Skip to main content

Folic Acid-Containing Multivitamins and Primary Prevention of Birth Defects

  • Chapter
Preventive Nutrition

Part of the book series: Nutrition and Health ((NH))

  • 146 Accesses

Abstract

The deficiency or overdosage of certain nutrients may have a role in the origin of birth defects. First, in 1932 Hale (1) demonstrated that a vitamin A-free diet during early pregnancy of sows resulted in offspring without eyeballs. Some of the pigs also had other defects, such as oral clefts, accessory ears, malposition of kidney and defects of hind legs. Hale’s conclusion was “the condition is illustrative of the marked effect that a deficiency may have in the disturbance of the internal factors that control the mechanism of development” (1). Further development of experimental teratology became possible when small rodents were introduced for this purpose. Joseph Warkany (1902–1992) (2), one of the founders of teratology, recognized the importance of purified diets and used these to test various vitamin deficiencies for their teratogenic effects. He found that maternal dietary deficiency can induce structural birth defects, i.e., congenital abnormalities (CAs) (3). Marjorie M. Nelson (4) used antimetabolites, which made possible conversion of long-term nutritional experiments into short-term chemical testing. First, antimetabolites of folic acid were used and folic acid defiency was proved highly teratogenic in pregnant rats (5–7). Later, it was confirmed in humans (8–10) as well. This research approach also had strong support from the French investigator, Giroud (11,12). These findings highlighted the developmental importance of folate-folic acid (13,14). However, this first phase of history of malnutritional teratology including folate-folic acid deficiency was followed by a longer silent period. The second phase was related to the primary prevention of neural-tube defects (NTDs) in the 1980s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hale F. Pigs born without eyeballs. J Hered 1932; 24: 105–109.

    Google Scholar 

  2. Warkany J. Congenital malformations induced by maternal dietary deficiency: Experiments and their interpretation. Harvey Lecture, 1952–1953. 1971; 18: 89–102.

    Google Scholar 

  3. Warkany J. Congenital Malformations. Notes and Comments. Chicago, IL: Year Book Medical Publications, 1971.

    Google Scholar 

  4. Nelson MM. Mammalian fetal development and antimetabolities. In: Rhoads EP, ed. Antimetabolites and Cancer. Amer Assoc Adv Sci Monograph. Washington DC, 1955.

    Google Scholar 

  5. Evans HM, Nelson MM, Asling CV. Multiple congenital abnormalities resulting from acute folic acid deficiency during gestation. Science 1951; 114: 479.

    Google Scholar 

  6. Nelson MM, Asling CW, Evans HM. Production of multiple congenital abnormalities in young by maternal pteroylglutamic acid deficiency during gestation. J Nutr 1952; 48: 61–79.

    CAS  Google Scholar 

  7. Nelson MM, Wright HV, Asling CW, Evans HM. Multiple congenital abnormalities resulting from transitory deficiency of pteroylgutamic acid during gestatin in the rat. J Nutr 1955; 56: 349–369.

    CAS  Google Scholar 

  8. Thiersch JB. Therapeutic abortions with a folic acid antagonist, 4-aminopteroylgíutamic acid (4-amino PGA) administered by the oral route. Am J Obstet Gynecol 1952; 63: 1298–1304.

    CAS  Google Scholar 

  9. Meltzer HJ. Congenital anomalies due to attempted abortion with 4-aminopteroglutamic acid. JAMA 1956; 161: 1253.

    Article  CAS  Google Scholar 

  10. Warkany J, Beaudry PH, Hornstein S. Attempted abortion with 4-aminopteroglutamic acid (aroinopterin): malformations of the child. Am J Dis Child 1959; 97: 274–281.

    CAS  Google Scholar 

  11. Giroud A, Lefevbres-Boisselot J. Influence tératogéne de la carence en acide folique. Compt Rend Soc Biol 1951; 145: 526–529.

    CAS  Google Scholar 

  12. Giroud A. The Nutrition of the Embryo. Charles C. Thomas, Springfield, IL, 1970.

    Google Scholar 

  13. Hibbard BM. The role of folic acid in pregnancy with particular reference to anaemia, abruption and abortion. J Obstet Gynecol 1964; 71: 529–542.

    CAS  Google Scholar 

  14. Hibbard ED, Smithells RW. Folic acid metabolism and human embryopathy. Lancet 1965; 1: 1254.

    Article  Google Scholar 

  15. Czeizel AE, Tusntldy G. Aetiological Studies of Isolated Common Congenital Abnormalities in Hungary. Akadémiai Kiadó, Budapest, 1984.

    Google Scholar 

  16. Elwood JM, Little J, Elwood JH. Epidemiology and Control of Neural Tube Defects. Oxford University Press, Oxford, 1992.

    Google Scholar 

  17. Smithells RW, Sheppard S, Schorah CJ. Vitamin deficiencies and neural tube defects. Arch Dis Child 1976; 51: 944–949.

    Article  CAS  Google Scholar 

  18. Smithells RW, Sheppard S, Schorah CJ, et al. Possible prevention of neural tube defects by periconceptional vitamin supplementation. Lancet 1980; 1: 339, 340.

    Google Scholar 

  19. Smithells RW, Sheppard S, Wild J, Schorah CJ. Prevention of neural tube defect recurrences in Yorkshire: final report. Lancet 1989; 2: 498, 499.

    Google Scholar 

  20. Nevin NC, Seller MJ. Prevention of neural tube defect recurrences. Lancet 1990; 1: 178, 179.

    Google Scholar 

  21. Laurence KM, James N, Miller MH, et al. Double-blind randomised controlled trial of folate treatment before conception to prevent recurrence of neural-tube defects. Br Med J 1981; 282: 1509–1511.

    Article  CAS  Google Scholar 

  22. MRC Vitamin Study Research Group. Prevention of neural tube defects: results of the Medical Research Council vitamin study. Lancet 1991; 338: 131–137.

    Article  Google Scholar 

  23. Center for Disease Control. Use of folic acid for prevention of spina bifida and other neural tube defects. JAMA 1991; 266: 1191–1192.

    Article  Google Scholar 

  24. Czeizel AE, Dudâs I. Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation. N Engl J Med 1992; 327: 1832–1835.

    Article  CAS  Google Scholar 

  25. Wald N. Folic acid and the prevention of neural tube defects. Ann NY Acad Sci 1993; 678: 112–129.

    Article  CAS  Google Scholar 

  26. Werler MM, Shapiro S, Mitchell AA. Periconceptional folic acid exposure and risk of occurrent neural tube defects. JAMA 1993; 269: 1257–1261.

    Article  CAS  Google Scholar 

  27. Center for Disease Control. Recommendations for the use of folic acid to reduce the number of cases of spina bifida and other neural tube defects. MMWR 1992; 41: 1233–1238.

    Google Scholar 

  28. Czeizel AE, Tímâr L, Sdrközi A. Dose-dependent effect of folic acid on the prevention of orofacial clefts. Pediatrics, 1999; 104: e66.

    Google Scholar 

  29. Czeizel AE, Tóth M, Rockenbauer M. A case-control analysis of folic acid supplementation during pregnancy. Teratology 1996; 53: 345–351.

    Article  CAS  Google Scholar 

  30. Coelho CND, Klein NW. Methionine and neural-tube closure in cultured rat embryos: morphological and biochemical analysis. Teratology 1990; 42: 437–451.

    Article  CAS  Google Scholar 

  31. Vanaerts LAGJM, Blom J, Deabreu R, et al. Prevention of neural tube defects by and toxicity of Lhomocysteine in cultured postimplantation rat embryos. Teratology 1994; 50: 348–360.

    Article  CAS  Google Scholar 

  32. Steegers-Theunissen RPM, Boers GHJ, Trijbels FJM, Eskes TKAB. Neural-tube defects and derangement of homocysteine metabolism. N Engl J Med 1991; 324: 199, 200.

    Google Scholar 

  33. Steegers-Theunissen RP, Boers GH, Blom HJ, et al. Neural tube defects and elevated homocysteine levels in amniotic fluid. Am J Obstet Gynecol 1995; 172: 1436–1441.

    Article  CAS  Google Scholar 

  34. Wills L. Treatment of “pernicious anaemia” of pregnancy and “tropical anaemia” with special reference to yeast extract as a curative agent. Br Med J 1931; i:1059–1064.

    Google Scholar 

  35. Frosst P, Blom Hi, Milos R. A candidate genetic risk-factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nature Genet 1995; 10: 111–113.

    Article  CAS  Google Scholar 

  36. Goyette D, Summer JS, Milos R. Human methylenetetrahydrofolate reductase: isolation of cDNA, mapping and mutation identification. Nature Genet 1994; 7: 195–200.

    Article  CAS  Google Scholar 

  37. Van der Put NM, Steegers-Theunissen RPM, Frosst P, et al. Mutated methylentetrahydrofolate reductase as a risk factor for spina bifida. Lancet 1995; 346: 1070, 1071.

    Google Scholar 

  38. Ou CY, Stevenson RF, Brown VK, et al. V677T homozygosity associated with thermolabile 5,10methylenetetrahydrofolate reductase as a risk factor for neural tube defects. Am J Hum Genet 1995; 57 (Suppl):A 223.

    Google Scholar 

  39. de Franchis R, Sebastio G, Mandato C, et al. Spina bifida, 677T’C mutation, and role of folate. Lancet 1995; 346: 1703.

    Article  Google Scholar 

  40. Wilcken DEL, Wang XL. Relevance to spina bifida of mutated methylenetetrahydrofolate reductase. Lancet 1996; 347: 340.

    Article  CAS  Google Scholar 

  41. Schneider JA, Rees DC, Liu YT, et al. Worldwide distribution of a common methylenetetrahydrofolate reductase mutation. Am J Hum Genet 1998; 62: 1258–1261.

    Article  CAS  Google Scholar 

  42. Weitkamp LR, Tackels DC, Hunter AGW, et al. Heterozygote advantage of the MTHFR gene in patients with neural-tube defects and their relatives. Lancet 1998; 351: 1554, 1555.

    Google Scholar 

  43. van der Put NMJ, Gabreels F, Stevens EMB, et al. A second common mutation in the methylenetetrahydrofolate reductase gene: an additional risk factor for neural-tube defect? Am J Hum Genet 1998; 62: 1011 1046.

    Google Scholar 

  44. Li YN, Gulati S, Baker Pi, et al. Cloning, mapping and RNA analysis of the human methionine synthase gene. Hum Mol Genet 1996; 5: 1859–1865.

    Article  Google Scholar 

  45. Ledere D, Campeau E, Goyette P, et al. Human methionine synthase: cDNA cloning, chromosomal localisation, and identification of mutations in patients of the cbIG complementation group of folate/cobalamin disorders. Hum Mol Genet 1996; 5: 1867–1874.

    Article  Google Scholar 

  46. Chen LH, Lin M-L, Hwang H-Y, et al. Human methionine synthase, cDNA cloning, gene localisation and expression. J Biol Chem 1997; 272: 3628–3634.

    Article  CAS  Google Scholar 

  47. Christensen B, Arbour L, Tran P, et al. Genetic polymorphism in methylenetetrahydrofolate reductase and methionine synthase, folat levels in red blood cells, and risk of neural tube defects. Am J Med Genet 1999; 84: 151–157.

    Article  CAS  Google Scholar 

  48. Kirke PN, Molloy AM, Daly LE, et al. Maternal plasma folate and vitamin B 12 are independent risk factors for neural tube defects. Q J Med 1993; 86: 703–708.

    CAS  Google Scholar 

  49. Kirke PN, Mills JL, Whitehead AS, et al. Methylene-tetrahydrofolate reductase mutation and neural tube defects. Lancet 1996; 348: 1037, 1038.

    Google Scholar 

  50. McPartlin J, Halligan A, Scott JM, et al. Accelerated folate breakdown in pregnancy. Lancet 1993; 341: 148, 149.

    Google Scholar 

  51. Czeizel AE, Susânszky E. Diet intake and vitamin supplement use of Hungarian women during the preconceptional period. Int J Vitam Nutr Res 1994; 64: 300–305.

    CAS  Google Scholar 

  52. Cuskelly GJ, McNulty H, Scott JM. Effect of increasing dietary folate on red-cell folate: implications for prevention of neural tube defects. Lancet 1996; 347: 657, 659.

    Google Scholar 

  53. Center for Disease Control. Knowledge and use of folic acid by women of childbearing age, United States, 1995. MMWR 1995; 44: 716–718.

    Google Scholar 

  54. Czeizel AE. Ten years of experience in periconceptional care. Eur J Obstet Gynecol Reprod Biol 1999; 84: 43–49.

    Article  CAS  Google Scholar 

  55. Czeizel AE, Dobó M, Dudâs I, et al. The Hungarian periconceptional service as a model for Community genetics. Community Genet 1999; 1: 252–259.

    Article  Google Scholar 

  56. Healthy People 2000. National health population and disease prevention objectives. US Department of Health and Human Services. Public Health Service. DHHS Publ No. 91–502. 13.

    Google Scholar 

  57. Dudâs I, Rockenbauer M, Czeizel AE. The effect of preconceptional multivitamin supplementation on the menstrual cycle. Arch Gynecol Obstet 1995; 256: 115–123.

    Article  Google Scholar 

  58. Czeizel AE, Rockenbauer M, Susânszky E. No change in sexual activity during periconceptional multivitamin supplementation. Br J Obstet Gynecol 1996; 103: 569–573.

    Article  CAS  Google Scholar 

  59. Czeizel AE, Métneki J, Dudâs I. The effect of preconceptional multivitamin suppelementation on fertility. Int J Vitam Nutr Res 1996; 66: 55–58.

    CAS  Google Scholar 

  60. Czeizel AE, Métneki J, Dudâs I. Higher rate of multiple births after periconceptional multivitamin supplementation. N Engl J Med 1994; 330: 1687, 1688.

    Google Scholar 

  61. Czeizel AE, Métneki J, Dudâs I. The higher rate of multiple births after periconceptional multivitamin supplementation: an analysis of causes. Acta Genet Gemmellol 1994; 43: 175–184.

    CAS  Google Scholar 

  62. Werler MM, Cragan JD, Wasserman CR, et al. Multivitamin supplementation and multiple births. Am J Med Genet 1997; 71: 93–96.

    Article  CAS  Google Scholar 

  63. Czeizel AE, Dudâs I, Fritz G, et al. The effect of periconceptional multivitamin-mineral supplementation on vertigo, nausea and vomiting in the first trimester of pregnancy. Arch Gynecol Obstet 1992; 251: 181–185.

    Article  CAS  Google Scholar 

  64. Czeizel AE. Randomized, controlled trial of the effect of periconceptional multivitamin supplementation on pregnancy outcome. In: Wharton BA, ed. Maternal-Child Issues in Nutrition Wyeth-Ayerst Nutritional Seminar Series. Excerpta Medica, Princeton, NJ, 1993, pp. 13–24.

    Google Scholar 

  65. Erös E, Géher P, Gömör B, Czeizel AE. Epileptogenic activity of folic acid after drug induces SLE. (Folic acid and epilepsy). Eur J Obstet Gynec Reprod Biol 1998; 80: 75–78.

    Article  Google Scholar 

  66. Czeizel AE, Dudâs I, Métneki J. Pregnancy outcomes in a randomised controlled trial of periconceptional multivitamin supplementation. Final report. Arch Gynecol Obstet 1994; 255: 131–139.

    Article  CAS  Google Scholar 

  67. Czeizel AE. Terathanasia, folic acid and birth defects. Lancet 1998; 351: 450.

    Article  CAS  Google Scholar 

  68. Czeizel AE, Dobó M. Postnatal somatic and mental development after periconceptional multivitamin supplementation. Arch Dis Child 1994; 70: 229–233.

    Article  CAS  Google Scholar 

  69. Dobó M, Czeizel AE. Longterm somatic and mental development of children after periconceptional multivitamin supplementation. Eur J Pediat 1998; 157: 719–723.

    Article  Google Scholar 

  70. Holmes-Siedle M, Dennis J, Lindenbaum RH, Galliard A. Long-term effects of periconceptional multivitamin supplementation for prevention of neural tube defects: a seven to 10 year follow up. Arch Dis Child 1992; 67: 1436–1441.

    Article  CAS  Google Scholar 

  71. Czeizel AE. Prevention of congenital abnormalities by periconceptional multivitamin supplementation. Br Med J 1993; 306: 1645–1648.

    Article  CAS  Google Scholar 

  72. Czeizel AE. Periconceptional folic acid containing multivitamin supplementation. Eur J Obstet Gynecol Reprod Biol 1998; 75: 151–161.

    Article  Google Scholar 

  73. Czeizel AE. Reduction of urinary tract and cardiovascular defects by periconceptional multivitamin supplementation. Am J Med Genet 1996; 62: 179–183.

    Article  CAS  Google Scholar 

  74. Robson WLM, Rogers RC, Leung AKC. Renal agenesis, multicystic dysplasia, and uretero-pelvic junction obstruction-a common pathogenesis. Am J Med Genet 1994; 53: 302.

    Article  CAS  Google Scholar 

  75. Movie IW, Nelson MM, Evans HM. Abnormalities of the urinary system of rat embryos resulting from maternal pteroylglutamic acid deficiency. Anat Rec 1954; 120: 119–136.

    Article  Google Scholar 

  76. Monie IW, Nelson MM, Evans HM. Abnormalities of the urinary system of rat embryos resulting from transitory deficiency of pteroylglutamic acid during gestation in the rat. Anat Rec 1957; 127: 711–724.

    Article  CAS  Google Scholar 

  77. Li D-K, Daling JR, Mueller BA, et al. Periconceptional multivitamin use in relation to the risk of congenital urinary tract anomalies Epidemiology 1995; 6: 212–218.

    CAS  Google Scholar 

  78. Baird CD, Nelson MM, Monie IW, Evans HM. Congenital cardiovascular anomalies induced by pteroylgutamic acid deficiency during gestation in the rat. Circ Rev 1954; 2: 544–548.

    Article  CAS  Google Scholar 

  79. Monie IW, Nelson MM. Abnormalities of pulmonary and other vessels in rat fetuses from maternal pteroylglutamic acid deficiency. Anat Rec 1963; 147: 397–401.

    Article  CAS  Google Scholar 

  80. Shaw GW, O’Malley CD, Wasserman CR et al. Maternal periconceptional use of multivitamin and reduced risk for conotruncal heart defects and limb deficiencies among offspring Am J Med Genet 1995; 59: 536–545.

    CAS  Google Scholar 

  81. Botto LD, Khoury MI, Mulinare J, Erickson JD: Periconceptional multivitamin use and the occurrence of conotruncal heart defects. Results from a population-based case-control study. Pediatrics 1996; 98: 911–917.

    CAS  Google Scholar 

  82. Tolarova M. Periconceptional supplementation with vitamins and folic acid to prevent recurrence of cleft lip. Lancet 1982; 2: 217.

    Article  CAS  Google Scholar 

  83. Tolarova M, Harris J. Reduced recurrence of orofacial clefts after periconceptional supplementation with high-dose folic acid and multivitamins Teratology 1995; 51: 71–78.

    CAS  Google Scholar 

  84. Czeizel AE, Hirschberg J. Orofacial clefting in Hungary. Folia Phoniat Logopad 1997; 49: 111–116.

    Article  CAS  Google Scholar 

  85. Shaw GM, Lammer EJ, Wasserman CR, et al. Risks of orofacial clefts in children born to women using multivitamins containing folic acid periconceptionally. Lancet 1995; 345: 393–396.

    Article  Google Scholar 

  86. Czeizel AE. Limb-reduction defects and folic acid supplementation. Lancet 1995; 345: 932.

    Article  CAS  Google Scholar 

  87. Milunsky A, Graet JW, Gaynor MF Jr. Methotrexate induced congenital malformations with a review of the literature. J Pediatr 1968; 72: 790–795.

    Article  CAS  Google Scholar 

  88. Yang Q, Khoury MJ, Olney RS, et al. Does periconceptional multivitamin use reduce the risk for limb deficinecy in offspring? Epidemiology 1997; 8: 157–161.

    Article  CAS  Google Scholar 

  89. Iyengar L, Apte SV. Nutrient stores in human foetal livers. Br J Nutr 1972; 27: 313–317.

    Article  CAS  Google Scholar 

  90. Strelling MK. Transfer of folate to the fetus. Dev Med Child Neurol 1976; 28: 533–535.

    Google Scholar 

  91. Czeizel AE, Sankaranarayanan K The load of genetic and partially genetic disorders in man. I. Congenital anomalies• estimates of detriment in terms of years of life lost and years of impaired life. Mut Res 1984; 128: 499–503.

    Google Scholar 

  92. Czeizel AE, Intödy Zs, Modell B. What proportion of congenital abnormalities can be prevented? Br Med J 1993; 306: 499–503.

    Article  CAS  Google Scholar 

  93. Canadian Task Force on the Periodic Health Examination. Periodic health examination, 1994 update. 3. Primary and secondary prevention of neural tube defects. Can Med Assoc J 1994; 151: 21–28.

    Google Scholar 

  94. Berry RY, Li Z, Erikson YD, et al. Prevention of neural-tube defects with folic acid in China N Engl J Med 1999; 341: 1485–1490.

    CAS  Google Scholar 

  95. US National Academy of Sciences. Dietary Reference Intakes: Folate, Other B Vitamins and Choline. National Academy Press. Washington DC, 1998.

    Google Scholar 

  96. Mills JL, McPartlin JM, Kirke PN, et al. Homocysteine metabolism in pregnancies complicated by neural-tube defects. Lancet 1995; 345: 149–151.

    Article  CAS  Google Scholar 

  97. Stokes PL. Folate metabolism in scurry. Am J Clin Nutr 1987; 31: 279–287.

    Google Scholar 

  98. Schwartz SO, Kaplan SR, Armstrong BE. The long-term evaluation of folic acid treatment of pernicious anemia. J Lab Clin Med 1950; 35: 894–898.

    CAS  Google Scholar 

  99. US Department of Health and Human Services. Food standards: amendment of standards of identity for enriched grain products to require addition of folic acid. Federal Register 1996; 61: 8781–8787.

    Google Scholar 

  100. Jacques PF, Selkub J, Bostom AG, et al. The effect of folic acid fortification on plasma folate and total homocysteine concentrations. N Engl J Med 1999; 340: 1449–1454.

    Article  CAS  Google Scholar 

  101. Czeizel AE, Merhala Z. Bread fortification with folic acid, vitamin B12 and vitamin B6 in Hungary. Lancet 1998; 352: 1225.

    Article  CAS  Google Scholar 

  102. Daly S, Mills JL, Molloy AM, et al. Minimum effective dose of folic acid for food fortification to prevent neural-tube defects. Lancet 1997; 350: 1666–1669.

    Article  CAS  Google Scholar 

  103. Daly LE, Kirke DN, Molloy A, et al. Folate level and neural tube defects. JAMA 1995; 274: 1698–1702.

    Article  CAS  Google Scholar 

  104. Barker DJP ed. Fetal and infant origins of adult disease. Br Med J Pub, London, England 1992.

    Google Scholar 

  105. Winship KA, Cahal DA, Weber JCP, Griffin JP. Maternal drug histories and central nervous system anomalies Arch Dis Child 1984; 59: 1052–1060.

    CAS  Google Scholar 

  106. Mulinare J, Cordero JF, Erickson D, Beery RJ. Periconceptional use of multivitamins and the occurrence of neural tube defects. JAMA 1980; 260: 3141–3145.

    Article  Google Scholar 

  107. Mills JL, Rhoads GG, Simpson JL, et al. The absence of a relation between the periconceptional use of vitamins and neural-tube defects. N Engl J Med 1989; 321: 430–435.

    Article  CAS  Google Scholar 

  108. Milunsky A, Jick H, Jick SS, et al. Multivitamin/folic acid supplementation in early pregnancy reduces the prevalence of neural tube defects. JAMA 1989; 262: 2847–2852.

    Article  CAS  Google Scholar 

  109. Shaw GM, Schaffer D, Velie EM, et al. Periconceptional vitamin use, dietary folate, and the occurrence of neural tube defect. Epidemiology 1995; 6: 219–226.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Czeizel, A.E. (2001). Folic Acid-Containing Multivitamins and Primary Prevention of Birth Defects. In: Bendich, A., Deckelbaum, R.J. (eds) Preventive Nutrition. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-236-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-236-4_15

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-6246-4

  • Online ISBN: 978-1-59259-236-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics