Skip to main content

Bacterial “Genes-to-Screens” in the Post-Genomic Era

  • Chapter
Pathogen Genomics

Part of the book series: Infectious Disease ((ID))

  • 120 Accesses

Abstract

In recent years, it has become increasingly apparent that the effectiveness of our antibiotic armamentarium is becoming severely eroded by microbial resistance (1–3). The breadth of resistance mechanisms is astonishing and alarming. Genes for inactivating antibiotics on transmissible elements, antibiotic target modifications, and efflux pumps are only a few examples of a bewildering array of resistance strategies employed by microbes. At the same time, the search for novel antimicrobial agents has slowed dramatically as pharmaceutical companies turned their drug development efforts elsewhere. It is also apparent that whereas the early years of antibiotic discovery led to a number of antibiotics of differing chemical classes, these “classical” methods of antimicrobial identification yielded diminishing returns. Most of these antibiotics were derived from natural product sources, and the screens to identify their presence were relatively crude growth-inhibition assays. Although this offered advantages in terms of finding potent inhibitors that could reach their cellular targets, it ruled out moderately active compounds (that might be dramatically improved) or compounds present in lower concentrations. Indeed, it has been argued that the few soil organisms that are sources of antibiotics are overproducing mutants. Whatever the ultimate explanation may be, the fact remains that all clinically useful antibiotics are members of a very limited number of structural classes that were discovered over 30 years ago.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dougherty TJ, Pucci MJ, Bronson JJ, Bonner DP, Barrett JF. Antimicrobial resistance—why do we have it and what can we do about it? Exp Opin Invest Drugs 2000; 9: 1707–1709

    Article  CAS  Google Scholar 

  2. Breithaupt H. The new antibiotics. Nat Biotechnol 1999; 17: 1165–1169.

    Article  PubMed  CAS  Google Scholar 

  3. Moellering RC Jr. Antibiotic resistance: lessons for the future. Clin Inf Dis 1998;27(Suppl 1):S 135-S 140.

    Google Scholar 

  4. Bjorkland J, Anderson DI. The cost of antibiotic resistance from a bacterial perspective. Drug Res Updates 2000; 3: 237–245.

    Article  Google Scholar 

  5. Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, et al. Whole genome random sequencing and assembly of Haemophilus influenzae Rd. Science 1995; 269: 496–512.

    Article  PubMed  CAS  Google Scholar 

  6. McKusick VA. Genomics: structural and functional studies of genomes. Genomics 1997; 45: 244–249.

    Article  PubMed  CAS  Google Scholar 

  7. Karp PD. EcoCyc: encyclopedia of Escherichia coli genes and metabolism. Nucleic Acids Res 1999; 27: 55–58.

    Article  PubMed  CAS  Google Scholar 

  8. Gaasterland T, Sensen CW. Fully automated genome analysis that reflects user needs and preferences. A detailed introduction to the MAGPIE system architecture. Biochimie 1996; 78: 302–310.

    Article  PubMed  CAS  Google Scholar 

  9. Derisi JL, Iyer VR, Brown PO. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 1997; 278: 680–686.

    Article  PubMed  CAS  Google Scholar 

  10. Lashkari DA, Derisi JL, McCusker JH, Namath AF, Gentiles C, Hwang SY, et al. Yeast microarrays for genome wide parallel genetic and gene expression technology. Proc Natl Acad Sci USA 1997;94:13, 057–13, 062.

    Google Scholar 

  11. VanBogelen RA, Schiller EE, Thomas JD, Neidhardt FC. Diagnosis of cellular states of microbial organisms using proteomes. Electrophoresis 1999; 20: 2149–2159.

    Article  PubMed  CAS  Google Scholar 

  12. Shapiro L, Harris T. Finding function through structural genomics. Curr Opin Biotechnol 2000; 11, 31–38.

    Article  PubMed  CAS  Google Scholar 

  13. Eisenstein E, Gilliland GL, Herzberg O, Moult J, Orban J, Poljak RI, et al. Biological function made crystal clear-annotation of hypothetical proteins via structural genomics. Curr Opin Biotechnol 2000; 11: 25–30.

    Article  PubMed  CAS  Google Scholar 

  14. Moir DT, Shaw KJ, Hare RS, Vovis GF. Genomics and antimicrobial drug discovery. Antimicrobiol Agents Chemother 1999; 43: 439–446.

    CAS  Google Scholar 

  15. Avery OT, MacLeod CM, McCarty M. Studies on the chemical nature of the substance inducing transformation of pneumococcal types. Induction of transformation by a deoxyribonucleic acid fraction from Pneumococcus Type III. J Exp Med 1944; 79: 137–158.

    Article  PubMed  CAS  Google Scholar 

  16. Nirenberg MW, Matthei JH. The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polypeptides. Proc Natl Acad Sci USA 1961; 47: 1588–1602.

    PubMed  CAS  Google Scholar 

  17. Lederberg J, Tatum EL. Gene recombination in E. coli. Nature 1946; 158: 558.

    CAS  Google Scholar 

  18. Chang AC, Cohen SN. Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol 1978; 134: 1141–1156.

    PubMed  CAS  Google Scholar 

  19. Boyer HW, Goodman HM, Helling RB. Analysis of endonuclease R-EcoRI fragments of DNA from lambdoid bacteriophages and other viruses by agarose-gel electrophoresis. J Virol 1974; 14: 1235–1244.

    PubMed  Google Scholar 

  20. Fraser CM, Gocayne JD, White O, Adams MD, Clayton RA, Fleischmann RD, et al. The minimal gene complement of Mycoplasma genitalium. Science 1995; 270: 397–403.

    Article  PubMed  CAS  Google Scholar 

  21. Audic S, Claverie J-M. Self-identification of protein-coding regions in microbial genomes. Proc Natl Acad Sci USA 1998;95:10, 006–10, 031.

    Google Scholar 

  22. Fraser CM, Eisen JA, Salzberg SL. Microbial genome sequencing. Nature 2000; 408: 816–820.

    Article  PubMed  Google Scholar 

  23. Kotra LP, Vakulenko S, Mobashery S. From genes to sequences to antibiotics: prospects for future developments from microbial genomics. Microbes and Infection 2000; 2: 651–658.

    Article  PubMed  CAS  Google Scholar 

  24. Kyrpides NC, Ouzounis CA. Whole-genome sequence annotation: ‘Going wrong with confidence’. Mol Microbiol 1999; 32: 886–887.

    Article  PubMed  CAS  Google Scholar 

  25. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215: 403–410.

    PubMed  CAS  Google Scholar 

  26. Pearson WR, Lipman DJ. Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 1988; 85: 2444–2448.

    Article  PubMed  CAS  Google Scholar 

  27. Jacob F, Monod J. Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 1961; 3: 318–356.

    Article  PubMed  CAS  Google Scholar 

  28. Behr MA, Wilson MA, Gill WP, Salamon H., Schoolnik GK, Rane S, et al. Comparative genomics of BCG vaccines by whole-genome DNA microarrays. Science 1999; 284: 1520–1523.

    Article  PubMed  CAS  Google Scholar 

  29. Hayashi T, Makino K, Ohnishi M, Kurokawa K, Ishii K, Yokoyama K, et al. Complete genome sequence of enterohemorrhagic Escerichia coli O157:H7 and genomic comparison with a laboratory strain K-12. DNA Res 2001; 8: 11–22.

    Article  PubMed  CAS  Google Scholar 

  30. Chalker AF, Minehart HW, Hughes NJ, Koretke KK, Lonetto MA, Brinkman KK, et al. Systematic identification of selective essential genes in Helicobacter pylori by genome prioritization and allelic replacement mutagenesis. J Bacteriol 2001; 183: 1259–1268.

    Article  PubMed  CAS  Google Scholar 

  31. Herrmann R, Reiner B. Mycoplasma pneumoniae and Mycoplasma genitalium: a comparison of two closely related bacterial species. Curr Opin Microbiol 1998; 1: 572–579.

    Article  PubMed  CAS  Google Scholar 

  32. Domenich P, Barry III CE, Cole ST. Mycobacterium tuberculosis in the post-genomic age. Curr Opin Microbiol 2001; 4: 28–34.

    Article  Google Scholar 

  33. Riley M, Serres MH. Interim report on genomics of Escherichia coli. Annu Rev Microbiol 2000; 54: 341–411.

    Article  PubMed  CAS  Google Scholar 

  34. Baltz RH, Norris FH, Matsushima P, DeHoff BS, Rockey P, Porter G, et al. DNA sequence sampling of the Streptococcus pneumoniae genome to identify novel targets for antibiotic development. Microbiol Drug Res 1998; 4: 1–9.

    Article  CAS  Google Scholar 

  35. Akerley BJ, Rubin EJ, Camilli A, Lampe DJ, Robertson HM, Mekalanos JJ. Systematic identification of essential genes by in vitro mariner mutagenesis. Proc Natl Acad Sci USA 1998; 95: 8927–8932.

    Article  PubMed  CAS  Google Scholar 

  36. Judson N, Mekalanos JJ. Transposon-based approaches to identify essential bacterial genes. Trends Microbiol 2000; 8: 521–526.

    Article  PubMed  CAS  Google Scholar 

  37. Shapiro L, Harris T. Finding function through structural genomics. Curr Opin Biotechnol 2000; 11: 31–35.

    Article  PubMed  CAS  Google Scholar 

  38. Edwards JS, Ibarra RU, Palsson BO. In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat Biotechnol 2001; 19: 125–130.

    Article  PubMed  CAS  Google Scholar 

  39. Couvert MW, Schilling CH, Famili I, Edwards JS, Goryanin II, Selkov E, et al. Metabolic modeling of microbial strains in silico. Trends Biochem Sci 2001; 26: 179–186.

    Article  Google Scholar 

  40. Chu DTW, Plattner JJ, Katz L. New directions in antibacterial research. J Med Chem 1996; 39: 3853–3874.

    Article  PubMed  CAS  Google Scholar 

  41. Bruccoleri RE, Dougherty TJ, Davison DB. Concordance analysis of microbial genomes. Nucl Acids Res 1998; 26: 4482–4486.

    Article  PubMed  CAS  Google Scholar 

  42. Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 1999; 285: 901–906.

    Article  PubMed  CAS  Google Scholar 

  43. Black T, Hare R. Will genomics revolutionize antimicrobial drug discovery? Curr Opin Microbiol 2000; 3: 522–527.

    Article  PubMed  CAS  Google Scholar 

  44. Goffin C, Ghuysen JM. Multimodular penicillin-binding proteins: an enigmatic family of orthologs and paralogs. Microbiol Mol Biol Rev 1998; 62: 1079–1093.

    PubMed  CAS  Google Scholar 

  45. Schmid MB, Kapur N, Isaacson DR, Lindroos P, Sharpe C. Genetic analysis of temperature-sensitive lethal mutants of Salmonella typhimurium. Genetics 1999; 123: 625–639.

    Google Scholar 

  46. Khlebnikov A, Risa O, Skaug T, Carrier TA, Keasling JD. Regulatable arabinose-inducible gene expression system with consistent control in all cells of a culture. J Bacteriol 2000; 182: 7029–7034.

    Article  PubMed  CAS  Google Scholar 

  47. Silen JL, Lu AT, Solas DW, Gore MA, Maclean D, Shah NH, et al. Screening for novel antimicrobials from encoded combinatorial libraries using a two-dimensional agar format. Antimicrob Agents Chemother 1998; 42: 1447–1453.

    PubMed  CAS  Google Scholar 

  48. King RW. Chemistry or biology: which comes first after the genome is sequenced? Chem Biol 1999; 6: R327 — R333.

    Article  PubMed  CAS  Google Scholar 

  49. Kirsch DR, Lai MH, McCullogh J, Gillum AM. The use of (3-galactosidase gene fusions to screen for antibacterial antibiotics. J Antibiots 1991; 44: 210–217.

    Article  CAS  Google Scholar 

  50. Arigoni F, Talabot F, Peitsch M, Edgerton MD, Meldrum E, Allet E, et al. A genome-based approach for the identification of essential bacterial genes. Nat Biotechnol 1998; 16: 851–856.

    Article  PubMed  CAS  Google Scholar 

  51. Hyde-DeRuyscher R, Paige LA, Christensen DJ, Hyde-DeRuyscher N, Lim A, Fredericks ZL. Detection of small-molecule enzyme inhibitors with peptides isolated from phage-displayed combinatorial peptide libraries. Chem Biol 2000; 7: 17–25.

    Article  PubMed  CAS  Google Scholar 

  52. Kolb JM, Yamanaka G, Manly S. Use of a novel homogeneous fluorescent technology in high throughput screening. J Biomol Screening 1996; 1: 203–210.

    Article  CAS  Google Scholar 

  53. Rogers MV. Light on high throughput screening: fluorescence based assay technologies. Drug Discov Today 1997; 2: 156–160.

    Article  CAS  Google Scholar 

  54. Khlebnikov A, Risa O, Skaug T, Carrier TA, Keasling JD. Regulatable arabinose-inducible gene expression system with consistent control in all cells of a culture. J Bacteriol 2000; 182: 7029–7034.

    Article  PubMed  CAS  Google Scholar 

  55. Connolly ML. Solvent-accessible surfaces of proteins and nucleic acids. Science 1983; 221: 709–713.

    Article  PubMed  CAS  Google Scholar 

  56. Lauri G, Bartlett PA. CAVEAT: a program to facilitate the design of organic molecules. J Cornput-Aided Mol Des 1994; 8: 51–66.

    Article  CAS  Google Scholar 

  57. Nikaido H. Multiple antibiotic resistance and efflux. Curr Opin Microbiol 1998; 1: 516–523.

    Article  PubMed  CAS  Google Scholar 

  58. Paulsen IT, Chen J, Nelson KE, Saier MH Jr. Comparative genomics of microbial drug efflux systems. J Mol Microbiol Biotechnol 2001; 3: 145–150.

    PubMed  CAS  Google Scholar 

  59. Renau TE, Leger R, Flamme EM, Sangalang J, She MW, Yen R, et al. Inhibitors of efflux pumps in Pseudomonas aeruginosa potentiate the activity of the fluoroquinolone antibacterial levofloxacin. J Med Chem 1999; 2; 42: 4928–4931.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Pucci, M.J., Barrett, J.F., Dougherty, T.J. (2002). Bacterial “Genes-to-Screens” in the Post-Genomic Era. In: Shaw, K.J. (eds) Pathogen Genomics. Infectious Disease. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-172-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-172-5_7

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9683-3

  • Online ISBN: 978-1-59259-172-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics