Skip to main content

Classification of Acute Leukemias

Perspective 2

  • Chapter
Treatment of Acute Leukemias

Part of the book series: Current Clinical Oncology ((CCO))

  • 167 Accesses

Abstract

A useful classification of acute leukemia must be reproducible, must impart understanding of leukemogenesis and clinical behavior, and (most importantly) be clinically relevant, which makes such a classification indispensable for designing and comparing clinical trials. Classification systems by their very nature may influence the design of treatment regimens and may even bias investigations of leukemogenesis. The discovery over 30 years ago that the acute lymphoid and acute myeloid leukemias differed in their responses to chemotherapeutic agents set the stage for the development of clinically useful classifications. The first of these was based on the morphologic features of leukemic blasts, with different groups of hematologists establishing their own terminology and diagnostic criteria. This lack of uniform nomenclature and hence comparable classifications posed a major obstacle to rapid progress in the treatment and understanding of leukemia pathobiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bennett JM, Catovsky D, Daniel M-T, et al. Proposals for the classification of acute leukemias. French-American-British (FAB) co-operative group. Br J Haematol 1976;33:451–458.

    Article  PubMed  CAS  Google Scholar 

  2. Bennett JM, Catovsky D, Daniel M-T, et al. The morphologic classification of acute lymphoblastic leukemia: concordance among observers and clinical correlations. Br J Haematol 1981;41:553.

    Article  Google Scholar 

  3. Bennett JM, Catovsky D, Daniel M-T, et al. Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French-American-British Cooperative Group. Ann Intern Med 1985;103:620–625.

    PubMed  CAS  Google Scholar 

  4. Bennett JM, Catovsky D, Daniel M-T, et al: Criteria for the diagnosis of acute leukemia of megakaryocytic lineage (M7). A report of the French-American-British Cooperative Group. Ann Intern Med 1985;103:460–462.

    PubMed  CAS  Google Scholar 

  5. First MIC Cooperative Study Group. Morphologic, immunologic, and cytogenetic (MIC) working classification of acute lymphoblastic leukemia. Cancer Genet Cytogenet 1986;23:189–197.

    Article  Google Scholar 

  6. Second MIC Cooperative Study Group. Morphologic, immunologic and cytogenetic (MIC) working classification of the acute myeloid leukaemias. Br J Haematol 1988;68:487–494.

    Article  Google Scholar 

  7. Cheson BD, Cassileth PA, Head DR, et al. Report of the National Cancer Institute-sponsored workshop on definitions of diagnosis and response in acute myeloid leukemia. J Clin Oncol 1990;8: 813–819.

    PubMed  CAS  Google Scholar 

  8. Pui C-H, Boyett JM, Rivera GK, et al. Long-term results of Total Therapy studies 11, 12, 13A for childhood acute lymphoblastic leukemia at St Jude Children’s Research Hospital. Leukemia 2000;14:2286–2294.

    Article  PubMed  CAS  Google Scholar 

  9. Jaffe ES, Harris NL, Stein H, Vardiman JW, eds. World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. Lyon: IARC, 2001.

    Google Scholar 

  10. Pui C-H, ed. Childhood Leukemias. Cambridge: Cambridge University Press, 1999.

    Google Scholar 

  11. Brunning RD, McKenna RW. Atlas of Tumor Pathology. Tumors of the Bone Marrow. Fascicle 9. Washington, DC: AFIP, 1994.

    Google Scholar 

  12. Foucar, K. Bone Marrow Pathology, 2nd ed. Chicago: ASCP, 2001.

    Google Scholar 

  13. Cason JD, Trujillo JM, Estey EH, et al. Peripheral acute leukemia: high peripheral but low-marrow blast count. Blood 1989;74: 1758–1761.

    PubMed  CAS  Google Scholar 

  14. Kalwinsky DK, Roberson P, Dahl G, et al. Clinical relevance of lymphoblastic biological features in children with acute lymphoblastic leukemia. J Clin Oncol 1985;3:477–484.

    PubMed  CAS  Google Scholar 

  15. Sen L, Borella L. Clinical importance of lymphoblasts with T markers in childhood acute leukemia. N Eng J Med 1975;92:828–832.

    Article  Google Scholar 

  16. Greaves MF, Janossy G, Peto J, et al. Immunologically defined subclasses of acute lymphoblastic leukaemia in children: their relationship to presentation features and prognosis. Br J Haematol 1981;48:79–97.

    Google Scholar 

  17. Morgan E, Hsu CCs,. Prognostic significance of the acute lymphoblastic leukemia (ALL) cell-associated antigens in children with null-cell ALL. Am J Pediatr Hematol Oncol 1980;2:99–102.

    Google Scholar 

  18. Sallan SE, Ritz J, Pesando J, et al. Cell surface antigens: prognostic implications in childhood acute lymphoblastic leukemia. Blood 1980;55:395–402.

    PubMed  CAS  Google Scholar 

  19. Bennett JM, Catovsky D, Daniel M-T, et al: Proposal for the recognition of minimally differentiated acute myeloid leukemia (AML MO). Br J Haematol 1991;78:325–329.

    Article  PubMed  CAS  Google Scholar 

  20. Bloomfield CD, Brunning RD. The revised French-American-British classification of acute myeloid leukemia: is new better? Ann Intern Med 1985;103:614–616.

    PubMed  CAS  Google Scholar 

  21. Behm FB, Campana D. Immunophenotyping In: Childhood Leukemias. Pui CH, ed. Cambridge: Cambridge Univiversity Press, 1999. p. 111.

    Google Scholar 

  22. Crist W, Boyett J, Roper M, et al. Pre-B cell leukemia responds poorly to treatment: a Pediatric Oncology Group study. Blood 1984;63:407–414.

    PubMed  CAS  Google Scholar 

  23. Crist WM, Carroll AJ, Shuster JJ, et al. Poor prognosis of children with pre-B acute lymphoblastic leukemia is associated with the t(1;19)(q23;p13): a Pediatric Oncology Group study. Blood 1990;76:117–122.

    PubMed  CAS  Google Scholar 

  24. Raimondi SC, Behm FG, Roberson PK, et al. Cytogenetics in preB acute lymphoblastic leukemia with emphasis on prognostic implications of the t(1;19). J Clin Oncol 1990;8:1380–1388.

    PubMed  CAS  Google Scholar 

  25. Pui CH, Frankel LS, Carroll AJ, et al. Clinical characteristics and treatment outcome of childhood acute lymphoblastic leukemia with the t(4;11)(q21;p23): a collaborative study of 40 cases. Blood 1991;77:440–447.

    PubMed  CAS  Google Scholar 

  26. Behm FG, Raimondi SC, Schell MJ, et al. Lack of CD45 antigen on blast cells in childhood acute lymphoblastic leukemia is associated with chromosome hyperdiploidy and other favorable prognostic factors. Blood 1992;79:1011–1016.

    PubMed  CAS  Google Scholar 

  27. Borowitz MJ, Shuster JJ, Carroll AJ, et al. Prognostic significance of fluorescence intensity of surface marker expression in childhood B-precursor ALL. A Pediatric Oncology Group study. Blood 1997;89:3960–3966.

    PubMed  CAS  Google Scholar 

  28. Pui C-H, Behm FG, Singh B, et al. Heterogeneity of presenting prognostic features and their relation to treatment outcome in 120 children with T-acute lymphoblastic leukemia. Blood 1990;75: 174–179.

    PubMed  CAS  Google Scholar 

  29. Ludwig WD, Harbott J, Bartram CR, et al. Incidence and prognostic significance of immunophenotypic subgroups in childhood acute lymphoblastic leukemia: experience of the BFM study 86. Recent Results Cancer Res 1993;131:269–282.

    Article  PubMed  CAS  Google Scholar 

  30. Shuster JJ, Falletta JM, Pullen DJ, et al. Prognostic factors in childhood T-cell acute lymphoblastic leukemia: a Pediatric Oncology Group study. Blood 1990;75:166–173.

    PubMed  CAS  Google Scholar 

  31. Crist WM, Shuster JJ, Falletta J, et al. Clinical features and outcome in childhood T-cell leukemia-lymphoma according to stage of thymocyte differentiation: a Pediatric Oncology Group study. Blood 1998;72:1891–1897.

    Google Scholar 

  32. Gerand R, Voisin S, Papin S, et al. Characteristics of pro-T ALL subgroups: comparison with late T-ALL. The Groupe d’Etude Immunologique des Leucemies. Leukemia 1993;7:161–167.

    Google Scholar 

  33. Uckun FM, Sense] MG, Sun L, et al. Biology and treatment of childhood T-lineage acute lymphoblastic leukemia. Blood 1998; 91:735–746.

    PubMed  CAS  Google Scholar 

  34. Garand R, Vannier JP, Bene MC, et al. Comparison of outcome, clinical, laboratory, and immunological features in 164 children and adults with T-ALL. The Groupe d’Etude Immunolgique des Leucemies. Leukemia 1990;4:739–744.

    PubMed  CAS  Google Scholar 

  35. Cascavilla N, Musto P, D’Arena G, et al. Are “early” and “late” Tacute lymphoblastic leukemia different diseases? A single center study of 34 patients. Leuk Lymphoma 1996;21:437–442.

    Article  PubMed  CAS  Google Scholar 

  36. Niehues T, Kapaun P, Harms DO, et al. A classification based on T cell selection-related phenotypes identifies a subgroup of childhood T-ALL with favorable outcome in the COALL studies. Leukemia 1999;13:614–617.

    Article  PubMed  CAS  Google Scholar 

  37. Czuczman MS, Dodge RK, Stewart CC, et al. Value of immunophenotype in intensively treated adult acute lymphoblastic leukemia: Cancer and Leukemia Group B study 8364. Blood 1999;93:3931–3939.

    PubMed  CAS  Google Scholar 

  38. Uckun FM, Steinherz PG, Sather H, et al. CD2 expression on leukemic cells as a predictor of event-free survival after chemotherapy for T-lineage acute lymphoblastic leukemia: a Children’s Cancer Group study. Blood 1996;88:4288–4295.

    PubMed  CAS  Google Scholar 

  39. Pui CH, Behm FG, Crist WM. Clinical and biological immunologic marker studies in childhood acute lymphoblastic leukemia. Blood 1993;82:343–362.

    PubMed  CAS  Google Scholar 

  40. Terstappen LWMM, Loken MR. Myeloid differentiation in normal bone marrow and acute myeloid leukemia assessed by multidimensional flow cytometry. Anal Cell Pathol 1990;2:229–340.

    PubMed  CAS  Google Scholar 

  41. Terstappen LWMM, Safford M, Konemann S, et al. Flow cytometric characterization of acute myeloid leukemia. Part II. Phenotypic heterogeneity at diagnosis. Leukemia 1991;5:757–767.

    Google Scholar 

  42. Orfao A, Chillon MC, Bortoluci AM, et al. The flow cytometric pattern of CD34, CD 15, and CC 13 expression in acute myeloblastic leukemia is highly characteristic of the presence of PML-RARa gene rearrangements. Haematologica 1999;84:405–412.

    PubMed  CAS  Google Scholar 

  43. Porwit MacDonald A, Janossy G, Ivory K, et al. Leukemia-associated changes identified by quantitative flow cytometry. IV. CD34 overexpression in acute myelogenous leukemia M2 with t(8;21). Blood 1996;87:162–169.

    Google Scholar 

  44. Jennings CD, Foon KA. Recent advances in flow cytometry: application to the diagnosis of hematologic malignancy. Blood 1997;90:169–186.

    Google Scholar 

  45. Neame PB, Soamboonsrup P, Browman GP, et al. Classifying acute leukemia by flow cytometric analysis: a combined FAB-immunologic classification of AML. Blood 1986;68:1355–1362.

    PubMed  CAS  Google Scholar 

  46. Behm FG. Diagnosis of childhood acute myeloid leukemia. Clin Lab Med 1999;19:187–237.

    PubMed  CAS  Google Scholar 

  47. Krasinskas AM, Wasik MA, Kamoun M, et al. the usefulness of CD64, other monocytic-associated antigens, and CD45 gating in the subclassification of acute myeloid leukemias with monocytic differentiation. Am J Clin Pathol 1998;110:797–805.

    PubMed  CAS  Google Scholar 

  48. Borowitz MJ, Guenther KL, Shults KE, Stelzer GT. Immunophenotyping of acute leukemia by flow cytometric analysis. Use of CD45 and right-angle light scatter to gate on leukemic blasts in three-color analysis. Am J Clin Pathol 1993;100:534–540.

    PubMed  CAS  Google Scholar 

  49. Lacombe F, Durieu F, Briais A, et al. Flow cytometry CD45 gating for immunophenotyping of acute myeloid leukemia. Leukemia 1997;11:1878–1886.

    Article  PubMed  CAS  Google Scholar 

  50. Rainer RO. Hodges L. Steltzer GT. Cd45 gating correlates with bone marrow differential. Cytometry 1995;22:139–145.

    Article  PubMed  CAS  Google Scholar 

  51. Sun T, Sangaline R, Ryder J, et al. Gating strategy for immunophenotyping of leukemias and lymphoma. Am J Clin Pathol 1997;108:152–157.

    PubMed  CAS  Google Scholar 

  52. Orfao A, Vidriales B, Gonzalez M, et al. Diagnostic and prognostic importance of immunphenotyping in adults with acute myeloid leukemia. Recent Results Cancer Res 1993:369–379.

    Google Scholar 

  53. Smith FO, Lampkin BC, Versteeg C, et al. Expression of lymphoidassociated cell surface antigens by childhood acute myeloid leukemia cells lacks prognostic significance. Blood 1992;79:2415–2422.

    PubMed  CAS  Google Scholar 

  54. Kuerbitz SJ, Civin CI, Krischer JP, et al. Expression of myeloidassociated and lymphoid-associated cell-surface antigens in acute myeloid leukemia: a Pediatric Oncology Group study. J Clin Oncol 1992;10:1419–1429

    PubMed  CAS  Google Scholar 

  55. Selleri C, Notaro R, Catalando L, et al. Prognostic irrelevance of CD34 in acute myeloid leukemia. Br J Haematol 1992;82:479–482.

    Article  PubMed  CAS  Google Scholar 

  56. Lee EJ, Yang J, Leavitt RD, et al. The significance of CD34 and TdT determination in patients with untreated de novo acute myeloid leukemia. Leukemia 1992;6:1203–1209.

    PubMed  CAS  Google Scholar 

  57. Myint H, Lucie NP. The prognostic significance of the CD34 antigen in acute myeloid leukemia. Leuk Lymphoma 1992;7:425–429.

    Article  PubMed  CAS  Google Scholar 

  58. Solary E, Casanovas R-O, Campos L, et al. Surface markers in adult acute myeloblastic leukemia: correlation of CD 19+, CD34+ and CD 14+/DR- phenotypes with shorter survival. Leukemia 1992;6:393–399.

    PubMed  CAS  Google Scholar 

  59. Geller RB, Zahurak M, Hurwitz CA, et al. Prognostic importance of immunophenotyping in adults with acute myelocytic leukaemia: the significance of the stem-cell glycoprotein CD34 (My 10). Br J Haematol 1990;76:340–347.

    Article  PubMed  CAS  Google Scholar 

  60. Kuerbitz SJ, Civin CI, Krischer JP, et al. Expression of myeloidassociated and lymphoid-associated cell-surface antigens in acute myeloid leukemia of childhood: a Pediatric Oncology Group Study. J Clin Oncol 1992;9:1419–1429.

    Google Scholar 

  61. Ben-Bassat I, Gale RP, Hybrid acute leukemia. Leuk Res 1986;8:929–936.

    Article  Google Scholar 

  62. Das Gupta A, Advani SH, Nair CN, et al. Acute leukemia and coexpression of lymphoid and myeloid phenotypes. Hematol Oncol 1987;5:189–196.

    Article  PubMed  Google Scholar 

  63. Mirro J, Zipf TF, Pui C-H, et al. Acute mixed lineage leukemia: clinicopathologic correlations and prognostic significance. Blood 1985;66:1115–1123.

    PubMed  CAS  Google Scholar 

  64. Drexler HG, Theil E, Ludwig W-D. Review of the incidence and clinical relevance of myeloid antigen-positive acute lymphoblastic leukemia. Leukemia 1991;5:637–645.

    PubMed  CAS  Google Scholar 

  65. Drexler HG, Theil E, Ludwig W-D. Acute myeloid leukemia expressing lymphoid-associated antigens: diagnostic incidence and prognostic significance. Leukemia 1993;7:489–498.

    PubMed  CAS  Google Scholar 

  66. Borowitz MJ, Shuster JJ, Land VJ, et al. Myeloid antigen expression in childhood acute lymphoblastic leukemia. N Engl J Med 1991;325:1379–1380.

    Google Scholar 

  67. Ludwig W-D, Harbott J, Bartram CD, et al. Incidence and prognostic significance of immunophenotypic subgroups in childhood acute lymphoblastic leukemia: experience of BFM Study 86. In: Recent Advances in Cell Biology of Acute Leukemia. Ludwig W-D, Thiel E, eds. New York: Springer-Verlag, 1993. pp. 269–282.

    Chapter  Google Scholar 

  68. Pui C-H, Behm FG, Singh B, et al. Myeloid-associated antigen expression lacks prognostic value in childhood acute lymphoblastic leukemia treated with intensive multiagent chemotherapy. Blood 1990;75:198–202.

    PubMed  CAS  Google Scholar 

  69. Pui C-H, Raimondi SC, Head DR, et al. Characterization of childhood acute leukemia with multiple myeloid and lymphoid markers at diagnosis and at relapse. Blood 1991;78:1327–1337.

    PubMed  CAS  Google Scholar 

  70. Pui C-H, Schell MJ, Raimondi SC, et al. Myeloid-antigen expression in childhood acute lymphoblastic leukemia. N Engl J Med 1991;325:1378–1379.

    Article  Google Scholar 

  71. Uckun FM, Sather HN, Gaynon PS, et al. Clinical features and treatment outcomes of children with myeloid antigen positive acute lymphoblastic leukemia: a report from the Children’s Cancer Group. Blood 1997;90:28–35.

    PubMed  CAS  Google Scholar 

  72. Behm FG, Raimondi SC, Frestedt JL, et al. Rearrangement of the MLL gene confers a poor prognosis in childhood acute lymphoblastic leukemia, regardless of presenting age. Blood 1996;84: 2870–2877.

    Google Scholar 

  73. Raynaud S, Mauvieux L, Cayuela JM, et al. TEL/AML1 fusion gene is a rare event in adult acute lymphoblastic leukemia. Leukemia 1996;10:1529–1530.

    PubMed  CAS  Google Scholar 

  74. Aguiar RC, Sohal J, van Rhee F, et al. TEL-AML1 fusion in acute lymphoblastic leukemia of adults. Br J Haematol 1996;95: 673–677.

    Article  PubMed  CAS  Google Scholar 

  75. Sobol RE, Mick R, Royson I, et al. Clinical importance of myeloid antigen expression in adult lymphoblastic leukemia. N Engl J Med 1987;316:1111–1117

    Article  PubMed  CAS  Google Scholar 

  76. Boldt DH, Kopecky KJ, Head D, et al. Expression of myeloid antigens by blast cells in acute lymphoblastic leukemia of adults. The Southwest Oncology Group experience. Leukemia 1994; 8:2118–2126.

    PubMed  CAS  Google Scholar 

  77. Lauria F, Raspadori D, Martinelli G, et al. Increased expression of myeloid antigen markers in adult acute lymphoblastic leukaemia patients: diagnostic and prognostic implications. Br J Haematol 1994;87:286–292.

    Article  PubMed  CAS  Google Scholar 

  78. Larson RA, Dodge RK, Burns CP, et al. A five-drug remission induction regimen with intensive consolidation for adults with acute lymphoblastic leukemia: Cancer and Leukemia Group B study 8811. Blood 1995;85:2025–2037.

    PubMed  CAS  Google Scholar 

  79. Creutzig U, Harbott J, Sperling C et al. Clinical significance of surface antigen expression in children with acute myeloid leukemia: results of study AML-BFM-87. Blood 1995;86:3097–3108

    PubMed  CAS  Google Scholar 

  80. Saxena A, Sherdan DP, Card RT, et al. Biologic and clinical significance of CD7 expression in acute myeloid leukemia. Am J Hematol 1998;58:278–284.

    Article  PubMed  CAS  Google Scholar 

  81. Jensen AW, Hokland M, Jorgensen H, et al. Solitary expression of CD7 among T-cell antigens in acute myeloid leukemia: identification of a group of patients with similar T-cell receptor 3 and δ rearrangements and course of disease suggestive of poor prognosis. Blood 1991;78:1292–1300.

    PubMed  CAS  Google Scholar 

  82. Kita K, Miwa H, Nakase K, et al. Clinical importance of CD7 expression in acute myelocytic leukemia. The Japan Cooperative Group of Leukemia/Lymphoma. Blood 1993;81:2399–2405.

    PubMed  CAS  Google Scholar 

  83. Kita K, Nakase K, Miwa H, et al. Phenotypical characteristics of acute myelocytic leukemia associated with the t(8;21)(q22;q22) chromosomal abnormality: frequent expression of immature B-cell antigen CD19 together with stem cell antigen CD34. Blood 1992;80:470–477.

    PubMed  CAS  Google Scholar 

  84. Tsuchiya H, ElSonbaty SS, Nagano K, et al. Acute myeloblastic leukemia (ANLL-M2) with t(8;21)(p22;p22) variant expressing lymphoid but not myeloid surface antigens with a high number of G-CSF receptors. Leuk Res 1993;17:375–377.

    Article  PubMed  CAS  Google Scholar 

  85. Khalil SH, Jackson JM, Quri MH, Pyle H. Acute myeloblastic leukemia (AML M2) expressing CD19 B-cell lymphoid antigen without myeloid surface antigens. Leuk Res 1994;18:145.

    Article  PubMed  CAS  Google Scholar 

  86. Hurwitz CA, Raimondi SC, Head D, et al. Distinctive immunophenotypic features of t(8;21)(q22;q22) acute myeloblastic leukemia in children. Blood 1992;80:3182–3188.

    PubMed  CAS  Google Scholar 

  87. Seymour SA, Pierce HM, Kantarijian MJ, Keating MJ, Estey EH. Investigation of karyotypic, morphologic and clinical features in patients with acute myeloid leukemia blast cells expressing neural cell adhesion molecule (CD56). Leukemia 1994;8:623–626.

    Google Scholar 

  88. Adriaansen HJ, te Boekhorst PAW, Hagemeijer AM, et al. Acute myeloid leukemia M4 with bone marow eosinophilia (M4Eo) and inv(16)(p 13q22) exhibits a specific immunophenotype with CD2 expression. Blood 1993;81:3043–3051.

    PubMed  CAS  Google Scholar 

  89. Paietta E, Wiernik PH, Andersen J, Bennett J, Yunis J. Acute myeloid leukemia M4 with inv(16)(p13q22) exhibits a specific immunophenotype with CD2 expression. Blood 1993;82:2595.

    Google Scholar 

  90. Béné MC, Castoldi G, Knapp W, et al. Proposals for the immunological classification of acute leukemias. Leukemia 1995;9: 1783–1785.

    PubMed  Google Scholar 

  91. Raynaud S, Mauvieux L, Cayuela JM, et al. TEL/AML1 fusion gene is a rare event in adult acute lymphoblastic leukemia. Leukemia 1996;10:1529–1530.

    PubMed  CAS  Google Scholar 

  92. Aguiar RC, Dodge RK, Mrozek K, et al. Prospective karyotype analysis in adult acute lymphoblastic leukemia. The Cancer and Leukemia Group B experience. Blood 1999;93:3983–3993.

    Google Scholar 

  93. Secker-Walker LM, Craig JM, Hawkins JM, Hoffbrand AV. Philadelphia positive acute lymphoblastic leukemia in adults: age distribution, BCR breakpoint and prognostic significance. Leukemia 1991;5:196–199.

    PubMed  CAS  Google Scholar 

  94. Westbrook CA, Hooberman AL, Spino C, et al. Clinical significance of the BCR-ABL fusion gene in adult acute lymphoblastic leukemia: a Cancer and Leukemia Group B study (8762). Blood 1992;80:2983–2990.

    PubMed  CAS  Google Scholar 

  95. Reiter A, Schrappe M, Ludwig WD, et al. Chemotherpay in 998 unselected childhood acute lymphoblastic leukemia patients. Results and conclusions of the multicenter trial ALL-BFM 86. Blood 1994;84:3122–3133.

    PubMed  CAS  Google Scholar 

  96. Bloomfield CD, Shuma C, Regal L, et al. Long-term survival of patients with acute myeloid leukemia: a third follow-up of the Fourth International Workshop on Chromosomes in Leukemia. Cancer 1997;80:2191–2198.

    Article  PubMed  CAS  Google Scholar 

  97. Grimwald D, Walker H, Oliver F, et al. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children’s Leukaemia Working Parties. Blood 1998; 92:2322–2333.

    Google Scholar 

  98. Wheatley K, Burnett AK, Goldstone AH, et al. A simple, robust, validated and highly predictive index for the determination of riskdirected therapy in acute myeloid leukaemia derived from the MRC AML 10 trial. United Kingdom Medical Research Council Adult and Children’s Leukaemia Working Parties. Br J Haematol 1999;107:69–79.

    Article  PubMed  CAS  Google Scholar 

  99. Leith CP, Kopecky KJ, Godwin J, et al. Acute myeloid leukemia in the elderly: assessment of multi-drug resistance (MDD1) and cytogenetics distinguish biologic subgroups with remarkably distinct responses to standard chemotherapy. A Southwest Oncology Group Study. Blood 1997;89:3323–3329.

    PubMed  CAS  Google Scholar 

  100. Grimwald D, Walker H, Harrison G, et al. The predictive value of hierachial cytogenetic classification in older adults with acute myeloid leukemia (AML): analysis of 1065 patients entered into the United Kingdom Medical Research Council AML 11 trial. Blood 2001:98:1312–1320.

    Article  Google Scholar 

  101. Büchner T, Hiddemann W, Wörmann B, et al. Double induction strategy for acute myeloid leukemia: the effect of high-dose cytarabine with mitoxantrone instead of standard-dose cytarabine with daunorubicin and 6-thioguanine: a random trial by the German AML Cooperative Group. Blood 1999;93:4116–4124.

    PubMed  Google Scholar 

  102. Iwai T, Yokota S, Nakao M, et al. Internal tandem duplication of the FLT3 gene and clinical evaluation in childhood acute myeloid leukemia. The Children’s Cancer and Leukemia Study Group. Japan. Leukemia 1999;13:38–43.

    Article  CAS  Google Scholar 

  103. Kondo M, Horibe K, Takahashi Y, et al. Prognostic value of internal tandem duplication of the FLT3 gene in childhood acute myelogenous leukemia. Med Pediatr Oncol 1999;33:525–529.

    Article  PubMed  CAS  Google Scholar 

  104. Meshinchi S, Woods WG, Stirewalt DL, et al. Prevalence and prognostic significance of FLT3 internal tandem duplication in pediatric acute myeloid leukemia. Blood 2001;97:89–94

    Article  PubMed  CAS  Google Scholar 

  105. Rombouts WJ, Blokland I, Lowenberg B, Ploemacher RE. Biological characteristics and prognosis of adult acute myeloid leukemia with internal tanden duplications in the FLT3 gene. Leukemia 2000;14:675–683.

    Article  PubMed  CAS  Google Scholar 

  106. Kiyoi H, Naoe T, Nakano Y, et al. Prognostic implication of FLT3 and N-RAS gene mutations in acute myeloid leukemia. Blood 1999; 93:3074–3080.

    PubMed  CAS  Google Scholar 

  107. Kottaridis PD, Gale RE, Frew ME, et al. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy. Analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood 2001;98:1752–1759.

    Article  PubMed  CAS  Google Scholar 

  108. Stirewalt DL, Kopecky KJ, Meshinchi S, et al. FLT3, RAS, and TP53 mutations in elderly patients with acute myeloid leukemia. Blood 2001;97:3589–3595.

    Article  PubMed  CAS  Google Scholar 

  109. Khan J, Wei JS, Saal LH, et al. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat Med 2001;7:673–679.

    Article  PubMed  CAS  Google Scholar 

  110. Golub TR, Slonim DK, Tamayo P, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999;286:531–537.

    Article  PubMed  CAS  Google Scholar 

  111. Dhanasekaran SM, Barrette T, Ghosh D, et al. Delineation of prognostic biomarkers in prostate cancer. Nature 2000;412:822–826.

    Article  Google Scholar 

  112. Ramaswamy S, Tamayo P, Rifkin R, et al. Multiclass cancer diagnosis using tumor gene expression signatures. Proc Natl Acad Sci USA 2001;98:15,149–15,154.

    Article  CAS  Google Scholar 

  113. Shipp MA, Ross KN, Tamayo P, et al. Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat Med 2002:8;68–74.

    Article  PubMed  CAS  Google Scholar 

  114. Alizadeh AA, Elsen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000;403:503–511.

    Article  PubMed  CAS  Google Scholar 

  115. Khan J, Wei JS, Ringnér M, et al. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat Med 2001;7:673–679.

    Article  PubMed  CAS  Google Scholar 

  116. Yeoh E-J, Williams K, Patel D, et al. Expression profiling of pediatric acute lymphoblastic leukemia (ALL) blasts at diagnosis accurately predicts both risk of relapse and of developing therapyinduced acute myeloid leuekmia (AML). Blood Suppl. 1 2001.

    Google Scholar 

  117. Hofmann W-K, de Vos S, Elashoff D, et al. Resistance of Ph+ acute lymphoblastic leukemia to the tyrosine kinase inhibitor ST 1571 (Glivee) is associated with distinct gene expression profiles. Blood (suppl 1) 2001.

    Google Scholar 

  118. Ferrando AA, Neuberg DS, Stuanton J, et al. Gene expression signatures define novel oncogenic pathways in T-cell acute lymphoblastic leukemia. Cancer Cell 2002;1:75–87.

    Article  PubMed  CAS  Google Scholar 

  119. Armstrong SA, Staunton JE, Silverman LB, et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet 2002;30:41–47

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Behm, F.G. (2003). Classification of Acute Leukemias. In: Pui, CH. (eds) Treatment of Acute Leukemias. Current Clinical Oncology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-307-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-307-1_2

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-212-4

  • Online ISBN: 978-1-59259-307-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics