Skip to main content

Antibody Targeting of Tumor Vasculature

  • Chapter
The New Angiotherapy

Abstract

For many years the idea of the “magic bullet” approach to target cells in the treatment of cancer and other pathological conditions has been a tempting scenario. One such approach is to develop monoclonal antibodies (MAbs) against defined cell-surface markers and use these antibodies to direct cytotoxic agents to specific cells. However, the use of such therapies to target the actual tumor cells within solid tumors has proved to be inefficient, with usually less than 0.01% of the injected dose of an antibody localising per gram of tumor in humans. Furthermore, owing to the density of the packed tumor cells and high interstitial pressure in the tumor core, this localization is uneven and the antibody tends to become adsorbed in the perivascular regions of the peripheral tumor cells, with none reaching the tumor cells at more distant sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Folkman, J. (1990) What is the evidence that tumors are angiogenesis-dependent ? J. Natl. Cancer Inst. 82, 4–6.

    Article  PubMed  CAS  Google Scholar 

  2. Paweletz, N. and Knierim, M. (1989) Tumor-related angiogenesis. Crit. Rev. Oncol. Hematol. 9, 197–242.

    Article  PubMed  CAS  Google Scholar 

  3. Holmgren, L. and Bicknell, R. (1997) Inhibition of tumor angiogenesis and the induction of tumor dormancy, in Tumor Angiogenesis ( Bicknell, R., et al., eds.), Oxford University Press, Oxford, UK, pp. 301–307.

    Google Scholar 

  4. Fan, T. P., Jagger, R., and Bicknell, R. (1995) Controlling the vasculature: angiogenesis, anti-angiogenesis and vascular targeting of gene therapy. Trends Pharmacol. Sci. 16, 57–66.

    Article  PubMed  CAS  Google Scholar 

  5. Sim, K. L. (1998) AngiostatinTM and EndostatinTM: endothelial cell-specific endogenous inhibitors of angiogenesis and tumor growth. Angiogenesis 2, 37–48.

    Article  PubMed  CAS  Google Scholar 

  6. Denekamp, J. (1982) Endothelial cell proliferation as a novel approach to targeting tumor therapy. Br. J. Cancer 45, 136–139.

    Article  PubMed  CAS  Google Scholar 

  7. Burrows, F. J. and Thorpe, P. E. (1993) Eradication of large solid tumors in mice with an immunotoxin directed against tumor vasculature. Proc. Natl. Acad. Sci. USA 90, 8996–9600.

    Article  PubMed  CAS  Google Scholar 

  8. Jain, R. K. (1988) Determination of tumour blood flow: a review. Cancer Res. 48, 2641–2658.

    PubMed  CAS  Google Scholar 

  9. Konerding, M. A., Fait, E., Dimitropoulou, C., Malkusch, W., Ferri, C., Giavazzi, R., et al. (1998) Impact of fibroblast growth factor-2 on tumor microvascular architecture. A tridimensional morpho-metric study. Am. J. Path. 152, 1607–1616.

    PubMed  CAS  Google Scholar 

  10. Chaplin, D. J., Trotter, M. J., and Dougherty, G. J. (1997) Microregional tumor blood flow: heterogeneity and therapeutic significance, in Tumor Angiogenesis (Bicknell, R., et al., eds.), Oxford University Press, Oxford, UK, pp. 61–70.

    Google Scholar 

  11. Belloni, P. N. and Nicolson, G. L. (1988) Differential expression of cell surface glycoproteins on various organ-derived microvascular endothelia and endothelial cell cultures. J. Cell Physiol. 136, 398–410.

    Article  PubMed  CAS  Google Scholar 

  12. Kumar, S., West, D. C., and Ager, A. (1987) Heterogeneity in endothelial cells from large vessels and microvessels. Differentiation 36, 57–70.

    Article  PubMed  CAS  Google Scholar 

  13. Clarke, M. S., Kiff, R. S., Kumar, S., Kumar, P., and West, D. C. (1991) The identification of proliferation-related proteins in human endothelial cells as a possible target in tumor therapy. Int. J. Radiat. Biol. 60, 17–23.

    Article  PubMed  CAS  Google Scholar 

  14. Clarke, M. S. and West, D. C. (1991) The identification of proliferation and tumour-induced proteins in human endothelial cells: a possible target for tumor therapy. Electrophoresis 12, 500–508.

    Article  PubMed  CAS  Google Scholar 

  15. Griffioen, A. W. (1997) Phenotype of the tumor vasculature; cell adhesion as a target for tumor therapy. Cancer J. 10, 249–254.

    Google Scholar 

  16. Shawver, L. K., Lipson, K. E., Fong, T. A. T., McMahon, G., Plowman, G. D., and Strawn, L. M. (1997) Receptor tyrosine kinases as targets for inhibition of angiogenesis. Drug Discovery Today 2, 50–63.

    Article  CAS  Google Scholar 

  17. Partanen, J. Armstrong, E., Makela, T. P., Korhonen, J. Sanberg, M., Renkonen, R.,et al. (1992) A novel endothelial cell surface receptor tyrosine kinase with extracellular epidermal growth factor homology domains. Mol. Cell Biol. 12 1698–1707.

    Google Scholar 

  18. Lin, P., Polverini, P., Dewhirst, M., Shan, S., Rao, P. S., and Peters, K. (1997) Inhibition of tumor angiogenesis using a soluble receptor establishes a role for Tie2 in pathologic vascular growth. J. Clin. Invest. 100, 72–78.

    Google Scholar 

  19. Peters, K. G., Coogan, A., Berry, D., Marks, J., Iglehart, J. D., Kontos, C. D., et al. (1998) Expression of Tie2/TEK in breast tumor vasculature provides a new marker for evaluation of tumor angiogenesis. Br. J. Cancer 77 (1), 51–56.

    Article  PubMed  CAS  Google Scholar 

  20. Davis, S., Aldrich, T. H., Jones, P. F., Acheson, A., Compton, D. L., Jain, V., et al. (1996) Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell 87, 1161–1169.

    Google Scholar 

  21. Maisonpierre, P. C., Suri, C., Jones, P. F., Bartunkova, S., Wiegang, S. J., Radziejewski, C.,et al. (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277, 55–60.

    Google Scholar 

  22. Zhou, R. (1998) The Eph family receptors and ligands. Pharmacol. Ther. 77, 151–181.

    Article  PubMed  CAS  Google Scholar 

  23. Davis, S., Gale, N. W., Aldrich, T. H., Maisonpierre, P. C., Lhotak, V., Pawson, T, et al. (1994) Ligands for EPH-related receptor tyrosine kinases that require membrane attachment or clustering for activity. Science 266, 816–819.

    Article  PubMed  CAS  Google Scholar 

  24. Drescher, U. (1997) The Eph family in the patterning of neural development. Curr. Biol. 7, R799 - R780.

    Article  PubMed  CAS  Google Scholar 

  25. Flanagan, J. G. and Vanderhaeghen, P. (1998) The ephrins and Eph receptors in neural development. Annu. Rev. Neurosci. 21, 309–345.

    Article  PubMed  CAS  Google Scholar 

  26. Yancopoulos, G. D., Klagsburn, M., and Folkman, J. (1998) Vasculogenesis, Angiogenesis, and growth factors: Ephrins enter the fray at the border. Cell. 92, 661–664.

    Article  Google Scholar 

  27. Pandey, A., Shao, H., Marks, R. M., Polverini, P. J., and Dixit, V. M. (1995) Role of B61, the ligand for the Eck receptor tyrosine kinase, in TNF-a induced angiogenesis. Science 268, 567–569.

    Google Scholar 

  28. Stein, E., Lane, A. A., Cerretti, D. P., Schoecklmann, H. O., Schroff, A. D., Van Etten, R. L., and Daniel, T. O. (1998) Eph receptors discriminate specific ligand oligomers to determine alternative signaling complexes, attachment, and assembly responses. Genes Dev. 12, 667–678.

    Google Scholar 

  29. Wang, H. U., Chen, Z. F., and Anderson, D. J. (1998) Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B 2 and its receptor Eph-B4. Cell 93, 741–753.

    Article  PubMed  CAS  Google Scholar 

  30. Daniel, T. O., Stein, E., Cerretti, D. P., St. John, P. L., Robert, B., and Abrahamson, D. R. (1996) Elk and Lerk-2 in developing kidney and microvascular endothelial assembly. Kidney Int. 50 (Suppl. 57), S73 - S81.

    Google Scholar 

  31. Kim, K. J., Li, B., Winer, J., Armanini, M., Gillet, N., Phillips, H. S., and Ferrara, N. (1993) Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumor growth in vivo. Nature. 362, 841–844.

    Google Scholar 

  32. Olson, T. A., Mohanraj, D., Roy, S., and Ramakrishnan, S. (1997) Targeting the tumor vasculature: inhibition of tumor growth by a vascular endothelial growth factor-toxin conjugate. Int. J. Cancer 10, 865–870.

    Article  Google Scholar 

  33. Molema, G. and Griffioen, A. W. (1998) Rocking the foundations of solid tumor growth by attacking the tumor’s blood supply. Immunol Today 19, 392–394.

    Article  PubMed  CAS  Google Scholar 

  34. Skobe, M., Rockwell, P. Goldstein, N., Vosseler, S., and Fusenig, N. E. (1997) Halting angiogenesis suppresses carcinoma cell invasion. Nature Med. 1222–1227.

    Google Scholar 

  35. Lin, P., Sankar, S, Shan, S., Dewhirst, M. W., Polverini, P.J., Quinn, T. Q., and Peters, K. G. (1998) Inhibition of tumor growth by targeting tumor endothelium using a soluble vascular endothelial growth factor receptor. Cell Growth Differ. 9, 49–58.

    PubMed  CAS  Google Scholar 

  36. Menrad, A., Thierauch, K. H., Martiny-Baron, G., Siemeister, G., Schirner, M., and Schneider, M. R. (1997) Novel antibodies directed against the extracellular domain of the human VEGF-receptor type II. Hybridoma 16, 465–471.

    Article  PubMed  CAS  Google Scholar 

  37. Brekken, R. A., Huang, X., King, S. W., and Thorpe, P. E. (1998) Vascular endothelial growth factor as a marker of tumor endothelium. Cancer Res. 58, 1952–1959.

    PubMed  CAS  Google Scholar 

  38. Report. (1996) New Scientist 19 Oct, 25.

    Google Scholar 

  39. Gladson, C. L. (1996) Expression of integrin alpha v beta 3 in small blood vessels of glioblastoma tumors. J. Neuropathol. Exp. Neurol. 55, 1143–1149.

    Article  PubMed  CAS  Google Scholar 

  40. Max, R., Gerritsen, R. R., Nooijen, P. T., Goodman, S. L., Sutter, A., Keilholz, U., et al. (1997) Immunohistochemical analysis of integrin alpha v beta 3 expression on tumor-associated vessels of human carcinomas. Int. J. Cancer 71, 3–4.

    Google Scholar 

  41. Gasparini, G., Brooks, P. C., Biganzoli, E., Vermeulen, P. B., Bonoldi, E., Dirix, L. Y., et al. (1998) Vascular integrin alpha(v)beta3: a new prognostic indicator in breast cancer. Clin. Cancer Res. 4, 2625–2634.

    PubMed  CAS  Google Scholar 

  42. Hieken, T. J., Farolan, M., Ronan, S. G., Shilkaitis, A., Wild, L., and Das Gupta, T. K. (1996) Beta3 integrin expression in melanoma predicts subsequent metastasis. J. Surg. Res. 63, 169–173.

    Google Scholar 

  43. Brooks, P. C., Clark, R. A. F., and Cheresh, D. A. (1994) Requirement of vascular integrin av133 for angiogenesis. Science 264, 569–571.

    Article  PubMed  CAS  Google Scholar 

  44. Clarke, R. A., Tonnesen, M. G., Gailit, J., and Cheresh, D. A. (1996) Transient functional expression of alphaVbeta 3 on vascular cells during wound repair. Am. J. Pathol. 148, 1407–1421.

    Google Scholar 

  45. Varner, J. A. and Cheresh, D. A. (1996) Integrins and cancer. Curr. Opin. Cell Biol. 8, 724–730.

    Article  PubMed  CAS  Google Scholar 

  46. Brooks, P. C., Montgomery, A. M., Rosenfeld, M., Reisfeld, R. A., Hu, T., Klier, G., and Cheresh, D. A. (1994) Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79, 1157–1164.

    Article  PubMed  CAS  Google Scholar 

  47. Brooks, P. C., Stromblad, S., Klemke, R., Visscher, D., Sarkar, F. H., and Cheresh, D. A. (1995) Antiintegrin alpha v beta 3 blocks human breast cancer growth and angiogenesis in human skin. J. Clin Invest. 96, 1815–1822.

    Article  PubMed  CAS  Google Scholar 

  48. Sheu, J. R., Yen, M. H., Kan, Y. C., Hung, W. C., Chang, P. T., and Luk, H. N. (1997) Inhibition of angiogenesis in vitro and in vivo: comparison of the relative activities of triflavin, an Arg-Gly-Aspcontaining peptide and anti-alpha(v)beta3 integrin monoclonal antibody. Biochim. Biophys. Acta. 1336, 445–454.

    Google Scholar 

  49. Griffioen, A. W., Coenen, M.J., Damen, C. A., Hellwig, S. M., van Weering, D. H., Vooys, W., et al. (1997) CD44 is involved in tumor angiogenesis; an activation antigen on human endothelial cells. Blood 90, 1150–1159.

    PubMed  CAS  Google Scholar 

  50. West, D. C., Wilson, J., Lagoumintzis, G., and Joyce, M. (1999) Angiogenic hyaluronan oligosaccharides interact with endothelial cell CD44 to upregulate expression of adhesion molecules, vegf receptors and IL-8, in Vascular endothelium: Mechanisms of Cell Signalling (Catravas, J., ed.), Plenum Press, New York, pp. 233–241.

    Google Scholar 

  51. Granger, D. N. and Kubes, P. (1994) The microcirculation and inflammation: modulation of leukocyte-endothelial cell adhesion. J. Leukocyte Biol. 55, 662–675.

    PubMed  CAS  Google Scholar 

  52. Droz, D. Patey, N., Paraf, F., Chretien, Y., and Gogusev, J. (1994) Composition of extracellular matrix and distribution of cell adhesion molecules in renal cell tumours. Lab Invest. 71 710–718.

    Google Scholar 

  53. Patay, N., Vazeux, R., Canioni, D., Potter, T., Gallatin, W. M., and Brousse, N. (1996) Intercellular adhesion molecule-3 on endothelial cells: expression in tumors but not in inflammatory responses. Am. J. Pathol. 148, 465–472.

    Google Scholar 

  54. Kuzu, I., Bicknell, R., Fletcher, C. D. M., and Gatter, K. C. (1993) Expression of adhesion molecules on the endothelium of normal tissue vessels and vascular tumors. Lab. Invest. 69, 322–328.

    PubMed  CAS  Google Scholar 

  55. Bruijn, J. A. and Dinklo, N. J. C. M. (1993) Distinct patterns of expression of intercellular adhesion molecule-1, vascular cell adhesion molecule-1 and endothelial-leukocyte adhesion molecule-1 in renal disease. Lab Invest. 69, 329–335.

    PubMed  CAS  Google Scholar 

  56. Ran, S., Gao, B., Duffy, S., Watkins, L., Rote, N., and Thorpe, P. E. (1998) Infarction of solid Hodgkin’ s tumors in mice by antibody-directed targeting of tissue factor to tumor vasculature. Cancer Res. 58, 4646–4653.

    Google Scholar 

  57. Lasky, L. A. (1995) Selectin-carbohydrate interactions and the initiation of the inflammatory response. Ann. Rev. Biochem. 64, 113–139.

    Article  PubMed  CAS  Google Scholar 

  58. Takada, A., Ohmori, K., Yoneda, T., Tsuyuoka, K., Hasegawa, A., Kiso, M., and Kannagi, R. (1993) Contribution of carbohydrate antigens sialyl Lewis-a and sialyl Lewis-x to adhesion of human cancer-cells to vascular endothelium. Cancer Res. 53, 354–361.

    Google Scholar 

  59. Bischoff, J. Brasel. C., Kraling, B. and Vranovska, K. (1997) E-selectin is upregulated in proliferating endothelial cells In vitro. Microcirculation 4 279–287.

    Google Scholar 

  60. Nguyen, M. Strubel, N. A., and Bischoff, J. (1993) A role for sialyl Lewis-X/A glycoconjugates in capillary morphogenesis. Nature 365 149–152.

    Google Scholar 

  61. Koch, A. E., Halloran, M. M., Haskell, C. J., Shah, M. R., and Polverini, P. J. (1995) Angiogenesis mediated by soluble forms of E-selectin and vascular cell-adhesion molecule-1. Nature 376, 517–519.

    Google Scholar 

  62. Zocchi, M. R. and Poggi, A. (1993) Lymphocyte endothelial-cell adhesion molecules at the primary tumor site in human lung and renal-cell carcinomas. J. Natl. Cancer Inst. 85, 246–247.

    Article  PubMed  CAS  Google Scholar 

  63. Ye, C. L., Kiriyama, K., Mistuoka, C., Kannagi, R. Ito, K., Watanabe, T., et al. (1995) Expression of E-selectin on endothelial-cells of small veins in human colorectal-cancer. Int. J. Cancer 61,455–460.

    Google Scholar 

  64. Salmi, M and Jalkanen, S. (1995) Different forms of human vascular adhesion protein-1 (VAP-1) in blood-vessels in-vivo and in cultured endothelial-cells implications for lymphocyte-endothelial cell-adhesion models. Eur. J. Immunol. 25, 2803–2812.

    Article  PubMed  CAS  Google Scholar 

  65. Banks, R. E., Gearing, A. J. H., Hemingway, I. K., Norfolk, D. R., Perren, T. J., and Selby, P. J. (1993) Circulating intercellular-adhesion molecule-1 (ICAM-1), E-selectin and vascular cell-adhesion molecule-1 (VCAM-1) in human malignancies. Br. J. Cancer 68, 122–124.

    Google Scholar 

  66. Renkonen, J., Paavonen, T., and Renkonen, R. (1997) Endothelial and epithelial expression of sialyl Lewis (x) and sialyl Lewis (a) in lesions of breast carcinoma. Int. J. Cancer 74, 296–300.

    Google Scholar 

  67. Gasparini, G. and Harris, A. L. (1995) Clinical importance of the determination of tumor angiogenesis in breast-carcinoma–much more than a new prognostic tool. J. Clin. Oncol. 13, 765–782.

    PubMed  CAS  Google Scholar 

  68. Budson, A. E., Ko, L., Brasel, C., and Bischoff, J. (1996) The angiogenesis inhibitor AGM-1470 selectively increases E-selectin. Biochem Biophys Res Comm. 225, 141–145.

    Article  PubMed  CAS  Google Scholar 

  69. Luo, J. Y., Lin, J., Paranya, G., and Bischoff, J. (1998) Angiostatin upregulates E-selectin in proliferating endothelial cells. Biochem Biophys Res Comm. 245, 906–911.

    Article  PubMed  CAS  Google Scholar 

  70. Spragg, D. D., Alford, D. R., Greferath, R., Larsen, C. E., Lee, K. D., Gunner G. C., et al. (1997) Immunotargeting of liposomes to activated vascular endothelial cells: a strategy for site-selective delivery in the cardiovascular system. Proc. Natl. Acad. Sci. USA 94, 8795–8800.

    Google Scholar 

  71. Wickham, T. J., Haskard, D., Segal, D., and Kovesdi, I. (1997) Targeting endothelium for gene therapy via receptors up-regulated during angiogenesis and inflammation Cancer Immunol. Immunother. 45, 149–151.

    Article  PubMed  CAS  Google Scholar 

  72. Jamar, F., Chapman, P. T., Manicourt, D. H. Glass, D. M. Haskard, D. O., and Peters, A. M. (1997) A comparison between In-111-anti-E-selectin mAb and Tc-99(m)-labelled human non-specific immunoglobulin in radionuclide imaging of rheumatoid arthritis. Br. J. Radiol. 70 473–481.

    Google Scholar 

  73. Chapman, P. T., Jamar, F., Keelan. E. T. M., Peters. A. M., and Haskard, D. O. (1996) Use of a radiolabeled monoclonal antibody against E-selectin for imaging of endothelial activation in rheumatoid arthritis. Arth. Rheum. 39, 1371–1375.

    Google Scholar 

  74. Gougos, A. and Letarte, M. (1988) Identification of a human endothelial cell antigen with monoclonal antibody 44G4 produced against a pre-B leukemic cell line. J. Immunol. 141, 1925–1933.

    PubMed  CAS  Google Scholar 

  75. Westphal, J. R., Willems, H. W., Schalkwijk, C. J., Ruiter, D. J., and deWaal, R. M. (1993) A new 180-kDa dermal endothelial cell activation antigen: in vitro and in situ characteristics. J. Invest. Dermatol. 100, 27–34.

    Google Scholar 

  76. Burrows, F. J., Derbyshire, E. J., Tazzari, P. L., Amlot, P., Gazdar, A. F., King, S. W., et al. (1995) Up-regulation of Endoglin on vascular endothelial cells in human solid tumors: Implications for diagnosis and therapy. Clin Cancer Res. 1, 1623–1634.

    Google Scholar 

  77. Gougos, A., St. Jacques, S., Greaves, A., O’Connell, P. J., d’Apice, A. J., Buhring, H. J., et al. (1992) Identification of distinct epipotes of endoglin, an RGD-containing glycoprotein of endothelial cells, leukemic cells and syncytiotrophoblasts. Int. Immunol. 4, 83–92.

    Google Scholar 

  78. Wang, J. M., Kumar, S., Pye, D., Vanagthoven, A. J., Krupinski, J., and Hunter, R. D. (1993) A monoclonal antibody detecting heterogeneity in vascular endothelium of tumors and normal tissues. Int. J. Cancer 54, 363–370.

    Google Scholar 

  79. Neri, D. Carnemolla, B., Nissim, A., Leprini, A., Querze, G., Balza, E, et al. (1997) Targeting by affinity-matured recombinant antibody fragments of an angiogenesis associated fibronectin isoform. Nat. Biotechnol. 15 1271–1275.

    Google Scholar 

  80. Mariani, G., Lasku, A., and Balza, E. (1997) Tumor targeting potential of the monoclonal antibody BC-1 against oncofetal fibronectin in nude mice bearing human tumor implants. Cancer80, 2378–2384.

    Google Scholar 

  81. Mach, F., Schonbeck, U., Sukhova, G. K., Bourcier, T., Bonnefoy, J. Y., Pober, J. S., and Libby, P. (1997) Functional CD40 ligand is expressed on human vascular endothelial cells, smooth muscle cells, and macrophages: implications for CD40–CD40ligand signaling in atherosclerosis. Proc. Natl. Acad. Sci. USA 94, 1931–1936.

    Article  PubMed  CAS  Google Scholar 

  82. Kluth, B. Hess, S., Engelmann, H. Schafnitzel, S., Riethmuller, G., and Feucht, H. E. (1997) Endothelial expression of CD40 in renal cell carcinoma. Cancer Res. 57 891–899.

    Google Scholar 

  83. Horoszewicz, J. S., Kawinski, E., and Murphy, G. P. (1987) Monoclonal antibodies to a new antigenic marker in epithelial cells and serum of prostatic cancer patients. Anticancer Res. 7, 927–936.

    PubMed  CAS  Google Scholar 

  84. Israeli, R. S., Powell, C. T., Fair, W. R., and Heston, W. D. W. (1993) Molecular cloning of a complementary DNA encoding a prostate-specific membrane antigen. Cancer Res. 53, 227–230.

    PubMed  CAS  Google Scholar 

  85. Wright, G. L., Jr., Haley, C., Beckett, M. L., and Schelhammer, P. F. (1995) Expression of prostate-specific antigen in normal, benign, and malignant prostate tissues. Urol Oncol. 1, 18–28.

    Article  PubMed  Google Scholar 

  86. Liu, H., Moy, P. Kim, S., Xia, Y., Rajasekaran, A., Navarro, V., et al. (1997) Monoclonal antibodies to the extracellular domain of prostate-specific membrane antigen also reacts with tumor vascular endothelium. Cancer Res. 57 3629–3634.

    Google Scholar 

  87. Silver, D. A., Pellicer, I., Fair, W. R., Heston, W. D. W., and Cordon-Cardo, C. (1997) Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin. Cancer Res. 3, 81–85.

    PubMed  CAS  Google Scholar 

  88. Murphy, G. P., Greene, T. G., Tino, W. T., Boynton, A. L., and Holmes, E. H. (1998) Isolation and characterization of monoclonal antibodies specific for the extracellular domain of prostate specific membrane antigen. J. Urol. 160, 2396–2401.

    Google Scholar 

  89. Hagemeier, H. H., Vollmer, E., Goerdt, S., Schulze-Osthoff, K., and Sorg, C. (1986) A monoclonal antibody reacting with endothelial cells of budding vessels in tumors and inflammatory tissues, and non-reactive with normal adult tissues. Int. J. Cancer 38, 481–488.

    Article  PubMed  CAS  Google Scholar 

  90. Rettig, W. J. Garinchesa, P., Healey, J. H., Su, S. L., Jaffe, E. A., and Sorg, C. (1992) Identification of endosialin, a cell surface glycoprotein of vascular endothelial cells in human cancer. Proc. Natl. Acad. Sci. USA 89 10,832–10,836.

    Google Scholar 

  91. Bruland, O. S., Fodstad, O., Stenwig, A. E., and Pihl, A. (1988) Expression and characteristics of a novel human osteosarcoma-associated cell surface antigen. Cancer Res. 48, 5302–5309.

    PubMed  CAS  Google Scholar 

  92. Stone, M. J., Ruf, W., Miles, D. J., Edgington, T. S., and Wright, P. E. (1995) Recombinant soluble human tissue factor secreted by Saccharomyces cerevisiae and refolded from E. coli inclusion bodies: glycosylation of mutants, activity and physical characterization. Biochem. J. 310, 605–614.

    CAS  Google Scholar 

  93. Burrows, F. J., Watanabe, Y., and Thorpe, P. E. (1992) A murine model for antibody-directed targeting of vascular endothelial cells in solid tumors. Cancer Res. 52, 5954–5962.

    PubMed  CAS  Google Scholar 

  94. Huang, X., Molema, G., King, S., Watkins, L., Edgington, T. S., and Thorpe, P. E. (1997) Tumor infarction in mice by antibody-directed targeting of tissue factor to tumor vasculature. Science 275, 547–550.

    Article  PubMed  CAS  Google Scholar 

  95. Williamson, P. and Schlegel, R. A. (1994) Back and forth: the regulation and function of transbilayer phospholipid movement in eukaryotic cells. Mol. Membr. Biol. 11, 199–216.

    Google Scholar 

  96. Thrush, G. R., Lark, L. R., Clinchy, B. C., and Vitetta. E. S. (1996) Immunotoxins: an update. Ann. Rev. Immunol. 14, 49–71.

    Google Scholar 

  97. Yan, H. P., Carter, C. E., Wang, E. Z., Page, D. L., Washington, K., Wamil, B. D., et al. (1998) Functional studies on the anti-pathoangiogenic properties of CM101. Angiogenesis 2, 219–233.

    Google Scholar 

  98. Fujieda, M., Oishi, N., and Kurashige, T. (1997) Antibodies to endothelial cells in Kawasaki disease lyse endothelial cells without cytokine pretreatment. Clin. Exp. Immunol. 107, 120–126.

    Article  PubMed  CAS  Google Scholar 

  99. Harris, A. L. (1997) Clinical trials of anti-vascular agent group B Streptococcus toxin (CM101). Angiogenesis 1, 36–37.

    Article  PubMed  CAS  Google Scholar 

  100. Velders, M. P., vanRhijn, C. M., Oskam, E., Fleuren, G. J., Warnaar, S. O., and Litvinov, S. V. (1998) The impact of antigen density and antibody affinity on antibody-dependent cellular cytotoxicity: relevance for immunotherapy of carcinomas. Br. J. Cancer 78, 478–483.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wilson, J., West, D.C., Thorpe, P.E. (2002). Antibody Targeting of Tumor Vasculature. In: Fan, TP.D., Kohn, E.C. (eds) The New Angiotherapy. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-126-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-126-8_24

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9657-4

  • Online ISBN: 978-1-59259-126-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics