Skip to main content

Clinical Aspects of Skeletal Assessment with Ultrasound

  • Chapter
Osteoporosis

Part of the book series: Contemporary Endocrinology ((COE))

  • 345 Accesses

Abstract

Osteoporosis is common affecting nearly 28 million women and men in the United States. This is a major problem since the clinical consequence of osteoporosis, fracture, results in morbidity and mortality, and contributes to health care costs (1). The challenge for health care providers is to identify those individuals at risk prior to fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ray NF, Chan JK, Thaemer M, Melton LJ III. Medical expenditure for the treatment of osteoporotic fractures in the United States in 1994. J Bone Miner Res 1997; 12: 24–35.

    Article  PubMed  CAS  Google Scholar 

  2. Baran DT, Faulkner KG, Genant HK, Miller PD, Pacifici R. Diagnosis and management of osteoporosis: guidelines for the utilization of bone densitometry. Calcif Tissue Int 1997; 61: 433–440.

    Article  PubMed  CAS  Google Scholar 

  3. Gluer C-C, for the International Quantitative Ultrasound Consensus Group. Quantitative ultrasound techniques for the assessment of osteoporosis: expert agreement on current status. J Bone Miner Res 1997; 12: 1280–1288.

    Article  Google Scholar 

  4. Njeh CF, Boivin CM, Langton CM. The role of ultrasound in the assessment of osteoporosis: a review. Osteoporos Int 1997; 7: 7–22.

    Article  PubMed  CAS  Google Scholar 

  5. Wuster C, Heilmann P, Pereira-Lima J, Schlegel J, Anstatt K, Soballa T. Quantitative ultrasonometry (QUS) for the evaluation of osteoporosis risk: reference data for various measurement sites, limitations and application possibilities. Exp Clin Endocrinol Diabetes 1998; 106: 277–288.

    Article  PubMed  CAS  Google Scholar 

  6. Palacios S, Menendez C, Calderon J, Rubin S. Spine and femur density and broadband ultrasound attenuation of the calcaneus in normal Spanish women. Calcif Tissue Int 1993; 52: 99–102.

    Article  PubMed  CAS  Google Scholar 

  7. Schott AM, Hans D, Sornay-Rendu E, Delmas PD, Meunier PJ. Ultrasound measurements on os calcis: precision and age-related changes in a normal female population. Osteoporosis Int 1993; 3: 249–254.

    Article  CAS  Google Scholar 

  8. Roux C, Lemonnier E, Kolta S, Charpentier E, Dougados M, Amor B, Viens-Bitker C. Broadband ultrasound attenuation of the calcaneus and bone density measurements. Rev Rheum 1993; 60: 771–780.

    Google Scholar 

  9. Herd RJM, Blake GM, Ramalingam T, Miller CG, Ryan PJ, Fogelman I. Measurements of postmenopausal bone loss with a new contact ultrasound system. Calcif Tissue Int 1993; 53: 153–157.

    Article  PubMed  CAS  Google Scholar 

  10. Van Daele PLA, Burger H, Algra D, Groggee DE, Hofman A, Birkenhager JC, Pols HAP. Age-associated changes in ultrasound measurements of the calcaneus in men and women: the Rotterdam study. J Bone Miner Res 1994; 9: 1751–1757.

    Article  PubMed  Google Scholar 

  11. Orgee JM, Foster H, McCloskey EV, Khan S, Coombes G, Kanis JA. A precise method for the assessment of tibial ultrasound velocity. Osteoporos Int 1996; 6: 1–7.

    Article  PubMed  CAS  Google Scholar 

  12. Takeda N, Miyake M, Kita S, Tomomitsu T, Fukunaga. Sex and age patterns of quantitative ultrasound densitometry of the calcaneus in normal Japanese subjects. Calcif Tissue Int 1996; 59: 84–88.

    Article  PubMed  CAS  Google Scholar 

  13. Cheng S, Fan B, Wang L, Fuerst T, Lian M, Njeh C, He Y, Kern M, Lappin M, Tylaysky F, Casal D, Harris S, Genant HK. Factors affecting broadband ultrasound attenuation results of the calcaneus using a gel-coupled quantitative ultrasound scanning system. Osteoporos Int 1999; 10: 495–504.

    Article  PubMed  CAS  Google Scholar 

  14. Donaldson MMK, McGruther CW, Clayton DG, Clarke M, Osborne D. Calcaneal ultrasound attenuation in an elderly population: Measurement position and relationships with body size and past fractures. Osteoporos Int 1999; 10: 316–324.

    Article  PubMed  CAS  Google Scholar 

  15. Gregg EW, Kriska AM, Salamone LM, Wolf RL, Roberts MM, Ferrell RE, Anderson SJ, Kuller LH, Cauley JA. Correlates of quantitative ultrasound in the women’ s healthy lifestyle project. Osteoporos Int 1999; 10: 416–424.

    Article  PubMed  CAS  Google Scholar 

  16. Cauley, JA, Danielson ME, Gregg EW, Vogt MT, Zmuda J, Bauer D. Calcaneal ultrasound attenuation in older African-American and Caucasian-American women. Osteoporos Int 1997; 7: 100–107.

    Article  PubMed  CAS  Google Scholar 

  17. Johansen A, Stone MD. The effect of ankle oedema on bone ultrasound assessment at the heel. Osteoporos Int 1997; 7: 44–47.

    Article  PubMed  CAS  Google Scholar 

  18. Wu C-Y, Gluer C-C, Jergas M, Bendavid E, Genant HK. The impact of bone size on broadband ultrasound attenuation. Bone 1995; 16: 137–141.

    PubMed  CAS  Google Scholar 

  19. Pocock NA, Babichev A, Culton N, Graney K, Rooney J, Bell D, Chu J. Temperature dependency of quantitative ultrasound. Osteoporos Int 2000; 11: 316–320.

    Article  PubMed  CAS  Google Scholar 

  20. Gluer C-C, Bahlensieck M, Faulkner KG, Engelke K, Black D, Genant HK. Site-matched calcaneal measurements of broadband ultrasound attenuation and single x-ray absorptiometry: do the measure different skeletal properties? J Bone Miner Res 1992; 7: 1071–1079.

    Article  PubMed  CAS  Google Scholar 

  21. Waud CE, Lew R, Baran DT. The relationship between ultrasound and densitometric measurements of bone mass at the calcaneus in women. Calcif Tissue Int 1992; 51: 415–418.

    Article  PubMed  CAS  Google Scholar 

  22. Salamone LM, Krall EA, Harris S, Dawson-Hughes B. Comparison of broadband ultrasound attenuation to single x-ray absorptiometry measurements at the calcaneus in postmenopausal women. Calcif Tissue Int 1994; 54: 87–90.

    Article  PubMed  CAS  Google Scholar 

  23. Cunningham JL, Fordham JN, Hewitt TA, Speed CA. Ultrasound velocity and attenuation at different skeletal sites compared with bone mineral density measured using dual energy x-ray absorptiometry. Br J Radiol 1996; 69: 25–32.

    Article  PubMed  CAS  Google Scholar 

  24. Diessel E, Fuerst T, Njeh CF, Hans D, Cheng S, Genant HK. Comparison of an imaging heel quantitative ultrasound device (DTU-one) with densitometric and ultrasonic measurements. Br J Radiol 2000; 73: 23–30.

    PubMed  CAS  Google Scholar 

  25. Louis O, Allein S, Luypaert R, Osteaux M. Quantitative ultrasound of the calcaneus. J Clin Densitometry 2000; 3: 43–48.

    Article  CAS  Google Scholar 

  26. Rossman P, Zagzeski J, Mesina C, Sorenson J, Mazess R. Comparison of speed of sound and ultrasound attenuation in the os calcis to bone density of the radius, femur and lumbar spine. Clin Phys Physiol Meas 1989; 10: 353–360.

    Article  PubMed  CAS  Google Scholar 

  27. McCloskey EV, Murray SA, Mukker C, Charlesworth D, Tindale W, O’Doherty DP, Bickerstaff DR, Hamdy NAT, Kanis JA. Broadband ultrasound attenuation in the os calcis: relationship to bone mineral at other skeletal sites. Clin Sci 1990; 78: 227–233.

    PubMed  CAS  Google Scholar 

  28. Baran DT, McCarthy CK, Leahey D, Lew R. Broadband ultrasound attenuation of the calcaneus predicts lumbar and femoral neck density in Caucasian women: a preliminary study. Osteoporos Int 1991; 1: 110–113.

    Article  PubMed  CAS  Google Scholar 

  29. Wapniarz M, Lehmann R, Banik N, Radwan M, Klein K, Allolio B. Apparent velocity of ultrasound (AVU) at the patella in comparison to bone mineral density at the lumbar spine in normal males and females. Bone Miner 1993; 23: 243–252.

    Article  PubMed  CAS  Google Scholar 

  30. Faulkner KG, McClung MR, Coleman LJ, Kingston-Sandahl E. Quantitative ultrasound of the heel: correlation with densitometric measurements at different skeletal sites. Osteoporos Int 1994; 4: 42–47.

    Article  PubMed  CAS  Google Scholar 

  31. Rosenthal L, Caminis J, Tenenhouse A. Correlation of ultrasound velocity in the tibial cortex, calcaneal ultrasonography, and bone mineral densitometry of the spine and femur. Calcif Tissue Int 1996; 58: 415–418.

    Google Scholar 

  32. Grampp S, Genant HK, Mathur A, Lang P, Jergas M, Takada M, Gluer C-C, Lu Y, Chavez M. Comparisons of noninvasive bone mineral measurements in assessing age-related loss, fracture discrimination, and diagnostic classification. J Bone Miner Res 1997; 12: 697–711.

    Article  PubMed  CAS  Google Scholar 

  33. Tromp AM, Smit JH, Deeg DJ, Lips P. Quantitative ultrasound measurements of the tibia and calcaneus in comparison with DXA measurements at various skeletal sites Osteoporos Int 1999; 9: 230–235.

    CAS  Google Scholar 

  34. Grampp S, Henk CB, Fuerst TP, Lu Y, Bader TR, Kainberger F, Genant HK, Imhof H. Diagnostic agreement of quantitative sonography of the calcaneus with dual x-ray absorptiometry of the spine and femur. Am J Roentgenol 1999; 173: 329–334.

    Article  CAS  Google Scholar 

  35. Frost ML, Blake GM, Fogelman I. Does quantitative ultrasound imaging enhance precision and discrimination? Osteoporos Int 2000; 11: 425–433.

    Article  PubMed  CAS  Google Scholar 

  36. Faulkner KG, von Stetten E, Miller P. Discordance in patient classification using T-scores. J Clin Densitometry 1999; 2: 343–350.

    Article  CAS  Google Scholar 

  37. Ayers M, Prince M, Ahmadi S, Baran DT. Reconciling quantitative ultrasound of the calcaneus with x-ray based measurements of the central skeleton. J Bone Miner Res 2000; 15: 1850–1855.

    Article  PubMed  CAS  Google Scholar 

  38. Miller PD, Baran DT, Bilezikian JP, Greenspan SL, Lindsay R, Riggs BL, Watts NB. Practical clinical application of biochemical markers of bone turnover: consensus of an expert panel. J Clin Densitometry 1999; 2: 323–342.

    Article  CAS  Google Scholar 

  39. Kawana K, Kushida K, Takahashi M, Ohishi T, Yamazaki K, Inoue T. Factors related to the parameters of ultrasound measurements in the early menopausal period. Calcif Tissue Int 1997; 61: 443–444.

    Article  PubMed  CAS  Google Scholar 

  40. Hoshino H, Kushida K, Takahashi M, Yamazaki K, Denda M, Atsumi K, Oikawa M, Toyotama O, Kawana K, Inoue T. Changes in levels of biochemical markers and ultrasound indices of os calcis across the menopausal transition Osteoporos Int 2000; 11: 128–133.

    CAS  Google Scholar 

  41. Fiore CE, Pennisi P, Gibilaro M, Di Fazzio S, Impellizzieri D, Ramirez MG. Correlation of quantitative ultrasound of bone with biochemical markers of bone resorption in women with osteoporotic fractures. J Clin Densitometry 1999; 2: 231–239.

    Article  CAS  Google Scholar 

  42. Miller PD, Bonnick SL, Johnston CC Jr, Kleerekoper M, Lindsay RL, Sherwood LM, Siris ES. The challenges of peripheral bone density testing: which patients need additional central density skeletal measurements. J Clin Densitometry 1998; 1: 211–217.

    Article  CAS  Google Scholar 

  43. Agren M, Karellas A, Leahey D, Marks S, Baran D. Ultrasound attenuation of the calcaneus: a sensitive and specific discriminator of osteopenia in postmenopausal women Calcif Tissue Int 1991; 48: 240–244.

    CAS  Google Scholar 

  44. Young H, Howey S, Purdie DW. Broadband ultrasound attenuation compared with dual energy x-ray absorptiometry in screening for postmenopausal low bone density. Osteoporos Int 1993; 3: 160–164

    Article  PubMed  CAS  Google Scholar 

  45. Massie A, Reid DM, Porter RW. Screening for osteoporosis: comparison between dual energy x-ray absorptiometry and broadband ultrasound attenuation in 1000 perimenopausal women. Osteoporos Int 1993; 3: 107–110.

    Article  PubMed  CAS  Google Scholar 

  46. Rosenthall L, Tenenhouse A, Caminis J. A correlative study of ultrasound calcanea and dual energy x-ray absorptiometry bone measurements of the lumbar spine and femur in 1000 women. Eur J Nucl Med 1995; 22: 402–406

    Article  PubMed  CAS  Google Scholar 

  47. Naganathan V, March L, Hunter D, Pocock NA, Markovey J, Sambrook PN. Quantitative heel ultrasound as a predictor for osteoporosis. Med J Aust 1999; 171: 297–300.

    PubMed  CAS  Google Scholar 

  48. Greenspan SL, Bouxsein ML, Melton ME, Kolodny AH, Clair JH, Delucca PT, Stek M Jr, Faulkner KG, Orwoll ES. Precision and discriminatory ability of calcaneal bone assessment technologies. J Bone Miner Res 1997; 12: 1303–1313.

    Article  PubMed  CAS  Google Scholar 

  49. Benitez CL, Schneider DL, Barrett-Connor E, Sartoris DJ. Hand ultrasound for osteoporosis screening in postmenopausal women. Osteoporos Int 2000; 11: 203–210.

    Article  PubMed  CAS  Google Scholar 

  50. Nairus J, Ahmadi S, Baker S, Baran D. Quantitative ultrasound: an indicator of osteoporosis in perimenopausal women. J Clin Densitometry 2000; 3: 141–147.

    Article  CAS  Google Scholar 

  51. Porter RW, Miller CG, Grainger D, Palmer SB. Prediction of hip fracture in elderly women: a prospective study. Br Med J 1990; 301: 638–641.

    Article  CAS  Google Scholar 

  52. Hans D, Dargent-Molina P, Schott AM. Sebert JL, Cormier C, Kotzki PO, Delmas PD, Pouilles JM, Breart G, Meunier PJ. Ultrasonographic heel measurements to predict hip fracture in elderly women: the EPIDOS prospective study. Lancet 1996; 348: 511–514.

    Article  PubMed  CAS  Google Scholar 

  53. Bauer DC, Gluer CC, Cauley JA, Vogt YM, Ensrud KE, Genant HK, Black DM. Broadband ultrasound attenuation predicts fractures strongly and independently of densitometry in older women. Arch Int Med 1997; 157: 629–634.

    Article  CAS  Google Scholar 

  54. Pluijm SM, Graafmans WC, Bouter LM, Lips P. Ultrasound measurements for the prediction of osteoporotic fractures in elderly people. Osteoporos Int 1999; 9: 550–556.

    Article  PubMed  CAS  Google Scholar 

  55. Baran DT, Kelly AM, Karellas A, Gionet M, Price M, Leahey D, Steuterman S, McSherry B, Roche J. Ultrasound attenuation of the os calcis in women with osteoporosis and hip fractures. Calcif Tissue Int 1988; 43: 138–142.

    Article  PubMed  CAS  Google Scholar 

  56. Stewart A, Reid DM, Porter RW. Broadband ultrasound attenuation an dual energy x-ray absorptiometry in patients with hip fractures: which technique discriminates fracture risk. Calcif Tissue Int 1994; 54: 466–469.

    Article  PubMed  CAS  Google Scholar 

  57. Schott AM, Weill-Engerer S, Hans D, Duboeuf F, Delmas PD, Meunier PJ. Ultrasound discriminates patients with hip fracture equally well as dual energy x-ray absorptiometry and independently of bone mineral density. J Bone Miner Res 1995; 10: 243–249.

    Article  PubMed  CAS  Google Scholar 

  58. Mautalen C, Vega E, Gonzalez D, Carrilero P, Otano A, Silberman F. Ultrasound and dual x-ray absorptiometry densitometry in women with hip fracture. Calcif Tissue Int 1995; 57: 165–168.

    Article  PubMed  CAS  Google Scholar 

  59. Dretakis EM, Kontakis GM, Steripoulos K, Dtetakis K, Kouvidis G. Broadband ultrasound attenuation of the os calcis in female postmenopausal patients with cervical and trochanteric fracture. Calcif Tissue Int 1995; 57: 419–421.

    Article  PubMed  CAS  Google Scholar 

  60. Funck C, Wuster C, Alenfeld FE, Pereira-Lima JFS, Fritz T, Meeder PJ, Ziegler R. Ultrasound velocity of the tibia in normal German women and hip fracture patients. Calcif Tissue Int 1996; 58: 390–394.

    PubMed  CAS  Google Scholar 

  61. Gluer CC, Cummings SR, Bauer DG, Stone K, Pressman A, Mathur A, Genant HK. Osteoporosis: association of recent fractures with quantitative US findings. Radiology 1996; 199: 725–732.

    PubMed  CAS  Google Scholar 

  62. Sakata S, Kushida K, Yamazaki K, Inoue T. Ultrasound bone densitometry of os calcis in elderly Japanese women with hip fracture. Calcif Tissue Int 1997; 60: 2–7.

    Article  PubMed  CAS  Google Scholar 

  63. Hans D, Srivastav SK, Singal C, Barkmann R, Njeh CF, Kantorovich E, Gluer CC, Genant HK. Does combining the results from multiple bone sites measured by a new quantitative ultrasound device improve discrimination of hip fracture? J Bone Miner Res 1999; 14: 644–651.

    Article  PubMed  CAS  Google Scholar 

  64. Prins SH, Lauritzen J, Jorgensen HL, Simonsen L, Ghassager C. Hip fracture discrimination by imaging ultrasound measurements of the calcaneus. Clin Physiol 1999; 19: 419–425.

    Article  PubMed  CAS  Google Scholar 

  65. Weiss M, Ben-Shlomo A, Hagag P, Ish-Shalom S. Discrimination of proximal hip fracture by quantitative measurement at the radius. Osteoporos Int 2000; 11: 411–416.

    Article  PubMed  CAS  Google Scholar 

  66. He YQ, fan B, Hans D, Li J, wu CY, Njeh CF, Zhao S, Lu Y, Tsuda-futami E, Fuerst T, Genant HK. Assessment of a new quantitative ultrasound calcaneus measurement: Precision and discrimination of hip fractures in elderly women compared with dual x-ray absorptiometry. Osteoporos Int 200011: 354–360.

    Google Scholar 

  67. Heaney RP, Avioli LV, Chesnut CH III, Lappe J, Recker R,R, Brandenburger GH. Osteoporotic bone fragility: detection by ultrasound transmission velocity. JAMA 1989; 261: 2986–2990.

    Article  PubMed  CAS  Google Scholar 

  68. Bauer DC, Gluer CC, Genant HK, Stone K. Quantitative ultrasound and vertebral fracture in postmenopausal women. J Bone Miner Res 1995; 10: 353–358.

    Article  PubMed  CAS  Google Scholar 

  69. Ross P, Huang C, Davis J, Imose K, Yates J, Vogel J, Wasnich R. Predicting vertebral deformity using bone densitometry at various skeletal sites and calcaneus ultrasound. Bone 1995; 16: 325–332.

    Article  PubMed  CAS  Google Scholar 

  70. Stegman MR, Davies KM, Heaney RP, Recker RR, Lappe JM. The association of patellar ultrasound transmissions and forearm densitometry with vertebral fracture, number and severity: the Saunders County bone quality study. Osteoporos Int 1996; 6: 130–135.

    Article  PubMed  CAS  Google Scholar 

  71. Thompson P, Taylor J, Fisher A, Oliver R. Quantitative heel ultrasound in 3180 women between 45 and 75 years of age: compliance, normal ranges and relationship to fracture history. Osteoporos Int 1998; 8: 211–214.

    Article  PubMed  CAS  Google Scholar 

  72. Kung AWC, Luk KDK, Chu LW, Tang GWK. Quantitative ultrasound and symptomatic vertebral fracture risk in Chinese women Osteoporos Int 1999; 10: 456–461.

    CAS  Google Scholar 

  73. Huang C, Ross PD, Yates AJ, Walker RE, Imose K, Emi K, Wasnich RD. Prediction of fracture risk by radiographic absorptiometry and quantitative ultrasound: a prospective study. Calcif Tissue Int 1998; 63: 380–384.

    Article  PubMed  CAS  Google Scholar 

  74. Thompson PW, Taylor J, Oliver R, Fisher A. Quantitative ultrasound of the heel predicts wrist and osteoporosis-related fractures in women age 45–75 years. J Clin Densitometry 1998; 1: 219–225.

    Article  CAS  Google Scholar 

  75. Kimmel DB, Lappe JM, Laurin MJ, Hise L, White M, Stegman MR. Prediction of stress fracture risk during basic training in female soldiers by calcaneal ultrasound J Bone Miner Res 1996; 11: 5110.

    Google Scholar 

  76. Gnudi S, Ripamonti C, Malavolta N. Quantitative ultrasound and bone densitometry to evaluate the risk of nonspine fractures: a prospective study. Osteoporos Int 2000; 11: 518–523.

    Article  PubMed  CAS  Google Scholar 

  77. Peretz A, De Maertelaer V, Moris V, Wouters M, Bergmann P. Evaluation of quantitative ultrasound and dual x-ray absorptiometry measurements in women with and without fractures J Clin Densitometry 1999; 2: 127–133.

    CAS  Google Scholar 

  78. Barkmann R, Kantorovich E, Singal C, Hans D, Genant HK, Heller M, Gluer C-C. A new method for quantitative ultrasound measurements at multiple skeletal sites. J Clin Densitometry 2000; 3: 1–7.

    Article  CAS  Google Scholar 

  79. Pluskiewicz W, Drozdzowska B. Ultrasound measurements at the calcaneus in men: differences between healthy and fractured persons and the influence of age and anthropometric features on ultrasound parameters. Osteoporos Int 1999; 10: 47–51.

    Article  PubMed  CAS  Google Scholar 

  80. Martin JC, Campbell MK, Reid DM. A comparison of radial peripheral quantitative computed tomography, calcaneal ultrasound, and axial dual energy x-ray absorptiometry measurements in women aged 45–55 yr. J Clin Densitometry 1999; 2: 265–273

    Article  CAS  Google Scholar 

  81. van Daele PLA, Burger H, De Laet CEDH, Hofman A, Grobbee DE, Birkenhager JC, Pols HAP. Longitudinal changes in ultrasound parameters of the calcaneus. Osteoporos Int 1997; 7: 207–212.

    Article  PubMed  Google Scholar 

  82. Lehman R, Wapniarz M, Kvasnicka HM, Klein K, Allolio B. Velocity of ultrasound at the patella: influence of age, menopause and estrogen replacement therapy. Osteoporos Int 1993; 3: 308–313.

    Article  Google Scholar 

  83. Gambacciani M, Cappagle B, Ciaponi M, Benussi C, Genazzani AR. Hormone replacement therapy in perimenopause: effect of a low dose oral contraceptive preparation on bone quantitative ultrasound characteristics. Menopause 1999; 6: 43–48.

    PubMed  CAS  Google Scholar 

  84. Sahota O, San P, Cawte SA, Pearson D, Hosking DJ. A comparison of the longitudinal changes in quantitative ultrasound with dual-energy x-ray absorptiometry: the four-year effects of hormone replacement therapy. Osteoporos Int 2000; 11: 52–58.

    Article  PubMed  CAS  Google Scholar 

  85. Naessen T, Mallmin H, Ljunghall S 1995 Heel ultrasound in women after long-term ERT compared with bone densities in the forearm, spine and hip. Osteoporos Int 1995; 5: 205–210.

    Article  Google Scholar 

  86. Balikian P, Burbank K, Houde J, Crane G, Nairus J, Ahmadi S, Baran DT. Bone mineral density and broadband ultrasound attenuation with estrogen treatment of postmenopausal women J Clin Densitometry 1998; 1: 19–26.

    CAS  Google Scholar 

  87. Giguere Y, Dodin S, Blanchet C, Morgan K, Rousseau F. The association between heel ultrasound and hormone replacement therapy is modulated by a two-locus vitamin D and estrogen receptor genotype. J Bone Miner Res 2000; 15: 1076–1084.

    Article  PubMed  CAS  Google Scholar 

  88. Gonnelli S, Cepollaro C, Pondrelli C, Martini S, Rossi S, Gennari C. Ultrasound parameters in osteoporotic patients treated with salmon calcitonin: a longitudinal study Osteoporos Int 1996; 6: 303–307.

    CAS  Google Scholar 

  89. Rosenthall L, Caminis J, Tenehouse A. Calcaneal ultrasonometry: response to treatment in comparison with dual x-ray absorptiometry measurements of the lumbar spine and femur. Calcif Tissue Int 1999; 64: 200–204.

    Article  PubMed  CAS  Google Scholar 

  90. Lappe JM, Stegman MR, Davies KM, Barber S, Recker RR. A prospective study of quantitative ultrasound in children and adolescents. J Clin Densitometry 2000; 3: 167–175.

    Article  CAS  Google Scholar 

  91. Jaworski M, Lebiedowski M, Lorenc RS, Trempe J. Ultrasound bone measurement in pediatric subjects. Calcif Tissue Int 1995; 56: 368–371.

    Article  PubMed  CAS  Google Scholar 

  92. Falcini F, Bindi G, Ermini M, Galluzzi F, Poggi G, Rossi S, Masi L, Cimaz R, Brandi ML. Comparison of quantitative calcaneal ultrasound and dual energy x-ray absorptiometry in the evaluation of osteoporotic risk in children with chronic rheumatic diseases. Calcif Tissue Int 2000; 67: 19–23.

    Article  PubMed  CAS  Google Scholar 

  93. Jones PRM, Hardman AE, Hudson A, Norgan NG. Influence of brisk walking on the broadband ultrasonic attenuation of the calcaneus in previously sedentary women aged 30–61 years. Calcif Tissue Int 1991; 49: 112–115.

    Article  PubMed  CAS  Google Scholar 

  94. Hoshino H, Kushida K, Yamazaki K, Takahashi M, Ogihara H, Naitoh K, Toyoyama O, Doi S, Tamai H, Inoue T. Effect of physical activity as a caddie on ultrasound measurements of the os calcis: a cross-sectional comparison. J Bone Miner Res 1996; 11: 412–418

    Article  PubMed  CAS  Google Scholar 

  95. Lehtonen-Veromaa M, Mottonen T, Nuotio I, Heinonen OJ, Viikari J. Influence of physical activity on ultrasound and dual energy x-ray absorptiometry bone measurements in peripubertal girls: a cross-sectional study. Calcif Tissue Int 2000; 66: 248–254.

    Article  PubMed  CAS  Google Scholar 

  96. Gambacciani M, Spinetti A, Gallo R, Cappagli B, Teti GC, Facchini V. Ultrasonographic bone characteristics during normal pregnancy; longitudinal and cross-sectional evaluation. Am J Obstet Gynecol 1995; 173: 890–893.

    Article  PubMed  CAS  Google Scholar 

  97. Sowers MF, Scholl T, Harris L, Jannausch M. Bone loss in adolescent and adult pregnant women. Obstet Gynecol 2000: 96: 189–193.

    Article  PubMed  CAS  Google Scholar 

  98. Resch H, Newrkla S, Grampp S, Resch A, Piringer S, Hocki A, Weiss P. Ultrasound and x-ray based bone densitometry in patients with anorexia nervosa. Calcif Tissue Int 2000; 66: 338–341.

    Article  PubMed  CAS  Google Scholar 

  99. Przedlacki J, Pluskiewicz W, Wieliczko M, Drozdzowska B, Matuszkiewicz-Rowinska J, Bogdnaska-Straszynska B, Wlodarczyk D, Ostrowski K. Quantitative ultrasound of phalanges and dual energy x-ray absorptiometry of forearm and hand in patients with end-stage renal failure treated with dialysis. Osteoporos Int 1999; 10: 1–6.

    Article  PubMed  CAS  Google Scholar 

  100. Montagnani A, Gonnelli S, Cepollaro C, Martini S, Finato V, Di Paolo N, Bellucci G, Gennari C. Quantitative ultrasound in the assessment of skeletal status in uremic patients. J Clin Densitometry 1999; 2: 389–395.

    Article  CAS  Google Scholar 

  101. Daens S, Peretz A, de Maertelaer V, Moris M, Bergmann P. Efficiency of quantitative ultrasound measurements as compared with dual energy x-ray absorptiometry in the assessment of corticosteroid-induced bone impairment. Osteoporos Int 1999;10:;278–283.

    Google Scholar 

  102. Minisola S, Rosso P, Scarda A, Pacitti MT, Romagnoli E, Mazzuoli G. Quantitative ultrasound assessment of bone in patients with primary hyperparathyroidism. Calcif Tissue Int 1995; 56: 626–628.

    Article  Google Scholar 

  103. Gonnelli S, Montagnani A, Cepollaro C, Monaco R, Gennari L, Rossi B, Pacini S, Gennari C. Quantitative ultrasound and bone mineral density in patients with primary hyperparathyroidism before and after surgical treatment. Osteoporos Int 2000; 11: 255–260.

    Article  PubMed  CAS  Google Scholar 

  104. Pande KC, Bernard J, McCloskey EV, de Tadats D, Kanis JA. Ultrasound velocity and dual energy x-ray absorptiometry in normal and Pagetic bone. Bone 2000; 26: 525–528.

    Article  PubMed  CAS  Google Scholar 

  105. Krieg MA, Thiebaud D, Burckhardt P. Quantitative ultrasound of bone in institutionalized elderly women: a cross-sectional and longitudinal study. Osteoporos Int 1996; 6: 189–195.

    Article  PubMed  CAS  Google Scholar 

  106. Aspray TJ, Francis RM, Thompson A, Quilliam SJ, Rawlings DJ, Tyrer SP. Comparison of ultrasound measurements at the heel between adults with mental retardation and control subjects. Bone 1998; 22: 665–668.

    Article  PubMed  CAS  Google Scholar 

  107. Frost ML, Blake GM, Fogelman I Contact quantitative ultrasound: an evaluation of precision, fracture discrimination, age-related bone loss and applicability of the WHO criteria. Osteoporos Int 1999; 10: 441–449.

    Article  PubMed  CAS  Google Scholar 

  108. Frost ML, Blake GM, Fogelman I. Can the WHO criteria for diagnosing osteoporosis be applied to calcaneal quantitative ultrasound? Osteoporos Int 2000; 11: 321–330.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Baran, D.T. (2003). Clinical Aspects of Skeletal Assessment with Ultrasound. In: Orwoll, E.S., Bliziotes, M. (eds) Osteoporosis. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-278-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-278-4_7

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-260-5

  • Online ISBN: 978-1-59259-278-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics