Skip to main content

Mouse Models to Study the Pituitary-Testis Interplay Leading to Regulated Gene Expression

  • Chapter
Transgenics in Endocrinology

Abstract

The past decade has seen the astounding development of transgenic animal technology, which has become the most powerful tool for the study of gene function and dysfunction in vivo. All fields of biology, including endocrinology, oncogenesis, neuroscience, and embryogenesis, have greatly advanced because of the ease in generating genetically modified animals in an increasing number of research laboratories worldwide. The capacity to explore the function of one specific gene in the living animal has particularly enriched our view of complex physiological systems, such as the neuroendocrine axis. In various cases, mutant mice have been developed to verify the presumptive function of previously studied molecules. In others, the generated mutation has revealed unexpected actions of the targeted gene. This chapter focuses on some mutations affecting the male reproductive axis, as these reveal the high complexity of the system and the interplay between the regulation of gene expression and pituitary signaling. The aim of this chapter is not to provide an exhaustive list of all mice presenting defects in male gametogenesis, but to present a selected number of representative examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al Shawi R, Burke J, Bishop JO, Mullins JJ, Sharpe RM, Lathe R, et al. Transgenesis and infertility. In: Hiller SG, ed., Gonadal Development and Function. Raven Press, New York, NY, 1992; pp. 195–206.

    Google Scholar 

  2. Brandon EP, Idzerma RL, McKnight GS. Targeting the mouse genome: a compendium of knockouts. Curr Biol 1995; 5: 625–634.

    Article  PubMed  CAS  Google Scholar 

  3. Veldhuis JD. The hypothalamic-pituitary-gonadal axis. In: Yen SSC, Jaffe RB, eds., Reproductive Endocrinology. Saunders, Philadelphia, PA, 1991; pp. 409–459.

    Google Scholar 

  4. Skinner MK. Cell-cell interactions in the testis. Endocrine Rev 1991; 12: 45–77.

    Article  CAS  Google Scholar 

  5. Parvinen M. Regulation of the seminiferous epithelium. Endocrine Rev 1992; 13: 404–417.

    Google Scholar 

  6. Sassone-Corsi P. Transcriptional checkpoints determining the fate of male germ cells. Cell 1997; 88: 163–166.

    Article  PubMed  CAS  Google Scholar 

  7. Schmidt EE, Schibler U. High accumulation of components of the RNA polymearse II transcription machinery in rodent spermatids. Development 1995; 121: 2373–2383.

    PubMed  CAS  Google Scholar 

  8. Kendall SK, Samuelson LC, Saunders TL, Wood RI, Camper SA. Targeted disruption of the pituitary glycoprotein hormone a-subunit produces hypogonadal and hypothyroid mice. Genes Dev 1995; 9: 2007–2019.

    Article  PubMed  CAS  Google Scholar 

  9. Kumar TR, Wang Y, Lu N, Matzuk M. Follicle stimulating hormone is required for ovarian follicle maturation but not male fertility. Nature Genet 1997; 15: 201–204.

    Article  PubMed  CAS  Google Scholar 

  10. Aittomäki K, Herva R, Stenman U, Juntunen K, Ylöstalo P, Hovata O, et al. Clinical features of primary ovary failure caused by a point mutation in the follicle stimulating hormone receptor gene. J Clin Endocr Metab 1996; 81: 3722–3726.

    Article  PubMed  Google Scholar 

  11. Aittomäki K, Dieguez Lucena JL, Pakarinen P, Sistonen P,Tapanainen J, Lehväslaiho H, et al. Mutation in the follicle-stimulating hormone receptor gene causes hereditary hypergonadotropic ovarian failure. Cell 1995; 82: 959–968.

    Article  PubMed  Google Scholar 

  12. Gromoll J, Simoni M, Nieschlag E. An activating mutation of the follicle-stimulating hormone receptor autonomously sustains spermatogenesis in a hypophysectomized man. J Clin Endocr Metab 1996; 81: 1367–1370.

    Article  PubMed  CAS  Google Scholar 

  13. Touraine P, Beau I, Gougeon A, Meduri G, Desroches A, Pichard C, et al. New natural inactivating mutations of the follicle-stimulating hormone receptor: correlations between receptorfunction and phenotype. Mol Endocrinol 1999; 13: 1844–1854.

    Article  PubMed  CAS  Google Scholar 

  14. Tapanainen JS, Aittomaki K, Min J, Vaskivuo T, Huhtaniemi IL. Men homozygous for an inactivating mutation of the follicle-stimulating hormone (FSH) receptor gene prosent variable suppression of spermatogenesis and fertility. Nature Gen 1997; 15: 205, 206.

    Google Scholar 

  15. Dierich A, Sairam MR, Monaco L, Fimia GM, Gansmuller A, LeMeur M,Impairing follicle-stimulating hormone signaling in vivo: targeted disruption of the FSH receptor leads to aberrant gametogenesis and hormonal imbalance. Proc Natl Acad Sci USA 1998;95:13, 612–13, 617.

    Google Scholar 

  16. Kremer H, Kraaij R, Toledo S, Post M, Fridman J, Hayashida C, et al. Male pseudoheramphroditism due to a homozygous missense mutation of the luteinizing hormone receptor gene. Nature Genet 1995; 9: 160–164.

    Article  PubMed  CAS  Google Scholar 

  17. Cate RL, Donahoe PK, MacLaughlin J. Müllerian-inhibiting substance. In: Sporn MB, Roberts AB, eds., Peptide Growth Factors andTheir Receptors, Vol. 2. Springer-Verlag, Berlin, Germany, 1990; pp. 179–210.

    Chapter  Google Scholar 

  18. Behringer RR, Finegold MJ, Cate RL. Müllerian-inhibiting substance funstion during mammalian sexual development. Cell 1994; 79: 415–425.

    Article  PubMed  CAS  Google Scholar 

  19. Vale W, Hsueh A, Rivier C, Yu J. The inhibin/activin family of hormones and growth factors. In: Sporn MB, Roberts AB, eds., Peptide Growth Factors and their Receptors: Handbook of Experimental Pharmacology. Springer-Verlag, Berlin, Germany, 1990; pp. 211–248.

    Google Scholar 

  20. Mather JP, Woodruff TK, Krummen LA. Paracrine regulation of reproductive function by inhibin and activin. Proc Soc Exp Biol Med 1992; 201: 1–15.

    PubMed  CAS  Google Scholar 

  21. Moore A, Krummen LA, Mather JP. Inhibins, activins, their binding proteins and receptors: interactions underlying paracrine activity in the testis. Mol Cell Endocrinol 1994; 100: 81–86.

    Article  PubMed  CAS  Google Scholar 

  22. Jaffe RB, Spencer SJ, Rabinovici J. Activins and inhibins: gonadal peptides during prenatal development and adult life. Ann NY Acad Sci 1993; 687: 1–9.

    Article  PubMed  CAS  Google Scholar 

  23. Mukherjee A, Urban J, Sassone-Corsi P, Mayo KE. Gonadotropins regulate inducible cyclic adenosine 3’,5’-monophosphate early repressor in the rat ovary: implications for inhibin a subunit gene expression. Mol Endocrinol 1998; 12: 785–800.

    Article  PubMed  CAS  Google Scholar 

  24. Matzuk MM. Functional analysis of mammalian members of the transforming growth factor-b. Trends Endocrinol Metab 1995; 6: 120–127.

    Article  PubMed  CAS  Google Scholar 

  25. de Jong F, Grootenhuis AJ, Klaij IA, Van Beurden W. Inhibin and related proteins: localization, regulation and effects. Adv Exp Med Biol 1990; 274: 271–293.

    Article  PubMed  Google Scholar 

  26. Findlay JK. An update on the roles of inhibin, activin and follistatin as regulators of folliculogenesis. Biol Reprod 1993; 48: 15–23.

    Article  PubMed  CAS  Google Scholar 

  27. Matzuk MM, Finegold MJ, Su JJ, Hsueh AJW, Bradley A. a-inhibin is a tumor suppressor gene with gonadal specificity in mice. Nature 1992; 360: 313–319

    Article  PubMed  CAS  Google Scholar 

  28. Trudeau VL, Matzuk MM, Haché RJG, Renaud V. Overexpression of activin-PA subunit mRNA is associated with decreased activin type II receptor mRNA levels in the testes of a-inhibin deficient mice. Biochem Biophys Res Comm 1994; 203: 105–112.

    Article  PubMed  CAS  Google Scholar 

  29. Matzuk MM, Kumar TR, Vassali A, Bickenbach JR., Roop DR, Jaenisch R, et al. Functional analysis of activins during mammalian development. Nature 1995; 374: 354–356.

    Article  PubMed  CAS  Google Scholar 

  30. Coerver KA, Woodruff TK, Finegold MJ, Mather J, Bradley A, Matzuk MM. Activin signaling through activin receptor type II causes the cachexia-like symptoms in inhibin-deficient mice. Mol. Endocrinol. 1996; 10: 534–543.

    Article  PubMed  CAS  Google Scholar 

  31. Vassali A, Matzuk MM, Gardner HAR, Lee KF, Jaenisch R. Activin/inhibin (3B subunit gene disruption leads to defects in eyelid development and female reproduction. Genes Dev 1994; 8: 414–427.

    Article  Google Scholar 

  32. Matzuk MM, Finegold MJ, Mishina Y, Bradley A, Behringer RR. Synergistic effects of inhibins and Müllerian-inhibiting substance on testicular tumorigenesis. Mol Endocrinol 1995; 9: 1337–1345.

    Article  PubMed  CAS  Google Scholar 

  33. Huang HFS, Hembree WC. Spermatogenic response to vitamin A in vitamin A deficient rats. Biol Reprod 1979; 21: 891–904.

    Article  PubMed  CAS  Google Scholar 

  34. Morales CR, Griswold MD. Retinol-induced stage synchronization in seminiferous tubules of the rat. Endocrinology 1987; 121: 432–434.

    Article  PubMed  CAS  Google Scholar 

  35. Giguère V, Ong ES, Segui P, Evans RM. Identification of a receptor for the morphogen retinoic acid. Nature 1987; 330: 624–629.

    Article  PubMed  Google Scholar 

  36. Petkovich M, Brand NJ, Krust A, Chambon P. A human retinoic acid receptor which belongs to the family of nuclear receptors. Nature 1987; 330: 444–450.

    Article  PubMed  CAS  Google Scholar 

  37. Heyman RA, Mangelsdorf DJ, Dyck JA, Stein RB, Eichele G, Evans RM.,9-cis retinoic acid is a high affinity ligand for the retinoid X receptor. Cell 1992; 68: 397–406.

    Article  PubMed  CAS  Google Scholar 

  38. Dollé P, Fraulob V, Kastner P, Chambon P. Developmental expression of murine retinois X receptor (RXR) genes. Mech Dev 1994; 45: 91–104.

    Article  PubMed  Google Scholar 

  39. Mangelsdorf DJ, Borgmeyer U, Heyman R, Zhou JY, Ong E, Oro A, et al. Characterization of three RXR genes that mediate the action of 9-cis retinoic acid. Genes Dev 1992; 6: 329–344.

    Article  PubMed  CAS  Google Scholar 

  40. Leroy P, Krust A, Zelent A, Mendelson C, Gamier JM, Kastner P, et al. Multiple isoforms of the mouse retinoic acid receptor alpha are generated by alternative splicing and differential induction by retinoic acid. EMBO J 1991; 10: 59–69.

    CAS  Google Scholar 

  41. Ruperte E, Dollé P, Chambon P, Morriss-Kay G. Retinoic acid receptors and cellular retinoid binding proteins. II. Their differential pattern of transcription during early morphogenesis in mouse embryos. Development 1991;1 1 1: 45–60.

    Google Scholar 

  42. Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K, et al. The nuclear receptor superfamily: the second decade. Cell 1995; 83: 835–839.

    Article  PubMed  CAS  Google Scholar 

  43. Leroy P, Nakshatri H, Chambon P. Mouse retinoic acid receptor alpha 2 isoform is transcribed from a promoter that contains a retinoic acid response element. Proc Natl Acad Sci USA 1991;88:10, 138–10, 142.

    Google Scholar 

  44. Lufkin T, Lohnes D, Mark M, Dierich A, Gorry P, Gaub M-P, et al. High postnatal lethality and testis degeneration in retinoic acid receptor a mutant mice. Proc Natl Acad Sci USA 1993; 90: 7225–7229.

    Article  PubMed  CAS  Google Scholar 

  45. Van Pelt AM, De Rooij DG. Retinoic acid is able to reinitiate spermatogenesis in vitamin A-deficient rats and high replicate doses support the full development of spermatogenic cells. Endocrinology 1991; 128: 697–704.

    Article  PubMed  Google Scholar 

  46. Kastner P, Mark M, Leid M, Gansmuller A, Chin W, Grondona JM, et al. Abnormal spermatogenesis in RXR beta mutant mice. Genes Dev 1996; 10: 80–92.

    Article  PubMed  CAS  Google Scholar 

  47. Korach KS. Insights from the study of animals lacking functional estrogen receptor. Science 1994; 266: 1524–1527.

    Article  PubMed  CAS  Google Scholar 

  48. Kuiper GG, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson JA. Cloning of a novel estrogen receptor expressed in rat prostate and ovary. Proc Natl Acad Sci USA 1996; 93: 5925–5930.

    Article  PubMed  CAS  Google Scholar 

  49. Lubahn DB, Moyer JS, Golding TS, Couse JF, Korach KS, Smithies O. Alteration of reproductive funstion but not prenatal sexual development after insertional disruption of the mouse estrogen receptor gene. Proc Natl Acad Sci USA 1993;90:11, 162–11, 166.

    Google Scholar 

  50. Ogawa S, Chan J, Chester AE, Gustafsson JA, Korach KS, Pfaff DW. Survival of reproductive behaviors in estrogen receptor beta gene-deficient (betaERKO) male and female mice. Proc Natl Acad Sci USA 1996;96:12, 887–12, 892.

    Google Scholar 

  51. Couse JF, Hewitt SC, Bunch DO, Sar M, Walker VR, Davis BJ, et al. Postnatal sex reversal of the ovaries in mice lacking estrogen receptors alpha and beta. Science 1999; 286: 2328–2331.

    Article  PubMed  CAS  Google Scholar 

  52. Rhee K, Wolgemuth DJ. Cdk family genes are expressed not only in dividing bu also in terminally differentiated mouse germ cells, suggesting their possible function during both cell division and differentiation. Dev Dyn 1995; 204: 406–420.

    Article  PubMed  CAS  Google Scholar 

  53. Donehower LA, Bradley A. The tumor suppressor p53. Biochim Biophys Acta 1993; 1155: 181–205.

    PubMed  CAS  Google Scholar 

  54. Levine A. The tumor supressor genes. Annu Rev Biochem 1993; 62: 623–651.

    Article  PubMed  CAS  Google Scholar 

  55. Ko LJ, Prives C. p53: puzzle and paradigm. Genes Dev 1996; 10: 1054–1072.

    Article  PubMed  CAS  Google Scholar 

  56. Almon ET, Goldfinger N, Kapon A, Schwartz D, Levine AJ, Rotter V. Testicular tissue-specific expression of the p53 suppressor gene. Dev Biol 1993; 156: 107–116.

    Article  PubMed  CAS  Google Scholar 

  57. Rotter V, Schwartz D, Almon E, Goldfinger N, Kapon A, Meshorer,A, et al. Mice with reduced levels of p53 protein exibit the testicular giant-cell degenerative syndrome. Proc Nati Acad Sci USA 1993; 90: 9075–9079.

    Article  CAS  Google Scholar 

  58. Chresta CM, Hickman JA Oddball p53 in testicular tumors. Nature Med 1996; 2: 744–745.

    Google Scholar 

  59. Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA, Butel JS, et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumors. Nature 1992; 356: 215–221.

    Article  PubMed  CAS  Google Scholar 

  60. Miyashita T, Reed JC. Tumor suppressor p53 is a direct transcriptional activator of the human Bax gene. Cell 1995; 80: 293–299.

    Article  PubMed  CAS  Google Scholar 

  61. Knudson CM, Tung KSK, Tourtellotte WG, Brown GAJ, Korsmeyer SJ. Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science 1995; 270: 96–99.

    Article  PubMed  CAS  Google Scholar 

  62. Motoyama N, Wang F, Roth KA, Sawa H, Nakayama K, Nakayama K, et al. Massive cell death of immature hematopoietic cells and neurons in Bcl-x-deficient mice. Science 1995; 267: 1506–1510.

    Article  PubMed  CAS  Google Scholar 

  63. Nakayama K, Nakayama K, Negishi I, Kuida K, Shinkai Y, Louie MC, et al. Disappearance of the lymphoid system in Bcl-2 homozygous mutant chimeric mice. Science 1993; 261: 1584–1588.

    Article  PubMed  CAS  Google Scholar 

  64. Sicinsky P, Donaher J, Geng Y, Parker S, Gardner H, Park MY, et al. Cyclin D2 is an FSH-responsive gene involved in gonadal cell proliferation and oncogenesis. Nature 1996; 384: 470–474.

    Article  Google Scholar 

  65. Liu D, Matzuk MM, Sung WK, Guo Q, Wang P, Wolgemuth DJ. Cyclin Al is required for meiosis in the male mouse. Nat Genet 1998; 20: 377–380.

    Article  PubMed  CAS  Google Scholar 

  66. Delmas V, van der Hoorn F, Mellström B, Jégou B, Sassone-Corsi P. Induction of CREM activator proteins in spermatids: downstream targets and implications for haploid germ cell differentiation. Mol Endocrinol 1993; 7: 1502–1514.

    Article  PubMed  CAS  Google Scholar 

  67. De Cesare D, Fimia GM, Sassone-Corsi P. Signaling routes to CREM and CREB: plasticity in transcriptional activation. Trends Biochem 1999; 24: 281–285.

    Article  Google Scholar 

  68. Sassone-Corsi P. Transcription factors responsive to cAMP. Annu Rev Cell Dev Biol 1995; 11: 355–377.

    Article  PubMed  CAS  Google Scholar 

  69. Foulkes NS, Mellström B, Benusiglio E, Sassone-Corsi P. Developmental switch of CREM function during spermatogenesis: from antagonist to transcriptional activator. Nature 1992; 355: 80–84.

    Article  PubMed  CAS  Google Scholar 

  70. Foulkes NS, Schlotter F, Pévet P, Sassone-Corsi P. Pituitary hormone FSH directs the CREM functional switch during spermatogenesis. Nature 1993; 362: 264–267.

    Article  PubMed  CAS  Google Scholar 

  71. Kistler MK, Sassone-Corsi P, Kistler SW. Identification of a functional cAMP-response element in the 5’-flanking region of the gene for transition protein l (TP1), a basic chromosomal protein of mammalian spermatids. Biol Reprod 1994; 51: 1322–1329.

    Article  PubMed  CAS  Google Scholar 

  72. Sun Z, Sassone-Corsi P, Means A. Calspermin gene transcription is regulated by two cyclic AMP response elements contained in an alternative promoter in the calmodulin kinase IV gene. Mol Cell Biol 1995; 15: 561–571.

    PubMed  CAS  Google Scholar 

  73. Zhou Y, Sun Z, Means AR, Sassone-Corsi P, Bernstein KE. CREMt is a positive regulator of testis ACE transcription. Proc Natl Acad Sci USA 1996;93:12, 262–12, 266.

    Google Scholar 

  74. Rozman D, Fink M, Fimia GM, Sassone-Corsi P, Waterman MR. Cyclic Adenosine 3’, 5’-monophosphate (cAMP)/cAMP-responsive element modulator (CREM)-dependent regulation of cholesterogenic lanosterol 14a-demethylmase (CYP51) in spermatids. Mol Endocrinol 1999; 13: 1951–1999.

    Article  PubMed  CAS  Google Scholar 

  75. Nantel F, Monaco L, Foulkes NS, Masquilier D, LeMeur M, Henriksén K, et al. Spermiogenesis deficiency and germ cell apoptosis in CREM-mutant mice. Nature 1996; 380: 159–162.

    Article  PubMed  CAS  Google Scholar 

  76. Blendy J, Kastner K, Weinbauer G, Nieschlag F, Schutz G. Severe impairement of spermatogenesis in mice lacking the CREM gene. Nature 1996; 380: 163–165.

    Article  Google Scholar 

  77. Fimia GM, De Cesare D, Sassone-Corsi P. CBP-independent activation of CREM and CREB by the LIM-only protein ACT. Nature 1999; 398: 165–169.

    Article  PubMed  CAS  Google Scholar 

  78. Georgopoulos C, Welch WJ. Role of major heat shock proteins as molecular chaperones. Annu Rev Cell Biol 1993; 9: 601–634.

    Article  PubMed  CAS  Google Scholar 

  79. Allen RL, O’Brien DA, Eddy EM. A novel hsp 70-like protein (P70) is present in mouse spermatogenic cells. Mol Cell Biol 1988; 8: 828–832.

    PubMed  CAS  Google Scholar 

  80. Zakeri ZF, Wolgemuth DJ, Hunt CR. Identification and sequence analysis of a new member of the mouse HSP70 gene family and characterization of its unique cellular and developmental pattern of expression in the male germ line. Mol Cell Biol 1988; 8: 2925–2932.

    PubMed  CAS  Google Scholar 

  81. Allen JW, Dix DJ, Collins BW, Merrick BA, He C, Selkirk JK, et al. HSP70–2 is part of the synaptonemal complex in mouse and hamster spermatocytes. Chromosoma 1996; 104: 414–421.

    Article  PubMed  CAS  Google Scholar 

  82. Dix DJ, Allen JW, Collins BW, Mori C, Nakamura N, Poorman-Allen P, et al. Targeted gene disruption of Hsp 70–2 results in failed meiosis, germ cell apoptosis, and male infertility. Proc Natl Acad Sci USA 1996; 93: 3264–3268.

    Article  PubMed  CAS  Google Scholar 

  83. Baba T, Azuma S, Kashiwabara S, Toyoda Y. Sperm from mice carrying a targeted mutation of the acrosin gene can penetrate the oocyte zona pellucida and effect fertilization. J Biol Chem 1994;269:31, 845–31, 849.

    Google Scholar 

  84. Ross AJ, Waymire KG, Moss JE, Parlow AF, Skinner MK, Russell LD., et al. Testicular degeneration in Bc1w-deficient mice. Nature Genet 1998; 18: 251–261.

    Article  PubMed  CAS  Google Scholar 

  85. Adham IM, Nayernia K, Engel W. Spermatozoa lacking acrosin protein show delayed fertilization. Mol Reprod Dev 1997; 46: 370–376.

    Article  PubMed  CAS  Google Scholar 

  86. Yu RN, Ito M, Saunders TL, Camper SA, Jameson J. Role of Ahch in gonadal development and gametogenesis. Nat Genet 1998; 20: 353–357.

    Article  PubMed  CAS  Google Scholar 

  87. Krege JH, John SW, Langenbach LL, Hodgin JB, Hagaman JR, et al. Male-female differences in fertility and blood pressure in ACE-deficient mice. Nature 1995; 375: 146–148.

    Article  PubMed  CAS  Google Scholar 

  88. Honarpour N, Du C, Richardson JA, Hammer RE, Wang X, Herz J. Adult Apaf-l -deficient mice exhibit male infertility. Dev Biol 2000; 218: 248–258.

    Article  PubMed  CAS  Google Scholar 

  89. Huang L-S, Voyiaziakis E, Chen HL, Rubin EM, Gordon JW. A novel functional role for apolipoprotein B in male infertility in heterozygous apolipoprotein B knockout mice. Proc Natl Acad Sci USA 1996;93:10, 903–10, 907.

    Google Scholar 

  90. Ross Ai, Waymire KG, Moss JE, Parlow AF, Skinner MK, Russell LD, et al. Testicular degeneration in Bclw-deficient mice. Nat Genet 1998; 8: 251–256.

    Google Scholar 

  91. Zhao G-Q, Liaw L, Hogan BLM. Bone morphogenetic protein 8A plays a role in the maintenance of spermatogenesis and the integrity of the epididymis. Development 1998; 125: 1103–1112.

    PubMed  CAS  Google Scholar 

  92. Zhao G-Q, Deng K, Labosky PA, Liaw L, Hogan BLM. The gene encoding bone morphogeneetic protein 8B is required for the initiation and maintenance of spermatogenesis in the mouse. Genes Dev 1996; 10: 1657–1669.

    Article  PubMed  CAS  Google Scholar 

  93. Cressman VL, Backlund DC, Avrutskaya AV, Leadon SA, Godfrey V, Koller BH. Growth retardation, DNA repair defects, and lack of spermatogenesis in BRCA1-deficient mice. Mol Cell Biol 1999; 19: 7061–7075.

    PubMed  CAS  Google Scholar 

  94. Ikawa M, Wada I, Kominami K, Watanabe D, Toshimori K, Nishimune Y, et al. The putative chaperone calmegin is required for sperm fertility. Nature 1997; 387: 607–611.

    Article  PubMed  CAS  Google Scholar 

  95. Xu X, Toselli PA, Russell LD, Seldin DC. Globozoospermia in mice lacking the casein kinase II alpha’ catalytic subunit. Nat Genet 1999; 23: 118–121.

    Article  PubMed  CAS  Google Scholar 

  96. Yeung CH, Sonnenberg-Riethmacher E, Cooper TG. Infertile spermatozoa of c-ros tyrosine kinase receptor knockout mice show flagellar angulation and maturational defects in cell volume regulatory mechanisms. Biol Reprod 1999; 61: 1062–1069.

    Article  PubMed  CAS  Google Scholar 

  97. Hedlund P, Aszodi A, Pfeifer A, Aim P, Hofmann F, Ahmad M, et al. Erectile dysfunction in cyclic GMP-dependent kinase I-deficient mice. Proc Natl Acad Sci USA 2000; 97: 2349–2354.

    Article  PubMed  CAS  Google Scholar 

  98. Shamsadin R, Adham IM, Nayernia K, Heinlein UA, Oberwinkler H, Engel W. Male mice deficient for germ-cell cyritestin are infertile. Biol Reprod 1991; 61: 1445–1451.

    Article  Google Scholar 

  99. Bitgood MJ, Shen L, McMahon AP. Sertoli cell signaling by Desert hedgehog regulates the male germline. Curr Biol 1996; 6: 298–304.

    Article  PubMed  CAS  Google Scholar 

  100. Cho C, Bunch DO, Faure JE, Goulding EH, Eddy EM, Primakoff P, et al. Fertilization defects in sperm from mice lacking fertilin beta. Science 1998; 281: 1857–1859.

    Article  PubMed  CAS  Google Scholar 

  101. Bakker CE, Verheij CE, Willemsen R, van der Helm R, Oerlemans F, Vermeij M, et al. Fmrl knockout mice: a model to study fragile X mental retardation. Cell 1994; 78: 23–33.

    Google Scholar 

  102. Meng X, Lindahl M, Hyvonen ME, Parvinen M, Rooij DGd, Hess MW, et al. Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science 2000; 287: 1489–1493.

    Article  PubMed  CAS  Google Scholar 

  103. Osuga J, Ishibashi S, Oka T, Yagyu H, Tozawa R, Fujimoto A, et al. Targeted disruption of hormone-sensitive lipase results in male sterility and adipocyte hypertrophy, but not in obestiy. Proc Natl Acad Sci USA 2000; 97: 787–792.

    Article  PubMed  CAS  Google Scholar 

  104. Podlasek CA, Duboule D, Bushman W. Male accessory sex organ morphogenesis is altered by loss of function in Hoxd-13. Dev Dyn 1998; 208: 454–465.

    Article  Google Scholar 

  105. Roest HP, van Klaveren J, de Wit J, van Gurp CG, Koken MHM, et al. Inactivation of HR6B ubiquitin-conjugating DNA repair enzyme in mice causes male sterility associated with chromatin modification. Cell 1996; 86: 799–810.

    Article  PubMed  CAS  Google Scholar 

  106. Zindy F, Deursen Jv, Grosveld G, Sherr CJ, Roussel MF. INK4d-deficient mice are fertile despite testicular atrophy. Mol Cell Biol 2000; 20: 372–378.

    Article  PubMed  CAS  Google Scholar 

  107. Thepot D, Weitzman JB, Barra J, Segretain D, Stinnakre MG, Babinet C, et al. Targeted disruption of the murine junD gene results in multiple defects in male reproductive function. Development 2000; 127: 143–153.

    PubMed  CAS  Google Scholar 

  108. Mishina Y, Rey R, Finegold MJ, Matzuk MM, Josso N, Cate RL, et al. Genetic analysis of the Müllerian-inhibiting substance signal transduction pathway in mammalian sexual differentiation. Genes Dev 1996; 10: 1–11.

    Article  Google Scholar 

  109. Pace AJ, Lee E, Athirakui K, Coffman TM, O’Brien DA, Koller BH. Failure of spermatogenesis in mouse lines deficient in the Na(+)-K(+)-2C1(-) cotransporter. J Clin Invest 2000; 105: 441–450.

    Article  PubMed  CAS  Google Scholar 

  110. Gow A, Southwood CM, Li JS, Pariali M, Riordan GP, Brodie SE, et al. CNS myelin and sertoli cell tight junction strands are absent in Osp/claudin-11 null mice. Cell 1999; 99: 649–659.

    Article  PubMed  CAS  Google Scholar 

  111. Dai X, Schonbaum C, Degenstein L, Bai W, Mahowald A, Fuchs E. The ovo gene required for cuticle formation and oogenesis in flies is involved in hair formation and spermatogenesis in mice. Genes Dev I998; I2: 3452–3463.

    Google Scholar 

  112. Mulryan K, Gitterman DP, Lewis CJ, Vial C, Leckie BJ, Cobb AL, et al. Reduced vas deferens contraction and male infertility in mice lacking P2X1 receptors. Nature 2000; 403: 86–89.

    Article  PubMed  CAS  Google Scholar 

  113. Mbikay M, Tadros H, Ishida N, Lerner CP, Lamirande ED, Chen A, et al. Impaired fertility in mice deficient for the testicular germ cell protease PC4. Proc Natl Acad Sci USA 1997; 94: 6842–6846.

    Article  PubMed  CAS  Google Scholar 

  114. Blume-Jensen P, Jiang G, Hyman R, Lee KF, O’Gorman S, et al. Kit/stem cell factor receptor-induced activation of phosphatidylinositol 3’-kinase is essential for male fertility. Nat Genet 2000; 24: 157–162.

    Article  PubMed  CAS  Google Scholar 

  115. Baker SM, Bronner CE, Zhang L, Plug AW, Robatzek M, Warren G, et al. Male mice defective in the DNA mismatch repair gene PMS2 exhibit abnormal chromosome synapsis in meiosis. Cell 1995; 82: 309–319.

    Article  PubMed  CAS  Google Scholar 

  116. Varmuza S, Jurisicova A, Okano K, Hudson J, Boekelheide K, Shipp EB. Spermiogenesis is impaired in mice bearing a targeted mutation in the protein phosphatase lc gamma gene. Dev Biol 1999; 205: 98–110.

    Article  PubMed  CAS  Google Scholar 

  117. Lohnes D, Kastner P, Dierich A, Mark M, LeMeur M, Chambon P. Function of retinoic acid receptor g in the mouse. Cell 1993; 73: 643–658.

    Article  PubMed  CAS  Google Scholar 

  118. Yuan L, Liu JG, Zhao J, Brundell E, Daneholt B, Hoog C. The murine SCP3 gene is required for synaptonemal complex assembly, chromosome synapsis, and male fertility. Mol Cell 2000; 5: 73–83.

    Article  PubMed  CAS  Google Scholar 

  119. Supp DM, Witte DP, Branford WW, Smith EP, Potter SS. Sp4, a member of the Spl-family of zinc finger transcription factors, is required for normal murine growth, viability, and male fertility. Dev Biol 1996; 176: 284–299.

    Article  PubMed  CAS  Google Scholar 

  120. Pearse II, RV, Drolet DW, Kalla KA, Hooshmand F, Bermingham Jr. JR, et al. Reduced fertility in mice deficient for the POU protein sperm-1. Proc Natl Acad Sci USA 1997; 94: 7555–7560.

    Article  PubMed  CAS  Google Scholar 

  121. Kuroda M, Sok J, Webb L, Baechtold H, Urano F, Yin Y, et al. Male sterility and enhanced radiation sensitivity in TSL (-/-) mice. EMBO J 2000; 19: 453–462.

    Article  PubMed  CAS  Google Scholar 

  122. Yu YE, Zhang Y, Unni E, Shirley CR, Deng JM, Russell LD, et al. Abnormal spermatogenesis and reduced fertility in transition nuclear protein 1-deficient mice. Proc Natl Acad Sci USA 2000; 97: 4683–4688.

    Article  PubMed  CAS  Google Scholar 

  123. Lu Q, Gore M, Zhang Q, Camenisch T, Boast S, Casagranda F, et al. Tyro-3 family receptors are essential regulators of mammalian spermatogenesis. Nature 1999; 398: 723–728.

    Article  PubMed  CAS  Google Scholar 

  124. Tanaka SS, Toyooka Y, Akasu R, Katoh-Fukui Y, Nakahara Y, Suzuki R, et al. The mouse homolog of Drosophila Vasa is required for the development of male germ cells. Genes Dev 2000; 14: 841–853.

    PubMed  CAS  Google Scholar 

  125. Matzuk MM, Kumar TR. Bradley A. Different phenotypes for mice deficient in either activins or activin receptor type II. Nature 1995;374:356–360.

    Google Scholar 

  126. Toscani A, Mettus RV, Coupland R, Simpkins H, Litvin J, Orth J, et al. Arrest of spermatogenesis and defective breast development in mice lacking A-myb. Nature 1997; 386: 713–717.

    Article  PubMed  CAS  Google Scholar 

  127. Barlow C, Hirotsune S, Paylor R, Liyanage M, Eckhaus M, Collins F, et al. Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell 1996; 86: 159–171.

    Article  PubMed  CAS  Google Scholar 

  128. Xu Y, Ashley T, Brainerd EE, Bronson RT, Meyn MS, Baltimore D. Targeted disruption of ATM leads to growth retardation, chromosomal fragmentation during meiosis, immune defects, and thymic lymphoma. Genes Dev 1996; 10: 2411–2422.

    Article  PubMed  CAS  Google Scholar 

  129. Lu Q, Shur BD. Sperm from beta 1,4-galactosyltransferase-null mice are refractory to ZP3-induced acrosome reactions and penetrate the zona pellucida poorly. Development 1997; 124: 4121–4131.

    PubMed  CAS  Google Scholar 

  130. Hudson DF, Fowler KJ, Earle E, Saffery R, Kalitsis P, Trowell H, Wreford NG, et al. Centromere protein B null mice are mitotically and meiotically normal but have lower body and testis weights. J Cell Biol 1998; 141: 309–319.

    Article  PubMed  CAS  Google Scholar 

  131. Fowler KJ, Hudson DF, Salamonsen LA, Edmondson SR, Earle E, Sibson MC, et al. Uterine dysfunction and genetic modifiers in centromere protein B-deficient mice. Genome Res 2000; 10: 30–41.

    PubMed  CAS  Google Scholar 

  132. Fisher CR, Graves KH, Parlow AF, Simpson ER. Characterization of mice deficient in aromatase (ArK0) because of targeted disruption of the cyp19 gene. Proc Natl Acad Sci USA 1998; 95: 6965–6970.

    Article  PubMed  CAS  Google Scholar 

  133. Robertson KM, O’Donnell L, Jones ME, Meachem SJ, Boon WC, Fisher CR, et al. Impairment of spermatogenesis in mice lacking a functional aromatase (cyp 19) gene. Proc Natl Acad Sci USA 1999; 96: 7986–7991.

    Article  PubMed  CAS  Google Scholar 

  134. Rugglu M, Speed R, Taggart M, McKay SJ, Kilanowski F, Saunders P, et al. The mouse Dazla gene encodes a cytoplasmic protein essential for gametogenesis. Nature 1997; 389: 73–77.

    Article  CAS  Google Scholar 

  135. Yoshida K, Kondoh G, Matsuda Y, Habu T, Nishimune Y, Morita T. The mouse RecA-like gene Dmcl is required for homologous chromosome synapsis during meiosis. Mol Cell 1998; 1: 707–718.

    Article  PubMed  CAS  Google Scholar 

  136. Pittman DL, Cobb J, Schimenti KJ, Wilson LA, Cooper DM, Brignull E, et al. Meiotic prophase arrest with failure of chromosome synapsis in mice deficient for Dmcl, a germline-specific RecA homolog. Mol Cell 1998; 1: 697–705.

    Article  PubMed  CAS  Google Scholar 

  137. Miyamoto N, Yoshida M, Kuratani S, Matsuo I, Aizawa S. Defects of urogenital development in mice lacking Emx2. Development 1997; 124: 1653–1664.

    PubMed  CAS  Google Scholar 

  138. Hsieh-Li HM, Witte DP, Weinstein M, Branford W, Li H, Small K, et al. Hoxa 11 structure, extensive antisense transcription, and function in male and female fertility. Development 1995; 121: 1373–1385.

    PubMed  CAS  Google Scholar 

  139. Satokata I, Benson G, Maas R. Sexually dimorphic sterility phenotypes in Hoxa10-deficient mice. Nature 1995; 374: 460–463.

    Article  PubMed  CAS  Google Scholar 

  140. Baker J, Hardy MP, Zhou J, Bondy C, Lupu F, Bellvé AR, et al. Effects of an Igfl gene null mutation on mouse reproduction. Mol Endocrinol 1996; 10: 903–918.

    Article  PubMed  CAS  Google Scholar 

  141. Edelmann W, Cohen PE, Kane M, Lau K, Morrow B, Bennett S, et al. Meiotic pachytene arrest in MLH1-deficient mice. Cell 1996; 85: 1125–1134.

    Article  PubMed  CAS  Google Scholar 

  142. deVries SS, Baart EB, Dekker M, Siezen A, Rooij DGd, Boer Pd, et al. Mouse MutS-like protein MshS is required for proper chromosome synapsis in male and female meiosis. Genes Dev 1999; 13: 523–531.

    Article  CAS  Google Scholar 

  143. Good D, Porter E, Mahon K, Parlow A, Westphal H, Kirsch I. Hypogonadism and obesity in mice with a targeted deletion of the Nhlh2 gene. Nat Genet 1997; 15: 397–401.

    Article  PubMed  CAS  Google Scholar 

  144. Nakayama K, Ishida N, Shirane M, Inomata A, Inoue T, Shishido N, et al. Mice lacking p27(Kipl) display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell 1996; 85: 707–720.

    Article  PubMed  CAS  Google Scholar 

  145. Fero ML, Rivkin M, Tasch M, Porter P, Carow CE, Firpo E, et al. A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27K1p1-deficient mice. Cell 1996; 85: 733–744.

    Article  PubMed  CAS  Google Scholar 

  146. Kiyokawa H, Kineman RD, Manova-Todorova KO, Soares VC, Hoffman ES, Ono M, et al. Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27 KIP I. Cell 1996; 85: 721–732.

    Article  PubMed  CAS  Google Scholar 

  147. Ormandy CJ, Camus A, Barra J, Damotte D, Lucas B, Buteau H, et al. Null mutation of the prolactin receptor gene produces multiple reproductive defects in the mouse. Genes Dev 1997; 11: 167–178.

    Article  PubMed  CAS  Google Scholar 

  148. Togawa A, Miyoshi J, Ishizaki K, Tanaka M, Takakura A, Nishioka H, et al. Progressive impairment of kidneys and reproductive organs in mice lacking Rho GDIalpha. Oncogene 1999; 18: 5373–5380.

    Article  PubMed  CAS  Google Scholar 

  149. Lee H-W, Blasco MA, Gottlieb GJ, Homer II JW, Greider CW, DePinho RA. Essential role of mouse telomerase in highly proliferative organs. Nature 1998; 392: 569–577.

    Article  PubMed  CAS  Google Scholar 

  150. Beck ARP, Miller IJ, Anderson P, Streuli M. RNA-binding protein TIAR is essential for primordial germ cell development. Proc Natl Acad Sci USA 1998; 95: 2331–2336.

    Article  PubMed  CAS  Google Scholar 

  151. Luoh S-W, Bain P, Polakiewicz R, Goodheart M, Gardner H, Jaenisch R, et al. Zfx mutation results in small animal size and reduced sperm cell number in male and female mice. Development 1997; 124: 2275–2284.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Borrelli, E., Kumar, T.R., Sassone-Corsi, P. (2001). Mouse Models to Study the Pituitary-Testis Interplay Leading to Regulated Gene Expression. In: Matzuk, M.M., Brown, C.W., Kumar, T.R. (eds) Transgenics in Endocrinology. Contemporary Endocrinology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-102-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-102-2_5

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9640-6

  • Online ISBN: 978-1-59259-102-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics