995;35:191–199.

    Article  PubMed  CAS  Google Scholar 

  101. Fu C, Martin-Aragon S, Ardi V, Danenberg P, Avramis V. Reversal of ara-C resistance by 6-thioguanine (6-TG) plus ara-C plus PEGasparagine (PEG ASNase in various cell lines lacking or expressing p53 protein). Proc Am Assoc Cancer Res 1999;40:96.

    Google Scholar 

  102. Koehl U, Li L, Nowak B, et al. Fludarabine and cyclophosphamide: synergistic cytotoxicity asociated with inhibition of interstrand cross-link removal. Proc Am Assoc Cancer Res 1997; 38:2.

    Google Scholar 

  103. Evans WE, Relling MV, Rodman JH, et al. Conventional compared with individualized chemotherapy for childhood acute lymphoblastic leukemia. N Engl J Med 1998; 338:499–505.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gaynon, P.S., Adamson, P.C. (2003). Antipurines in Childhood Acute Lymphoblastic Leukemia. In: Pui, CH. (eds) Treatment of Acute Leukemias. Current Clinical Oncology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-307-1_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-307-1_29

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-212-4

  • Online ISBN: 978-1-59259-307-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics