Skip to main content

Folate Deficiency and the Molecular Determinants of Chromosome Instability

Possible Link to Meiotic Nondisjunction and Down Syndrome

  • Chapter
Folate and Human Development

Abstract

Tetrahydrofolate (THF) is the metabolically active form of folate that is central to normal one-carbon metabolism. The interdependent and interconnecting pathways of folate and one-carbon metabolism are graphically presented in Fig. 1 with emphasis on the two major functions of folic acid: DNA synthesis and DNA methylation. Normal folate metabolism is essential for the synthesis and balance of deoxynucleotide triphosphate (dNTP) precursor pools required for error-free DNA synthesis and repair (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eto, I. and Krumdieck, C. L. (1986) Role of vitamin B12 and folate in carcinogenesis. In Essential Nutrients in Carcinogenesis. Poirier, L. A., Newberne, P. M., and Pariza, M. W., eds. Academic: New York, pp. 313–330.

    Chapter  Google Scholar 

  2. Pogribny, I. P., Miller, B. J., and James, S. J. (1997) Alterations in hepatic p53 gene methylation patterns during tumor progression with folate/methyl deficiency in the rat. Cancer Lett. 115, 31–38.

    Article  CAS  Google Scholar 

  3. Kunz, B. A. and Kohalmi, S. E. (1991) Modulation of mutagenesis by deoxyribonucleotide levels. Annu. Rev. Genet. 25, 339–359.

    Article  CAS  Google Scholar 

  4. Pogribny, I. P., Basnakian, A. G., Miller, B. J., Lopatina, N. G., Poirier, L. A., and James, S. J. (1995) Breaks in genomic DNA and within the p53 gene are associated with hypomethylation in livers of folate/methyl-deficient rats. Cancer Res. 55, 1894–1901.

    CAS  Google Scholar 

  5. Pogribny, I. P., Muskhelishvili, L., Miller, B. J., and James, S. J. (1997) Presence and consequence of uracil in preneoplastic DNA from folate/methyldeficient rats. Carcinogenesis 18, 2071–2076.

    Article  CAS  Google Scholar 

  6. Blount, B. C., Mack, M. M., Wehr, C. M., MacGregor, J. T., Hiatt, R. A., Wickremasinghe, R. G., et al. (1997) Folate deficiency causes uracil misincorporation into human DNA and chromosome breakage: Implications for cancer and neuronal damage. Proc. Natl. Acad. Sci. USA 94, 3290–3295.

    Article  CAS  Google Scholar 

  7. Duthie, S. J. and Hawdon, A. (1998) DNA instability (strand breakage, uracil misincorporation, and defective repair) is increased by folic acid depletion in human lymphocytes in vitro. FASEB J. 12 (14), 1491–1497.

    CAS  Google Scholar 

  8. Reidy, J. A. (1987) Deoxyuridine increases folate-sensitive fragile site expression in human lymphocytes. Am. J. Med. Genet. 26, 1–5.

    Article  CAS  Google Scholar 

  9. Sutherland, G. R. and Baker, E. (1986) Effects of nucleotides on expression of the folate sensitive fragile sites. Am. J. Med. Genet. 23, 409–407.

    Article  CAS  Google Scholar 

  10. Li, J. C. and Kaminskas, E. (1984) Accumulation of DNA strand breaks and methotrexate cytotoxicity. Proc. Natl. Acad. Sci. USA 81, 5694–5698.

    Article  CAS  Google Scholar 

  11. James, S. J., Yin, L., and Swendseid, M. E. (1989) DNA strand break accumulation, thymidylate synthesis and NAD levels in lymphocytes from methyl donor-deficient rats. J. Nutr. 119 (4), 661–664.

    CAS  Google Scholar 

  12. Melnyk, S., Pogribna, M., Miller, B. J., Basankian, A. G., Pogribny, I. P., and James, S. J. (1999) Uracil misincorporation, DNA strand breaks, and gene amplification are associated with tumorigenic cell transformation in folate deficient/repleated Chinese hamster ovary cells. Cancer Lett. 146, 35–44.

    Article  CAS  Google Scholar 

  13. Titenko-Holland, N., Jacob, R. A., Shang, N., Balaraman, A., and Smith, M. T. (1998) Micronuclei in lymphocytes and exfoliated buccal cells of postmenopausal women with dietary changes in folate. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 417, 101–114.

    Article  CAS  Google Scholar 

  14. Mattano, S. S., Palella, T. D., and Mitchell, B. S. (1990) Mutations induced at the hypoxanthine-guanine phosphoribosyltransferase locus of human Tlyphoblasts by perturbations of purine deoxyribonucleoside triphosphate pools. Cancer Res. 50, 4566–4571.

    CAS  Google Scholar 

  15. Kunz, B. A. (1988) Mutagenesis and deoxynucleotide pool imbalance. Mutat. Res. 200, 133–147.

    Article  CAS  Google Scholar 

  16. Branda, R. F., Hacker, M., Lafayette, A., Nigels, E., Sullivan, L., Nicklas, J. A., et al. (1998) Nutritional folate deficiency augments the in vivo mutagenic and lymphocytotoxic activities of alkylating agents. Environ. Mol. Mutagen. 32 (1), 33–38.

    Article  CAS  Google Scholar 

  17. Hoffman, D. R., Cornatzer, W. E., and Duerre, J. A. (1979) Relationship between tissue levels of S-adenosylmethionine, S—adenylhomocysteine, and transmethylation reactions. Can. J. Biochem. 57 (1), 56–65.

    Article  CAS  Google Scholar 

  18. Hu, Y., Komoto, T., Gomi, H., Ogawa, H., Takata, Y., Fujioka, M., et al. (1999) Chrystal structure of S-adenosylhomocysteine from rat liver. Biochemistry 38, 8323–8333.

    Article  CAS  Google Scholar 

  19. De Cabo, S.F., Santos, J., and Fernandez-Piqueras, J. (1995) Molecular and cytological evidence of S-adenosyl-L-homocysteine as an innocuous undermethylating agent in vivo. Cytogenet. Cell Genet. 71, 187–192.

    Article  Google Scholar 

  20. Weir, D. G., Molloy, A. M., Keating, J. N., Young, P. B., Kennedy, S., Kennedy, D. G., et al. (1992) Correlation of the ratio of S-adenosylmethionine to S-adenosylhomocysteine in the brain and cerebrospinal fluid of the pig: implications for the determination of this methylation ratio in human brain. Clin. Sci. 82, 93–97.

    CAS  Google Scholar 

  21. Finkelstein, J. D. (1990) Methionine metabolism in mammals. J. Nutr. Biochem. 1, 228–237.

    Article  CAS  Google Scholar 

  22. Finkelstein, J. D., Kyle, W. E., and Harris, B. J. (1974) Methionine metabolism in mammals: regulatory effects of S-adensoyhomocysteine, and transmethylation reactions. Arch. Biochem. Biophys. 165, 774–779.

    Article  CAS  Google Scholar 

  23. Chiang, P. K., Gordon, R. K., Tal, J., Zeng, G. C., Doctor, B. P., Pardhasaradhi, K., et al. (1996) S-adenosylmethionine and methylation. FASEB J. 10, 471–480.

    CAS  Google Scholar 

  24. Finkelstein, J. D. (1998) The metabolism of homocysteine:pathways and regulation. Eur. J. Pediatr. 157, S40–S44.

    Article  CAS  Google Scholar 

  25. Fleischman, A., Hershfield, M. S., Toutain, S., Lederman, H. M., Sullivan, K. E., Fasano, M. B., et al. (1998) Adenosine deaminase deficiency and purine nucleoside phosphorylase deficiency in common variable immunodeficiency. Clin. Diagn. Lab. Immunol. 5 (3), 399–400.

    CAS  Google Scholar 

  26. Hershfield, M. S. and Francke, U. (1982) The human genes for Sadenosylhomocysteine hydrolase and adenosine deaminase are syntenic on chromosome 20. Science 216 (4547), 739–742.

    Article  CAS  Google Scholar 

  27. Christensen, B., Arbour, L., Tran, P., Leclerc, D., Sabbaghian, N., Platt, R., et al. (1999) Genetic polymorphisms in methylenetetrahydrofolate reductase and methionine synthase, folate levels in red blood cells, and risk of neural tube defects. Am. J. Med. Genet. 84, 151–157.

    Article  CAS  Google Scholar 

  28. Wilson, A., Platt, R., Wu, R.K., Leclerc, D., Christensen, B., Yang, H., et al. (1999) A common variant in methionine synthase reductase combined with low cobalamin (vitamin B12) increases risk for spina bifida. Mol. Genet. Metab. 67, 317–323.

    Article  CAS  Google Scholar 

  29. Morrison, K., Papapetrou, C., Hol, F. A., Mariman, E. C. M., Lynch, S. A., Burn, J., et al. (1998) Susceptibility to spina bifida: an association study of five candidate genes. Ann. Hum. Genet. 62 (Pt. 5), 379–396.

    Article  CAS  Google Scholar 

  30. Botto, L. and Mastroiacovo, P. (1988) Exploring gene-gene interactions in the etiology of neural tube defects. Clin. Genet. 53, 456–459.

    Article  Google Scholar 

  31. Heath, C. W., Jr. (1966) Cytogenetic observations in vitamin B12 and folate deficiency. Blood 27 (6), 800–815.

    CAS  Google Scholar 

  32. Fuster, C., Miro, R., Barrios, L., and Egozcue, J. (1992) Induction of premature centromere division affecting all chromosomes under culture conditions of fragile site expression. Cancer Genet. Cytogenet. 58 (2), 152–154.

    Article  CAS  Google Scholar 

  33. Krumdieck, C. L. (1983) Role of folate deficiency in carcinogenesis. In Nutritional Factors in the Induction and Maintenance of Malignancy. Butterworth, C. E. and Hutchenson, M. L., eds. Academic: New York, pp. 225–245.

    Google Scholar 

  34. Barclay, B. J., Kunz, B. A., Little, J. G., and Haynes, R. H. (1982) Genetic and biochemical consequences of thymidylate stress. Can. J. Biochem. 60, 172–194.

    Article  CAS  Google Scholar 

  35. Kunz, B. A. (1982) Genetic effects of deoxyribonucleotide pool imbalance. Envir. Mutat. 4, 695–725.

    CAS  Google Scholar 

  36. Everson, E. B., Wehr, C., Erexson, G. L., and MacGregor, J. T. (1988) Association of marginal folate depletion with increased human chromosomal damage in vivo: demonstration by analysis of micronucleated erythrocytes. J. Natl. Cancer Inst. 80, 525–529.

    Article  CAS  Google Scholar 

  37. MacGregor, J. T. (1990) Dietary factors affecting spontaneous chromosomal damage in man Prog. Clin. Biol. Res. 347, 139–153.

    CAS  Google Scholar 

  38. Glover, T. W. and Stein, C. K. (1988) Chromosome breakage and recombination at fragile sites. Am. J. Hum. Genet. 43 (3), 265–273.

    CAS  Google Scholar 

  39. Glover, T. W. (1998) Instability at chromosomal fragile sites. Recent Results Cancer Res. 154, 185–199.

    Article  CAS  Google Scholar 

  40. Sutherland, G. (1988) The role of nucleotides in human fragile site expression. Mutat. Res. 200, 207–213.

    Article  CAS  Google Scholar 

  41. Sandberg, G. and Schalling, M. (1997) Effect of in vitro promoter methylation and CGG repeat expansion on FMR-1 expression. Nucleic Acids Res. 25 (14), 2883–2887.

    Article  CAS  Google Scholar 

  42. Djalali, M., Adolph, S., Steinbach, P., Winking, H., and Hameister, H. (1990) Fragile sites induced by 5-azacytidine and 5-azadeoxycytidine in the murine genome. Hereditas 112 (1), 77–81.

    Article  CAS  Google Scholar 

  43. Chernova, O. B., Chernov, M. V., Agarwal, M. L., Taylor, W. R., and Stark, G. R. (1995) The role of p53 in regulating genomic stability when DNA and RNA synthesis are inhibited. Trends Biochem. Sci. 20 (10), 431–434.

    Article  CAS  Google Scholar 

  44. Coquelle, A., Pipiras, E., Toledo, F., Buttin, G., and Debatisse, M. (1997) Expression of fragile sites triggers intrachromosomal mammalian gene amplification and sets boundaries to early amplicons. Cell 89 (2), 215–225.

    Article  CAS  Google Scholar 

  45. Popescu, N. C. (1994) Chromosome fragility and instability in human cancer. Crit. Rev. Oncogen. 5, 121–140.

    Article  CAS  Google Scholar 

  46. Balaghi, M. and Wagner, C. (1993) DNA methylation in folate deficiency—use of CpG methylase. Biochem. Biophys. Res. Commun. 193, 1184–1190.

    Article  CAS  Google Scholar 

  47. Yi, P., Melnyk, S., Pogribna, M., Pogribny, I. P., Hine, R. J., and James, S. J. (2000) Increase in plasma homocysteine associated with parallel increases in plasma S-adenosylhomocyteine and lymphocyte DNA hypomethylation. J. Biol. Chem. 275, 29318–29323.

    Article  CAS  Google Scholar 

  48. Jacob, R. A., Gretz, D. M., Taylor, P. C., James, S. J., Pogribny, I. P., Miller, B. J., et al. (1998) Moderate folate depletion increases plasma homocysteine and decreases lymphocyte DNA methylation in postmenopausal women. J. Nutr. 128, 1204–1212.

    CAS  Google Scholar 

  49. Cravo, M., Mason, J., Saloman, R. N., Ordovas, J., Osada, J., Selhub, J., and Rosenberg, J. H. (1991) Folate deficiency in rats causes hypomethylation of DNA. FASEB J. 5, A914.

    Google Scholar 

  50. Fowler, B. M., Giuliano, A. R., Piyathilake, C., Nour, M., and Hatch, K. (1998) Hypomethylation in cervical tissue: Is there a correlation with folate status? Cancer Epidemiol. Biomarkers Prey. 7, 901–906.

    CAS  Google Scholar 

  51. Fang, J. Y., Xiao, S. D., Zhu, S. S., Yuan, J. M., Qiu, D. K., and Jiang, S. J. (1997) Relationship of plasma, folic acid, and status of DNA methylation in human gastric cancer. J. Gastroenterol. 32, 171–175.

    Article  CAS  Google Scholar 

  52. Baylin, S. B., Herman, J. G., Graff, J. R., Vertino, P., and Issa, J.-P. (1998) Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv. Cancer Res. 72, 141–196.

    Article  CAS  Google Scholar 

  53. Bernardino, J., Lamoliatte, E., Lombard, M., Niveleau, A., Malfoy, B., Dutrillaux, B., et al. (1996) DNA methylation of the X chromosomes of the human female: an in situ semi-quantitative analysis. Chromosoma 104 (7), 528–535.

    Article  CAS  Google Scholar 

  54. Bird, A. (1999) DNA methylation de novo. Science 286 (5448), 2287–2288.

    Article  CAS  Google Scholar 

  55. Cedar, H. and Razin, A. (1990) DNA methylation and development. Biochim. Biophys. Acta 1049 (1), 1–8.

    Article  CAS  Google Scholar 

  56. Walsh, C. P. and Bestor, T. H. (1999) Cytosine methylation and mammalian development. Genes Dev. 13 (1), 26–34.

    Article  CAS  Google Scholar 

  57. Yoder, J. A., Walsh, C. P., and Bestor, T. H. (1997) Cytosine methylation and the ecology of intragenomic parasites. Trends. Genet. 13 (8), 335–340.

    Article  CAS  Google Scholar 

  58. Li, E., Bestor, T. H., and Jaenisch, R. (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell. 69, 915–926.

    Article  CAS  Google Scholar 

  59. Doerksen, T. and Trasler, J. M. (1996) Developmental exposure of male germ cells to 5-azacytidine results in abnormal preimplantation development in rats. Biol. Reprod. 55 (5), 1155–1162.

    Article  CAS  Google Scholar 

  60. Xu, G. L., Bestor, T. H., Bourc’his, D., Hsieh, C. L., Tommerup, N., Bugge, M., et al. (1999) Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 402, 187–191.

    Article  CAS  Google Scholar 

  61. Schmid, M., Haaf, T., and Grunert, D. (1984) 5-Azacytidine-induced undercondensations in human chromosomes. Hum. Genet. 67(3), 257–263.

    Article  CAS  Google Scholar 

  62. Bestor, T. H. and Tycko, B. (1996) Creation of genomic methylation patterns. Nature Genet. 12, 363–367.

    Article  CAS  Google Scholar 

  63. Vig, B. K. and Willcourt, M. (1998) Decondensation of pericentric hetero-chromatin alters the sequence of centromere separation in mouse cells. Chromosoma 107 (6–7), 417–423.

    Article  CAS  Google Scholar 

  64. Grewal, S. I. S., Bonduce, M., and Klar, K. (1998) Histone deacetylase homologs regulate epigenetic inheritance of transcriptional silencing and chromosome segregation in fission yeast. Genetics 150, 563–576.

    CAS  Google Scholar 

  65. Gray, M. D., Jesch, S. A., and Stein, G. H. (1991) 5-Azacytidine-induced demethylation of DNA to senescent level does not block proliferation of human fibroblasts. J. Cell Physiol. 149(3), 477–484.

    Article  CAS  Google Scholar 

  66. Nan, X., Ng, H., Johnson, C., Laherty, C. D., Turner, B. M., Eisenman, R. N., et al. (1998) Transcriptional repression by the methyl CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393, 386–389.

    Article  CAS  Google Scholar 

  67. Jones, P. L., Veenstra, G. J. C., Vermaak, D., Kass, S. U., Landsberger, N., and Stronboulis, J. (1998) Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nature Genet. 19, 187–191.

    Article  CAS  Google Scholar 

  68. Willard, H. (1998) Centromeres: the missing link in the development of human artificial chromosomes. Curr. Opin. Genet. Dey. 8 (2), 219–225.

    Article  CAS  Google Scholar 

  69. Smith, K. and Nicolas, A. (1998) Recombination at work for meiosis. Curr. Opin. Genet. Dey. 8 (2), 200–211.

    Article  CAS  Google Scholar 

  70. Cobb, J., Miyaike, M., Kikuchi, A., and Handel, M. A. (1999) Meiotic events at the centromeric heterochromatin: histone H3 phosphorylation, topoisomerase II alpha localization and chromosome condensation. Chromosoma 108 (7), 412–425.

    Article  CAS  Google Scholar 

  71. Renauld, H. and Gasser, S. (1997) Heterochromatin: a meiotic matchmaker? TIBS 7, 201–205.

    CAS  Google Scholar 

  72. Brooks, P., Marietta, C., and Goldman, D. (1996) DNA mismatch repair and DNA methylation in adult brain neurons. Nature Genet. 16 (3), 939–945.

    CAS  Google Scholar 

  73. Gonzalgo, M. L. and Jones, P. A. (1997) Mutagenic and epigentic effects of DNA methylation. Mut. Res. Rev. 386, 107–118.

    Article  CAS  Google Scholar 

  74. Jeanpierre, M., Turleau, C., Aurias, A., Prieur, M., Ledeist, F., Fischer, A., et al. (1993) An embryonic-like methylation pattern of classical satellite DNA is observed in ICF syndrome. Hum. Mol. Genet. 2 (6), 731–735.

    Article  CAS  Google Scholar 

  75. Miniou, P., Jeanpierre, M., Blanquet, V., Sibella, V., Bonneau, D., Herbelin, C., et al. (1994) Abnormal methylation pattern in constitutive and facultative (X inactive chromosome) heterochromatin of ICF patients. Hum. Mol. Genet. 3 (12), 2093–2102.

    Article  CAS  Google Scholar 

  76. Xu, G. L., Bourc’his, D., Hsieh, C. L., Tommerrup, N., Bugge, M., Hulten, M., et al. (1999) Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 402 (6758), 187–191.

    Article  CAS  Google Scholar 

  77. Hansen, R. S., Wijmenga, C., Luo, P., Stanek, A. M., Canfield, T. K., Weemaes, C. M., et al. (1999) The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. Proc. Natl. Acad. Sci. USA 96(25), 14,412–14,417.

    Article  CAS  Google Scholar 

  78. Leyton, C., Mergudich, D., de la Torre, D., and Sans, J. (1995) Impaired chromosome segregation in plant anaphase after moderate hypomethylation of DNA. Cell Prolif. 28, 481–496.

    Article  CAS  Google Scholar 

  79. Vig, B. K. and Hallett, W. H. (2000) 5-Azacytidine-and Hoechst-induced aneuploidy in Indian muntjac. Mutat. Res. 466(1), 79–86.

    Article  CAS  Google Scholar 

  80. Chen, R., Pettersson, U., Beard, C., Jackson-Grusby, L., and Jaenisch, R. (1998) DNA hypomethylation leads to elevated mutation rates. Nature 395 (6697), 89–93.

    Article  CAS  Google Scholar 

  81. Rasnick, D. and Duesberg, P. H. (1999) How aneuploidy affects metabolic control and causes cancer. Biochem. J. 340 (Pt. 3), 621–630.

    Google Scholar 

  82. Vilain, A., Vogt, N., Dutrillaux, B., and Malfoy, B. (1999) DNA methylation and chromosome instability in breast cancer cell lines. FEBS Lett. 460 (2), 231–234.

    Article  CAS  Google Scholar 

  83. Lejeune, J. (1990) Pathogenesis of mental deficiency in trisomy 21. Am. J. Med. Genet. 37 (Suppl.), 20–30.

    Article  Google Scholar 

  84. Epstein, C. J. (1995) Down syndrome (Trisomy 21). In The Metabolic and Molecular Bases of Inherited Disease. Stansbury, J., Wyngarden, J., Fredrickson, D., eds. Academic: New York, pp. 749–795.

    Google Scholar 

  85. Hassold, T. and Jacobs, P. (1984) Trisomy in man. Annu.Rev.Genet. 18, 69–97.

    Article  CAS  Google Scholar 

  86. Hunt, P., Lemaire-Adkins, R. (2000) Genetic control of mammalian female meiosis. Curr. Topics Dev. Biol. 37, 359–381.

    Article  Google Scholar 

  87. Lemaire-Adkins, R., Radke, K., Hunt, P. (1997) Lack of checkpoint control at the metaphase/anaphase transition: a mechanism of meiotic nondisjunction in mammalian females. J. Cell Biol. 139 (7), 1611–1619.

    Article  CAS  Google Scholar 

  88. Hunt, P. (1998) The control of mammalian female meiosis: factors that influence chromosome segregation. J. Assist. Reprod. Genet. 15, 246–252.

    Article  CAS  Google Scholar 

  89. Picton, H., Briggs, D., and Gosden, R. (1998) The molecular basis of oocyte growth and development. Mol. Cell. Endocrinol. 145, 27–37.

    Article  CAS  Google Scholar 

  90. McKim, K. and Hawley, R. (1995) Chromosomal control of meiotic cell division. Science 270, 1595–1601.

    Article  CAS  Google Scholar 

  91. Lamb, N. E., Feingold, E., Savage, A., Avramopoulos, D., Freeman, S., Gu, Y., et al. (1997) Characterization of susceptible chiasma configurations that increase the risk for maternal nondisjunction of chromosome 21. Hum. Mol. Genet. 6 (9), 1391–1399.

    Article  CAS  Google Scholar 

  92. Angell, R. (1997) First-meiotic-division nondisjunction in human oocytes. Am. J. Hum. Genet. 61, 23–32.

    Article  CAS  Google Scholar 

  93. Lamb, N. E., Freeman, S. B., Savage-Austin, A., Pettay, D., Taft, L., Hersery, J., et al. (1996) Susceptible chiasmate configurations of chromosome 21 predispose to non-junction in both maternal meiosis I and meiosis II. Nature Genet. 14, 400–405.

    Article  CAS  Google Scholar 

  94. Sherman, S. L., Takesu, N., Freeman, S. B., Grantham, M., Phillips, C., Blackston, R. D., et al. Trisomy 21: Association between reduced recombination and nondisjunction. Am. J. Hum. Genet. 49, 608–620.

    Google Scholar 

  95. Hassold, T. and Sherman, S. (2000) Down syndrome: genetic recombination and the origin of the extra chromosome 21. Clin. Genet. 57 (2), 95–100.

    Article  CAS  Google Scholar 

  96. Angell, R. (1991) Predivision in human oocytes at meiosis I: a mechanism for trisomy formation in man. Hum. Genet. 86, 383–387.

    Article  CAS  Google Scholar 

  97. Angell, R. R., Xian, J., Keith, J., Ledger, W., and Baird, D. (1994) First meiotic division abnormalities in human oocytes: mechanism of trisomy formation. Cytogenet. Cell Genet. 65, 194–202.

    Article  CAS  Google Scholar 

  98. MacDonald, M., Hassold, T., Harvey, J., Wang, L. H., Morton, N. E., and Jacobs, P. (1994) The origin of 47, XXY and 47, XXX aneuploidy: heterogeneous mechanisms and role of aberrant recombination. Hum. Mol. Genet. 3, 1365–1371.

    Article  CAS  Google Scholar 

  99. Bamezai, R., Shiraishi, Y., and Taguchi, H. (1986) Centromere spreading in a case of megaloblastic anemia “cured” under TC 199 culture conditions. Cancer Genet. Cytogenet. 20 (3–4), 341–343.

    Article  CAS  Google Scholar 

  100. Frosst, P., Blom, H. J., Milos, R., Goyette, P., Sheppard, C. A., Matthews, R. G., et al. (1995) A candidate genetic risk factor for vascular disease: A common mutation in methylenetetrahydrofolate reductase. Nature Genet. 10, 111–113.

    Article  CAS  Google Scholar 

  101. Bailey, L.B. and Gregory, J. (1999) Polymorphisms of methylenetetrahydrofolate reductase and other enzymes: metabolic significance, risks, and impact on folate requirement. J. Nutr. 129, 919–922.

    CAS  Google Scholar 

  102. James, S. J., Pogribna, M., Pogribny, I. P., Melnyk, S., Hine, R. J., Gibson, J. B., et al. (1999) Abnormal folate metabolism and mutation in the methylenetetrahydrofolate reductase (MTHFR) gene may be maternal risk factors for Down syndrome. Am. J. Clin. Nutr. 70, 495–501.

    CAS  Google Scholar 

  103. Melnyk, S., Pogribna, M., Pogribny, I. P., Yi, P., and James, S. J. (2000) Measurement of plasma and intracellular S-adenosylmethionine and Sadenosylhomocysteine utilizing coulometric electrochemical detection: alterations with plasma homocysteine and pyridoxal 5’-phosphate concentrations. Clin. Chem. 46, 265–272.

    CAS  Google Scholar 

  104. Hobbs, C.A., Sherman, S.L., Ping, Y., Hopkins, S.E., Torfs, C.P., Hine, J., et al. (2000) Polymorphisms in genes involved in folate metabolism as maternal risk factors for Down syndrome. Am. J. Hum. Genet. 67, 623–630.

    Article  CAS  Google Scholar 

  105. Edmonds, L. D. and Oakley, G. P. (1981) Congenital malformations surveillance: Two American systems. Int. J. Epidemiol. 10 (3), 247–252.

    Article  CAS  Google Scholar 

  106. Torfs, C. and Christianson, R. (1999) Maternal risk factors and major associated defects in infants with Down syndrome. Epidemiology 10 (3), 264–270.

    Article  CAS  Google Scholar 

  107. Malinow, M.R., Nieto, F.J., Kruger, W.D., Duell, P.B., Hess, D.L., Gluckman, R.A., et al. (1997) The effects of folic acid supplementation of plasma total homocysteine are modulated by multivitamin use and methlenetetrahydrofolate reductase genotypes. Arteriosclerosis Thromb. Vasc. Biol. 17 (6), 1157–1162.

    Article  CAS  Google Scholar 

  108. Botto, L. D. and Yang, Q. (2000) 5,10-Methylenetetrahydrofolate reductase gene variants and congenital anomalies: a HuGE review. Am. J. Epidemiol. 151(9), 862–877.

    Article  CAS  Google Scholar 

  109. Nelen, W., Blom, H., Thomas, C., Steegers, E., Boers, G., and Eskes, T. (1998) Methylenetetrahydrofolate reductase polymorphism affects the change in homocysteine and folate concentrations resulting from low dose folic acid supplementation in women with unexplained recurrent miscarriages. J. Nutr. 128, 1336–1341.

    CAS  Google Scholar 

  110. Czeizel, A. E. (1993) Prevention of congenital abnormalities by periconceptional multivitamin supplementation. Br. Med. J. 306 (6893), 1645–1648.

    Article  CAS  Google Scholar 

  111. Czeizel, A. E., Toth, M., and Rockenbauer, M. (1996) Population-based case control study of folic acid supplementation during pregnancy. Teratology 53, 345–351.

    Article  CAS  Google Scholar 

  112. Werler, M. M., Hayes, C., Louik, C., Shapiro, S., and Mitchell, A. A. (1999) Multivitamin supplementation and risk of birth defects. Am. J. Epidemiol. 150 (7), 675–682.

    Article  CAS  Google Scholar 

  113. Shaw, G. M., O’Malley, C. D., Wasserman, C. R., Tolarova, M. M., and Lammer, E. J. (1995) Maternal periconceptional use of multivitamins and reduce risk for conotruncal heart defects and limb deficiencies among off spring. Am. J. Med. Genet. 59, 536–545.

    Article  CAS  Google Scholar 

  114. Scanlon, K. S., Ferencz, C., Loffredo, C. A., Wilson, P. D., Correa-Villaseíïor, A., Khoury, M. J., et al. (1998) Preconceptional folate intake and malformations of the cardiac outflow tract. Baltimore-Washington Infant Study Group. Epidemiology 9 (1), 95–98.

    Article  CAS  Google Scholar 

  115. Hook, E. B., Carothers, A., and Hecht, C. (1999) Elevated maternal age-specific rates of Down syndrome liveborn offspring of women of Mexican and Central American origin in California. Prenat. Diagn. 19, 245–251.

    Article  CAS  Google Scholar 

  116. Rozen, R. (1996) Molecular genetics of methylenetetrahydrofolate reductase deficiency. J. Inherited Metab. Dis. 19, 589–594.

    Article  CAS  Google Scholar 

  117. Yang, Q., Sherman, S. L., Hassold, T. J., Allran, K., Taft, L., Pettay, D., et al. (1999) Risk factors for trisomy 21: maternal cigarette smoking and oral contraceptive use in a population-based case-control study. Genet. Med. 1, 80–88.

    Article  CAS  Google Scholar 

  118. Piyathilake, C., Macaluso, M., Hine, R.J., Richards, E., and Krumdieck, C. L. (1994) Local and systemic effects of cigarette smoking on folate and vitamin B-12. Am. J. Clin. Nutr. 60 (4), 559–566.

    CAS  Google Scholar 

  119. Lewis, D. P., Van Dyke, D. C., Stumbo, P. J., and Berg, M. J. (1998) Drug and environmental factors associated with adverse pregnancy outcomes part II: improvement with folic acid. Ann. Pharmacol. 32, 947–961.

    Article  CAS  Google Scholar 

  120. Boue, J., Deluchat, C., Nicolas, H., and Boue, A. (1981) Prenatal losses of trisomy 21. Hum. Genet. 2 (Suppl.), 183–193.

    CAS  Google Scholar 

  121. Lin, A.E., Herring, A.H., Amstutz, K.S., Westgate, M.N., Lacro, R.V., AlJufan, M., et al. (1999) Cardiovascular malformations: changes in prevalence and birth status, 1972–1990. Am. J. Med. Genet. 84 (2), 102–110.

    Article  CAS  Google Scholar 

  122. Forrester, M. B., Merz, R. D., and Yoon, P. W. (1998) Impact of prenatal diagnosis and elective termination on the prevalence of selected birth defects in Hawaii. Am. J. Epidemiol. 148 (12), 1206–1211.

    Article  CAS  Google Scholar 

  123. Khoury, M. and Beaty, T. (1987) Recurrence risks in the presence of single gene susceptibility to environmental agents. Am. J. Med. Genet. 28 (1), 159–169.

    Article  CAS  Google Scholar 

  124. Little, J. (1999) Problems and approaches in investigating the role of micro-nutrients in the aetiology of cancer in humans. Br. Med. Bull. 55 (3), 600–618.

    Article  CAS  Google Scholar 

  125. Shaw, G. M. and Lammer, E. (1997) Incorporating molecular genetic variation and environmental exposures into epidemiologic studies of congenital anomalies. Reprod. Toxicol. 11 (2/3), 275–280.

    Article  CAS  Google Scholar 

  126. Perera, F. P. and Weinstein, I. B. (2000) Molecular epidemiology: recent advances and future directions. Carcinogenesis 21 (3), 517–524.

    Article  CAS  Google Scholar 

  127. Garcia-Closas, M. and Lubin, J. H. (1999) Power and sample size calculations in case control studies of gene-environment interactions: Comments on different approaches. Am. J. Epidemiology 149 (8), 689–692.

    Article  CAS  Google Scholar 

  128. Yunis, J. J., Soreng, A. L., and Bowe, A. E. (1987) Fragile sites are targets of diverse mutagens and carcinogens. Oncogene 1, 59–69.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

James, S.J., Hobbs, C.A. (2002). Folate Deficiency and the Molecular Determinants of Chromosome Instability. In: Massaro, E.J., Rogers, J.M. (eds) Folate and Human Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-164-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-164-0_3

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-262-9

  • Online ISBN: 978-1-59259-164-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics