Skip to main content

Global Gene and Cell Replacement Strategies Via Stem Cells

  • Chapter
Neural Stem Cells for Brain and Spinal Cord Repair

Abstract

Cell-based therapies such as neural transplantation have, until recently, been reserved for focal or regionally restricted neurologic diseases. These are best exemplified by Parkinson’s disease, in which encouraging progress in the use of neural transplantation, especially the grafting of fetal tissue, has been made experimentally (1,2) and clinically (3). [Even recent clinical studies that seemed to call into question such efficacy indicated that implanted fetal cells do exert a local impact albeit one that seemed to provoke an “overdose” effect (4)]. Donor tissue replaces dopamine via the engraftment and enhanced survival of neurotransmitter-secreting cells within the striatum or by forestalling degeneration of dopaminergic cells within the substantia nigra. However, the pathologic lesions of most neurogenetic diseases—indeed, most neurologic disorders—are usually widely disseminated in the brain and spinal cord and have not typically been regarded as within the purview of neural transplantation. Such diseases include not only the inherited neurodegenerative diseases of the pediatric age group (e.g., the lysosomal storage diseases, the leukodystrophies, inborn errors of metabolism, hypoxic—ischemic encephalopathy) but also such adult maladies as Alzheimer’s disease (AD), Huntington’s disease (HD), multi-infarct dementia, multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), and brain tumors (especially glioblastomas). Therapeutic approaches for such “global” problems have typically depended on pharmacologic or genetic interventions; they have been regarded as beyond the purview of cellular-mediated approaches. Cell replacement therapies have largely been limited to transplantation of somatic cells derived from the hematopoietic system administered via bone marrow transplantation (BMT). In the majority of these disorders, such strategies have been unsatisfactory for treating the central nervous system (CNS) component of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nikkah, G., Cunningham, M. G., Cenci, M. A., McKay, R. D., and Bjorklund, A. (1995) Dopaminergic microtransplants into the substantia nigra of neonatal rats with bilateral 6-OHDA lesion. I. Evidence for anatomical reconstruction of the nigrostriatal pathway. J. Neurosci. 15 (5), 3548–3561.

    Google Scholar 

  2. Nikkah, G., Cunningham, M. G., McKay, R., and Bjorklund, A. (1995) Dopaminergic microtransplants into the substantia nigra of neonatal rats with bilateral 6-OHDA lesions. II. Transplant-induced behavioral recovery. J. Neurosci. 15 (5), 3562–3570.

    Google Scholar 

  3. Kordower, J. H., Freeman, T. B., Snow, B. J., Vingerhoets, F. J., Mufson, E. J., Sanberg, P. R., et al. (1995) Neuropathological evidence of graft survival and striatal reinervation after the transplantation of fetal mesencephalic tisssue in a patient with Parkinson’s disease. N. Engl. J. Med. 332 (17), 1118–1124.

    Article  PubMed  CAS  Google Scholar 

  4. Freed, C. R., Greene, P. E., Breeze, R. E., Tasai, W. Y., DuMoucehl, W., Kao, R., et al. (2001) Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N. Engl. J. Med. 344, 763–765.

    Article  Google Scholar 

  5. Snyder, E. Y., Taylor, R. M., and Wolfe, J. H. (1995) Neural progenitor cell engraftment corrects lysosomal storage throughout the MPS VII mouse brain. Nature 374, 367–370.

    Article  PubMed  CAS  Google Scholar 

  6. Flax, J. D., Aurora, S., Yang, C., Simonin, C., Wills, A. M., Billinghurst. L., et al. (1998) Engraftable human neural stem cells respond to developmental cues, replace neurons, and express foreign genes. Nat. Biotechnol. 16, 1033–1039.

    Article  PubMed  CAS  Google Scholar 

  7. Brüstle, O., et al. (1998) Chimeric brains generated by intraventricular transplantation of fetal human brain cells into embryonic rats. Nat. Biotechnol. 11, 1040–1049.

    Article  Google Scholar 

  8. Yandava, B., Billinghurst, L., and Snyder, E. (1999) “Global” cell replacement is feasible via neural stem cell transplantation: evidence from the dysmyelinated shiverer mouse brain. Proc. Natl. Acad. Sci. USA 96, 7029–7034.

    Google Scholar 

  9. Ourednik, V., Ourednik, J., Flax, J. D., Zawada, M., Hutt, C., Yang, C. L., et al. (2001) Segregation of human neural stem cells in the developing primate forebrain. Science 293, 1820–1829.

    Article  PubMed  CAS  Google Scholar 

  10. McKay, R. (1997) Stem cells in the central nervous system. Science 276, 66–71.

    Article  PubMed  CAS  Google Scholar 

  11. Fisher, L. J. (1997) Neural precursor cells: applications for the study and repair of the central nervous system. Neurobiol. Dis. 4, 1–22.

    Article  PubMed  CAS  Google Scholar 

  12. Gage, F. H. (2000) Mammalian neural stem cells. Science 287, 1433–1438.

    Article  PubMed  CAS  Google Scholar 

  13. Alvarez-Buylla, A. and Temple, S. (1998) Neural stem cells. J. Neurobiol. 36, 105–314.

    Article  PubMed  CAS  Google Scholar 

  14. Vescovi, A. L. and Snyder, E. Y. (1999) Establishment and properties of neural stem cell clones: plasticity in vitro and in vivo. Brain Pathol. 9, 569–598.

    Article  PubMed  CAS  Google Scholar 

  15. Chen, K. S. and Gage, F. H. (1995) Somatic gene transfer of NGF to the aged brain: behavioral and morphologic amelioration. J. Neurosci. 15 (4), 2819–2825.

    PubMed  CAS  Google Scholar 

  16. Tuzynski, M. H. and Gage, F. H. (1995) Bridging grafts and transient nerve growth factor infusions promote long-term central nervous system neuronal rescue and partial functional recovery. PNAS 92, 4621–4625.

    Article  Google Scholar 

  17. Grill, R., Murai, K., Blesch, A., Gage, F. H., and Tuszynski, M. H. (1997) Cellular delivery of neurotrophin-3 promotes corticospinal axonal growth and partial functional recovery after spinal cord injury. J. Neurosci. 17, 5560–5572.

    PubMed  CAS  Google Scholar 

  18. Winkler, J., Suhr, S. T., Gage, F. H., Thal, L. J., and Fisher, L. J. (1995) Essential role of neocortical acetylcholine in spatial memory. Nature 375, 484–487.

    Article  PubMed  CAS  Google Scholar 

  19. Emerich, D. F., Winn, S. R., Harper, J., Hammang, J. P., Baetge, E. E., and Kordower, J. H. (1994) Implants of polymer-encapsulated human NGFsecreting cells in the nonhuman primate: rescue and sprouting of degenerating cholinergic basal forebrain neurons. J. Comp. Neurol. 349, 148–164.

    Article  PubMed  CAS  Google Scholar 

  20. Kordower, J. H., Winn, S. R., Liu, Y.-T., Mufson, E. J., Sladek, J. R., Hammang, J. P., et al. (1994) The aged basal forebrain: rescue and sprouting of axotomized basal forebrain neurons after grafts of encapsulated cells secreting human nerve growth factor. PNAS 91, 10, 898–10, 902.

    Google Scholar 

  21. Fisher, L. J., Jinnah, H. A., Kale, L. C., Higgins, G. A., and Gage, F. H. (1991) Survival and function of intrastriatally grafted primary fibroblasts genetically modified to produce L-dopa. Neuron 6, 371–380.

    Article  PubMed  CAS  Google Scholar 

  22. Dunnett, S. B. and Bjorklund, A. (2000) Functional Neural Transplantation Raven, New York.

    Google Scholar 

  23. Snyder, E. Y., Deitcher, D. L., Walsh, C., Arnold-Aldea, S., Hartwieg, E. A., and Cepko, C. L. (1992) Multipotent neural cell lines can engraft and participate in development of mouse cerebellum. Cell 68, 33–55.

    Article  PubMed  CAS  Google Scholar 

  24. Renfranz, P. J., Cunningham, M. G., and McKay, R. D. G. (1991) Region-specific differentiation of the hippocampal stem cell line HiBS upon implantation into the developing mammalian brain. Cell 66, 713–719.

    Article  PubMed  CAS  Google Scholar 

  25. Whittemore, S. R. and Snyder, E. Y. (1996) The biologic relevance and functional potential of central nervous system-derived cell lines. Mol. Neurobiol. 12, 13–38.

    Article  PubMed  CAS  Google Scholar 

  26. Suhonen, J. O., Peterson, D. A., Ray, J., and Gage, F. H. (1996) Differentiation of adult hippocampus-derived progenitors into olfactory neurons in vivo. Nature 383, 624–627.

    Article  PubMed  CAS  Google Scholar 

  27. Fricker, R. A., Carpenter, M. K., Winkler, C., Greco, C., Gates, M. A., and Bjorklund, A. (1999) Site-specific migration and neuronal differentiation of human neural progenitor cells after transplantation in the adult rat brain. J. Neurosci. 19 (14), 5990–6005.

    PubMed  CAS  Google Scholar 

  28. Park, K. I., Jensen, F. E., Stieg, P. E., and Snyder, E. Y. (1998) Hypoxicischemic (HI) injury may direct the proliferation, migation, and differentiation of endogenous neural progenitors. Soc. Neurosci. Abstr. 24, 1310.

    Google Scholar 

  29. Magavi, S. S., Leavitt, B. R., and Macklis, J. D. (2000) Induction of neurogenesis in the neocortex of adult mice. Nature 405, 951–955.

    Article  PubMed  CAS  Google Scholar 

  30. Gould, E., Reeves, A. J., Graziano, M. S., and Gross, C. G. (1999) Science 286, 548–552.

    Article  PubMed  CAS  Google Scholar 

  31. Weiss, S., Reynolds, B. A., Vescovi, A. L., Morshead, C., and Van der Kooy, D. (1996) Is there a neural stem cell in the mammalian forebrain? Trends Neurosci. 19, 387–393.

    Article  PubMed  CAS  Google Scholar 

  32. Snyder, E. Y., Yoon, C., Flax, J. D., and Macklis, J. D. (1997) Multipotent neural precursors can differentiate toward replacement of neurons undergoing targeted apoptotic degeneration in adult mouse neocortex. Proc. Natl. Acad. Sci. USA 94(21), 11,663–11, 668.

    Google Scholar 

  33. Doering, L. and Snyder, E. Y. (2000) Cholinergic expression by a neural stem cell line grafted to the adult medial septum/diagonal band complex. J. Neurosci. Res. 61, 597–604.

    Article  PubMed  CAS  Google Scholar 

  34. Park, K. I., Liu, S., Flax, J. D., Nissim, S., Stieg, P. E., and Snyder, E. Y. (1999) Transplantation of neural progenitor and stem-like cells: developmental insights may suggest new therapies for spinal cord and other CNS dysfunction. J. Neurotrauma 16 (8), 675–687.

    Article  PubMed  CAS  Google Scholar 

  35. Aboody, K. S., Brown, A., Rainov, N. G., Bower, K. A., Liu, S., Yang, W., et al. (2000) Neural stem cells display extensive tropism for pathology in the adult brain: evidence from intracranial gliomas. Proc. Natl. Acad. Sci. USA 97, 12,846–12, 851.

    Google Scholar 

  36. Lacorazza, H. D., Flax, J. D., Snyder, E. Y., and Jendoubi, M. (1996) Expression of human (3-hexosaminidase a-subunit gene (the gene defect of Tay—Sachs disease) in mouse brains upon engraftment of transduced progenitor cells. Nat. Med. 4, 424–429.

    Article  Google Scholar 

  37. Rosario, C. M., Yandava, B. D., Kosaras, B., Zurakowski, D., Sidman, R. L., and Snyder, E. Y. (1997) Differentiation of engrafted multipotent neural progenitors towards replacement of missing granule neurons in meander tail cerebellum may help determine the locus of mutant gene action. Development 124, 4213–4224.

    PubMed  CAS  Google Scholar 

  38. Gage, F. H., Coates, P. W., Palmer, T. D., Kuhn, H. G., Fisher, L. J., Suhonen, J. O., et al. (1996) Survival and differentiation of adult neuronal progenitor cells transplanted to the adult brain. PNAS,in press.

    Google Scholar 

  39. Anton, R., Kordower, J. H., Maidment, N. T., Manaster, J. S., Kane, D. J., Rabizadeh, S., et al. (1994) Neural-targeted gene therapy for rodent and primate hemiparkinsonism. Exp. Neurol. 127, 207–218.

    Article  PubMed  CAS  Google Scholar 

  40. Anton, R., Kordower, J. H., Kane, D. J., Markahma, C. H., and Bredesen, D. E. (1995) Neural transplantation of cells expressing the anti-apoptotic gene bc1–2. Cell Transplant. 4, 49–54.

    Article  PubMed  CAS  Google Scholar 

  41. Martinez-Serrano, A., Lundberg, C., Horellou, P., Fischer, W., Bentlage, C., Campbell, K., et al. (1995) CNS-derived neural progeniutor cells for gene transfer of nerve growth factor to the adult rat brain: complete rescue of axotomized cholinergic neurons after transplantation into the septum. J. Neurosci. 15, 5668–5680.

    PubMed  CAS  Google Scholar 

  42. Martinez-Serrano, A., Fischer, W., and Bjorklund, A. (1995) Reversal of age-dependent cognitive impairments and cholinergic neuron atrophy by NGF-secreting neural progenitors grafted to the basal forebrain. Neuron 15, 473–484.

    Article  PubMed  CAS  Google Scholar 

  43. Neufeld, E. F. and Fratantoni, J. C. (1970) Inborn errors of mucopolysaccharide metabolism. Science 169, 141–146.

    Article  PubMed  CAS  Google Scholar 

  44. Sands, M. S., Vogler, C., Kyle, J. W., Grubb, J. H., Levy, B., Galvin, N., et al. (1994) Enzyme replacement therapy for murine mucopolysaccharidosis Type VII. J. Clin. Invest. 93 (6), 2324–2331.

    Article  PubMed  CAS  Google Scholar 

  45. Snyder, E. Y. (1998) Neural stem-like cells: developmental lessons with therapeutic potential. The Neuroscientist 4 (6), 408–425.

    Article  Google Scholar 

  46. Lois, C. and Alvarez-Buylla, A. (1993) Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proc. Natl. Acad. Sci. USA 90, 2074–2077.

    Article  PubMed  CAS  Google Scholar 

  47. Lois, C. and Alvarez-Buylla, A. (1994) Long distance neuronal migration in the adult mammalian brain. Science 264, 1145–1148.

    Article  PubMed  CAS  Google Scholar 

  48. Yamanaka, S., Johnson, M. D., Grinberg, A., Westphal, H., Crawley, J. N., Taniike, M., et al. (1994) Targeted disruption of the HexA gene results in mice with biochemical and pathologic features of Tay-Sachs disease. Proc. Natl. Acad. Sci. USA 91, 9975–9979.

    Article  PubMed  CAS  Google Scholar 

  49. Himes, B. T., Liu, Y., Solowska, J. M., Snyder, E. Y., Fischer, I., and Tessler, A. (2001) Transplants of cells genetically modified to express neurotrophin-3 rescue axotomized Clarke’s nucleus neurons after spinal cord hemisection in adult rats. J. Neurosci. Res. 65, 549–564.

    Article  PubMed  CAS  Google Scholar 

  50. Sabaate, O., Horellou, R, Vigne, E., Colin, R, Perricaudaet, M., Buc-Caron, M.-H., et al. (1995) Transplantation to the rat brain of human neural progenitors that were genetically modified using adenoviruses. Nat. Genet. 9, 256–260.

    Article  Google Scholar 

  51. Auguste et al. (1997).

    Google Scholar 

  52. Tate, B. A., Werzanski, D., Marciniack, A., and Snyder, E. Y. (2000) Migration of neural stem cells to Alzheimer-like lesions in an animal model of AD. Soc. Neurosci. Abstr. 26, 496.

    Google Scholar 

  53. Ourednik, J., Ourednik, V., Lynch, W. R, Snyder, E. Y., and Schachner, M. (1999) Massive regeneration of substantia nigra neurons in aged parkinsonian mice after transplantation of neural stem cells overexpressing L1. Soc. Neurosci. Abstr. 25, 1310.

    Google Scholar 

  54. Ourednik, V., Ourednik, J., Park, K. I., and Snyder, E. Y. (1999) Neural stem cells: a versatile tool for cell replacement and gene therapy in the CNS. Clin. Genet. 46, 267–278.

    Article  Google Scholar 

  55. Lynch, W. P., Snyder, E. Y., Qualtierre, L., Portis, J. L., and Sharpe, A. H. (1996) Neither neurovirulent retroviral envelope protein nor viral particles are sufficient for the induction of acute spongiform neurodegeneration: evidence from engineered neural progenitor-derived chimeric mouse brains. J. Virol. 70, 8896–8907.

    PubMed  CAS  Google Scholar 

  56. Poulsen, D. J., Favara, C., Snyder, E. Y., Portis J, and Chesebro, B. (1999) Increased neurovirulence of polytropic mouse retroviruses delivered by inoculation of brain with infected neural progenitor cells. Virology 263, 23–29.

    Article  PubMed  CAS  Google Scholar 

  57. Lynch, W. R, Sharpe, A. H., and Snyder, E. Y. (1999) Neural stem cells as engraftable packaging lines optimize viral vector-mediated gene delivery to the CNS: evidence from studying retroviral env-related neurodegeneration. J. Virol. 73, 6841–6851.

    PubMed  CAS  Google Scholar 

  58. Herrlinger, U., Woiciechowski, C., Aboody, K. S., Jacobs, A. H., Rainov, N. G., Snyder, E. Y., et al. (2000) Neural stem cells for delivery of replication—conditional HSV-1 vectors to intracerebral gliomas. Mol. Ther. 1, 347–357.

    Article  PubMed  CAS  Google Scholar 

  59. Villa, A., Snyder, E. Y., Vescovi, A., and Martinez-Serrano, A. (2000) Establishment and properties of a growth factor-dependent, perpetual neural stem cell line from the human CNS. Exp. Neurol. 161, 67–84.

    Article  PubMed  CAS  Google Scholar 

  60. Vescovi, A. L., et. al. (1999) Isolation and cloning of multipotential stem cells from the embryonic human CNS and establishment of transplantable human neural stem cell lines by epigenetic stimulation. Exp. Neurol. 156, 71–83.

    Article  PubMed  CAS  Google Scholar 

  61. Uchida, N., et al. (2000) Proc. Natl. Acad. Sci. USA 97, 14,720–14,725.

    Google Scholar 

  62. Roy, N. S., et al. (2000) Nat. Med. 6, 271–277.

    Article  PubMed  CAS  Google Scholar 

  63. Pincus, D. W., Keyoung, H. M., Harrison-Restelli, C., et al. (1998). FGF2/ BDNF-associated maturation of new neurons generated from adult human subependymal cells. Ann. Neurol. 43, 576–585.

    Article  PubMed  CAS  Google Scholar 

  64. Erickson et al. (1998).

    Google Scholar 

  65. Rubio, E. J„ Bueno, C., Villa, A., Navarro, B., and Martinez-Serrano, A. (2000) Genetically perpetuated human neural stem cells engraft and differentiate into the adult mammalian brain. Mol. Cell. Neurosci. 16, 1–13.

    CAS  Google Scholar 

Suggested Readings

  • Akerud, R, Canals, J. M., Snyder, E. Y., and Arenas, E. (2001) Neuroprotection through delivery of GDNF by neural stem cells in a mouse model of Parkinson’s Disease. J. Neurosci.,in press.

    Google Scholar 

  • Billinghurst, L. L., Taylor, R. M., and Snyder, E. Y. (1998) Remyelination: cellular and gene therapy, Semin. Pediatr. Neurol. 5, 211–228.

    Article  PubMed  CAS  Google Scholar 

  • Brustle, O., Maskos, U., and McKay, R. D. G. (1995) Host-guided migration allows targeted introduction of neurons into the embryonic brain. Neuron 15, 1275–1285.

    Article  PubMed  CAS  Google Scholar 

  • Campell, K., Olsson, M., and Bjorklund, A. (1995) Regional incorporation and site-specific differentiation of strial precursors transplanted to the embryonic forebrain ventricle. Neuron 15, 1259–1273.

    Article  Google Scholar 

  • Davis, A. A. and Temple, S. (1994) A self-renewing multipotential stem cell in embryonic rat cerebral cortex. Nature 372, 263–266.

    Article  PubMed  CAS  Google Scholar 

  • Dunnett, S. B. (1995) Functional repair of striatal systems by neural transplants: evidence for circuit reconstruction. Behay. Brain Res. 66, 133–142.

    Article  CAS  Google Scholar 

  • Fishell, G., Mason, C. A., and Hatten, M. E. (1993) Dispersion of neural progenitors within the germinal zones of the forebrain. Nature 362, 636–638.

    Article  PubMed  CAS  Google Scholar 

  • Gritti, A., Parati, E. A., Cova, L., Frolichsthal, R, Galli, R., Wanke, E., et al. (1996) Multipotential stem cells from the adult mouse brain proliferate and self-renew in response to basic fibroblast growth factor. J. Neurosci. 16 (3), 1091–1100.

    PubMed  CAS  Google Scholar 

  • Johnson, E. M. (1995) Possible role of neuronal apoptosis in Alzheimer’s disease. Neurobiol. Aging S188 - S189.

    Google Scholar 

  • Kilpatrick, T., Richards, L. J., and Bartlett, P. F. (1995) The regulation of neural precursor cells within the mammalian brain. Mol. Cell. Neurosci. 6, 2–15.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Y., Himes, B. T., Solowska, J., Moul, J., Chow, S. Y., Park, K. I., et al. (1999) Intraspinal delivery of neurotrophin-3 using neural stem cells genetically modified by recombinant retrovirus. Exp. Neurol. 158, 9–26.

    Article  PubMed  CAS  Google Scholar 

  • Loo, D. T., Copani, A., Pike, C. J., Whittemore, E. R., Walencewicz, A. J., and Cotman, C. W. (1993) Apoptosis is induced by (3-amyloid in cultured central nervous system neurons. PNAS 90, 7951–7955.

    Article  PubMed  CAS  Google Scholar 

  • Lu, P., Jones, L., Park, K. I., Snyder E. Y., and Tuszynski, M. (2000) Neural stem cells secrete BDNF and GDNF, and promote axonal growth after spinal cord injury. Soc. Neurosci. Abstr. 26, 332.

    Google Scholar 

  • Luskin, M. B. (1993) Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11, 173–189.

    Article  PubMed  CAS  Google Scholar 

  • Morshead, C. M., Reynolds, B. A., Craig, C. G., McBurney, M. W., Staines, W. A., Morassutti, D., et al. (1994) Neural stem cell in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron 13, 1071–1082.

    Article  PubMed  CAS  Google Scholar 

  • Onnifer, S. M., Whittemore, S. R., and Holets, V. R. (1993) Variable morphological differentiation of a raphe-derived neuronal cell line following transplantation into the adult rat CNS. Exp. Neurol. 122, 130–142.

    Article  Google Scholar 

  • Ray, J. and Gage, F. H. (1994) Spinal cord neuroblasts proliferate in response to basic fibroblast growth factor. J. Neurosci. 14 (6), 3548–3564.

    PubMed  CAS  Google Scholar 

  • Reynolds, B. A. and Weiss, S. (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 27, 1707–1710.

    Article  Google Scholar 

  • Rubio, F. J., Kokai, Z., del Arco, A., Garcia-Simon, M. I., Snyder, E. Y., Lindvall, O., et al. (1999) BDNF gene transfer to the mammalian brain using CNS-derived neural precursors. Gene Ther. 6, 1851–1866.

    Article  PubMed  CAS  Google Scholar 

  • Sango, K., Yamanaka, S., Hoffmann, A., Okuda, Y., Grinberg, A., Westphal, H., et al. (1995) Mouse models of Tay—Sachs and Sandhoff diseases differ in nuerologic phenotype and ganglioside metabolism. Nat. Genet. 11, 170–176.

    Article  PubMed  CAS  Google Scholar 

  • Shihabuddin, L., Horner, P., Ray, J., and Gage, F. (2000) Adult spinal cord stem cells generate neurons after transplantation in the adult dentate gyrus. J. Neurosci. 20 (23), 8727–8735.

    PubMed  CAS  Google Scholar 

  • Shihabuddin, L. S., Hetz, J. A., Holets, V. R., and Whittemore, S. R. (1995) The adult CNS retains the potential to direct region-specific differentiation of a transplanted neuronal precursor cell line. J. Neurosci. 10, 6666–6678.

    Google Scholar 

  • Shihabuddin, L. S., Ray, J., and Gage, F. H. (1997) FGF-2 is sufficient to isolate progenitors found in the adult mammalian spinal cord. Exp. Neurol. 148 (2), 577–586.

    Article  PubMed  CAS  Google Scholar 

  • Svendsen, C. N., Caldwell, M. A., Shen, J., ter Borg, M. G., Rosser, A. E., and Tyers, P. (1997) Long-term survival of human central nervous system progenitor cells transplanted into a rat model of Parkinson’s disease. Exp. Neurol. 148, 135–146.

    Article  PubMed  CAS  Google Scholar 

  • Walsh, C. and Cepko, C. L. (1993) Dispersion of neural progenitors within the germinal zones of the forebrain. Nature 362, 632–635.

    Article  PubMed  CAS  Google Scholar 

  • Williams, B. P. and Price, J. (1995) Evidence for multiple precursor cell types in the embryonic rat cerebral cortex. Neuron 14, 1181–1188.

    Article  PubMed  CAS  Google Scholar 

  • Winn, S. R., Tresco, P. A., Zielinski, B., Greene, L. A., Jaeger, C. B., and Aebischer, P. (1991) Behavioral recovery following intrastriatal implantation of microencapsulated PC 12 cells. Exp. Neurol. 113, 322–329.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Park, K.I. et al. (2003). Global Gene and Cell Replacement Strategies Via Stem Cells. In: Zigova, T., Snyder, E.Y., Sanberg, P.R. (eds) Neural Stem Cells for Brain and Spinal Cord Repair. Contemporary Neuroscience. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-298-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-298-2_11

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-298-8

  • Online ISBN: 978-1-59259-298-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics