Skip to main content

In Vivo Tumor Response End Points

  • Chapter
Tumor Models in Cancer Research

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 441 Accesses

Abstract

The field of cancer research is very fortunate, because only recently has it come the forefront of human scientific endeavor, allowing cancer to take advantage of the experience of others. Before the organized investigation of malignant disease, researchers had worked out scientific methodology and recognized the importance of laboratory models for infectious diseases, allowing rapid progress in antibacterial drug development. Cancer research has also benefited from the early research of the 1950s and 1960s, which took a very orderly and rigorously scientific approach to the development of in vivo models and to the development of the most informative end points available from their experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Skipper HE. Historic milestones in cancer biology: a few that are important in cancer treatment (revisited). Semin Oncol 1979; 6: 506–514.

    PubMed  CAS  Google Scholar 

  2. Skipper HE. Thoughts on cancer chemotherapy and combination modality therapy JAMA 1974; 230: 1033–1035.

    Article  PubMed  CAS  Google Scholar 

  3. Skipper HE. Successes and failures at the preclinical level; where now? Seventh National Cancer Conference Proc. JB Lippincott Company, Philadelphia, PA, pp. 1973, 109–121.

    Google Scholar 

  4. Skipper HE. Kinetics of mammary tumor cell growth and implications for therapy. Cancer 1971; 28: 1479–1499.

    Article  PubMed  CAS  Google Scholar 

  5. Skipper HE. Cancer chemotherapy is many things: G.H.A. Clowes memorial lecture. Cancer Res 1971; 31: 1173–1180.

    PubMed  CAS  Google Scholar 

  6. Skipper HE. Improvement of the model systems. Cancer Res 1969; 29: 2329–2333.

    PubMed  CAS  Google Scholar 

  7. Skipper HE. Biochemical, biological, pharmacologic, toxicologic, kinetics and clinical (subhuman and human) relationships. Cancer 1968; 21: 600–610.

    Article  PubMed  CAS  Google Scholar 

  8. Skipper HE. Criteria associated with destruction of leukemia and solid tumor cells in animals. Cancer Res 1967; 27: 2636–2645.

    PubMed  CAS  Google Scholar 

  9. Himmelfarb P, Thayer PS, Martin H. Growth of colonies of murine leukemia L1210 in vitro. Cancer Chemother Rep 1967; 51: 451–453.

    Google Scholar 

  10. Wilcox WS, Schabel FM, Skipper HE. Experimental evaluation of potential anticancer agents XV. On the relative rates of growth and host kill of “single” leukemia cells that survive in vivo cytoxan therapy. Cancer Res 1966; 26: 1009–1014.

    PubMed  CAS  Google Scholar 

  11. Moore GE, Sandberg AA, Ulrich K. Suspension cell culture and in vivo and in vitro chromosome constitution of mouse leukemia 1210. J Natl Cancer Inst 1966; 36: 405–421.

    PubMed  CAS  Google Scholar 

  12. Pittilo RF, Schabel FM, Wilcox WS, Skipper HE. Experimental evaluation of potential anticancer agents. XVI. Basic study of effects of certain anticancer agents on kinetic behavior of model bacterial cell populations. Cancer Chemother Rep 1965; no. 47: 1–26.

    Google Scholar 

  13. Wilcox WS, Griswold DP, Laster WR, Schabel FM, Skipper HE. Experimental evaluation of potential anticancer agents. XVII. kinetics of growth and regression after treatment of certain solid tumors. Cancer Chemother Rep 1965; no. 47: 27–39.

    PubMed  CAS  Google Scholar 

  14. Skipper HE, Schabel FM, Wilcox WS, Laster WR, Trader MW, Thompson SA. Experimental evaluation of potential anticancer agents. XVIII. Effects of therapy on viability and rate of proliferation of leukemia cells in various anatomic sites. Cancer Chemother Rep 1965; 47: 41–64.

    PubMed  CAS  Google Scholar 

  15. Skipper HE. The effects of chemotherapy on the kinetics of leukemic cell behavior. Cancer Res 1965; 25: 1544–1550.

    PubMed  CAS  Google Scholar 

  16. Chick H. An investigation of the laws of disinfection. J Hyg (London) 1908; 8: 92–158.

    Article  CAS  Google Scholar 

  17. McCulloch EC. Disinfection and Sterilization, 2nd ed. Lea and Febiger, Philadelphia, PA, 1945.

    Google Scholar 

  18. Davis BD. Bacterial and Mycotic Infections in Man,3rd ed. Dubos RJ, ed. J B Lippincott Company, Philadelphia, PA, 1958

    Google Scholar 

  19. Porter JR. Bacterial Chemistry and Physiology. John Wiley and Sons Inc., New York, NY, 1947.

    Google Scholar 

  20. Wyss O. Chemical factors affecting growth and death. In: Werkman CH, Wilson PW, eds. Bacterial Physiology Academic Press, Inc., New York, NY, 1951

    Google Scholar 

  21. Law LW, Dunn TB, Boyle PJ, Miller JH. Observations on the effects of a folic-acid antagonists on transplantable lymphoid leukemias in mice. J Natl Cancer Inst 1949; 10: 179–195.

    Google Scholar 

  22. Evans VJ, LaRock JF, Yosida TH, Potter M. A new tissue culture isolation and explanation of the P388 lymphocytic neoplasm in a chemically characterized medium. Exp Cell Res 1963; 32: 212–217.

    Article  PubMed  CAS  Google Scholar 

  23. Skipper HE, Schabel FM, Wilocox WS. Experimental evaluation of potential anticancer agents. XIII. On the criteria and kinetics associated with “curability” of experimental leukemia. Cancer Chemother Rep 1964; 35: 1–111.

    PubMed  CAS  Google Scholar 

  24. Skipper HE. Perspectives in cancer chemotherapy: therapeutic design. Cancer Res 1964; 24: 1295–1302.

    PubMed  CAS  Google Scholar 

  25. Frei E III. Potential for eliminating leukemic cells in childhood acute leukemia (Abstr) Proc Amer Assoc Cancer Res 1964; 5: 20.

    Google Scholar 

  26. Hananian J, Holland JF, Sheehe P. Intensive chemotherapy of acute lymphocytic leukemia in children (Abstr) Proc Am Assoc Cancer Res 1965; 6: 26.

    Google Scholar 

  27. Rall DP. Experimental studies of the blood-brain barrier. Cancer Res 1965; 25 (9): 1572–1577.

    PubMed  CAS  Google Scholar 

  28. Thomas LB. Pathology of leukemia in the brain and meninges: postmortem studies of patients with acute leukemia and of mice inoculated with L1210 leukemia. Cancer Res 1965; 25 (9): 1555–1571.

    PubMed  CAS  Google Scholar 

  29. Bibby MC. Making the most of rodent tumor systems in cancer. Br J Cancer 1999; 79: 1633–1640.

    Article  PubMed  CAS  Google Scholar 

  30. Waud WR. Murine L1210 and P388 leukemias. In: Teicher B, ed. Anticancer Drug Development Guide: Preclinical Screening, Clinical Trials and Approval. Humana Press Inc., Totowa, NJ, 1998, pp. 59–74.

    Google Scholar 

  31. Schabel FM Jr, Griswold DP Jr, Laster WR Jr, Corbett TH, Lloyd HH. Quantitative evaluation of anticancer agent activity in experimental animals. Pharmacol Ther (A) 1977; 1: 411–435.

    Google Scholar 

  32. Lloyd HH. Application of tumor models toward the design of treatment schedules for cancer chemotherapy. In: Drewinko B, Humphrey RM, eds. Growth Kinetics and Biochemical Regulation of Normal and Malignant Cells. Williams Wilkins, Baltimore, MD, 1977, 455–469.

    Google Scholar 

  33. Corbett T, Valeriote F, LoRusso P, Polin L, Panchapor C, Pugh S, et al. In vivo methods for screening and preclinical testing. In: Teicher B, ed. Anticancer Drug Development Guide: Preclinical Screening, Clinical Trials and Approval. Humana Press Inc., Totowa, NJ, 1998, pp. 75–99.

    Google Scholar 

  34. Plowman J, Dykes DJ, Hollingshead M, Simpson-Herren L, Alley MC. Human tumor xenograft models in NCI drug development. In: Teicher B, ed. Anticancer Drug Development Guide: Preclinical Screening, Clinical Trials and Approval. Humana Press Inc., Totowa, NJ, 1998, pp. 101–125.

    Google Scholar 

  35. Teicher BA. Preclinical models for high-dose therapy. In: Teicher B, ed. Anticancer Drug Development Guide: Preclinical Screening, Clinical Trials and Approval. Humana Press Inc., Totowa, NJ, 1998, pp. 145–182.

    Google Scholar 

  36. Corbett TH, Valeriote FA. Rodent models in experimental chemotherapy. In: Kallman RF, ed. The Use of Rodent Tumors in Experimental Cancer Therapy: Conclusions and Recommendations. Pergamon, Press, New York, New York. 1987, 233–247.

    Google Scholar 

  37. Corbett TYH, Valeriote FA, Polin L, et al. Discovery of solid tumor active agents using a soft agar colony formation disk-diffusion assay. In: Valeriote FA, Corbett TH, Baker LH, eds. Cytotoxic Anticancer Drugs: Models and Concepts for Drug Discovery and Development. Kluwer Academic Publishers, Boston, MA, 1992, pp. 33–87.

    Google Scholar 

  38. Griswold DP, Jr., Schabel FM, Jr., Wilcox WS, Simpson-Herren L, Skipper HE. Success and failure in the treatment of solid tumors. I. Effects of cyclophosphamide (NSC-26271) on primary and metastatic plasmacytoma in the hamster. Cancer Chemother 1968, Rep 52: 345–387.

    Google Scholar 

  39. Hermens AF, Barendsen GW. Changes of cell proliferation characteristics in a rat rhabdomyosarcoma before and after x-irradiation. Eur J Cancer 1969; 5: 173–189.

    PubMed  CAS  Google Scholar 

  40. Laster WR, Jr., et al. Success and failure in the treatment of solid tumors. II. Kinetic parameters and “cell cure” of moderately advanced carcinoma 755. Cancer Chemother Rep 1969; 53: 169–188.

    PubMed  CAS  Google Scholar 

  41. van Putten LM, Lelieveld R. Factors determining cell killing by chemotherapeutic agents in vivo. I. Cyclophosphamide. Eur J Cancer 1970; 6: 313–321.

    PubMed  Google Scholar 

  42. Teicher BA, Northey D, Yuan J, Frei E, III. High-dose therapy/stem cell support: Comparison of mice and humans. Int J Cancer 1996; 65:695–699.

    Google Scholar 

  43. Rockwell SC. Characteristics of a serially transplanted mouse mammary tumor and its tissue-cultureadapted derivative. J Natl Cancer Inst 1972; 49 (3): 735–749.

    PubMed  CAS  Google Scholar 

  44. Teicher BA. Preclinical models for high dose therapy. In: Armitage JO, Antman KH, eds. High-dose Cancer Therapy: Pharmacology, Hematopoietins, Stem Cells. Williams and Wilkins, Baltimore, MD, 1992, pp. 14–42.

    Google Scholar 

  45. Teicher BA, Herman TS, Holden SA, Wang Y, Pfeffer MR, Crawford JM, et al. Tumor resistance to alkylating agents conferred by mechanisms operative only in vivo. Science 1990; 247: 1457–1461.

    Article  PubMed  CAS  Google Scholar 

  46. Teicher BA, Holden SA, Cucchi CA, Cathcart KNS, Korbut TT, Flatow JL, et al. III. Combination of N,N’,N”-triethylenethiophosphoramide and cyclophosphamide in vitro and in vivo. Cancer Res 1988; 48: 94–100.

    PubMed  CAS  Google Scholar 

  47. Teicher BA, Holden SA, Eder JP, Brann TW, Jones SM, Frei E III. Preclinical studies relating to the use of thiotepa in the high-dose setting alone and in combination. Semin Oncol 1990; 17: 18–32.

    PubMed  CAS  Google Scholar 

  48. Teicher BA, Holden SA, Jones SM, Eder JP, Herman TS. Influence of scheduling on two-drug combinations of alkylating agents in vivo. Cancer Chemother Pharmacol 1989; 25: 161–166.

    Article  PubMed  CAS  Google Scholar 

  49. Teicher BA, Waxman DJ, Holden SA, Wang Y, Clarke L, Alvarez Sotomayor E, et al. Evidence for enzymatic activation and oxygen involvement in cytotoxicity and antitumor activity of N,N’,N”-triethylenethiophosphoramide. Cancer Res 1989; 49: 4996–5001.

    PubMed  CAS  Google Scholar 

  50. Teicher BA, Herman TS, Holden SA, Eder JR. Chemotherapeutic potentiation through interaction at the level of DNA. In: Chou T-C, Rideout DC, eds. Synergism and Antagonism in Chemotherapy. Academic Press, Orlando, FL, 1991, pp. 541–583.

    Google Scholar 

  51. Teicher BA, Frei E III. Laboratory models to evaluate new agents for the systemic treatment of lung cancer. In: Skarin AT, ed. Multimodality Treatment of Lung Cancer. New York, Marcel Dekker, Inc., NY, 2000, pp. 301–336.

    Google Scholar 

  52. Steel GG, Peckham MJ. Exploitable mechanisms in combined radiotherapy-chemotherapy: the concept of additivity. Mt J Radiat Oncol Biol Phys 1979; 5: 85–91.

    Article  CAS  Google Scholar 

  53. Berenbaum MC. Synergy, additivism and antagonism in immunosuppression. Clin Exp Immunol 1977; 28: 1–18.

    PubMed  CAS  Google Scholar 

  54. Dewey WC, Stone LE, Miller HH, Giblak RE. Radiosensitization with 5-bromodeoxyuridine of Chinese hamster cells x-irradiated during different phases of the cell cycle. Radiat Res 1977; 47: 672–688.

    Article  Google Scholar 

  55. Deen DF, Williams MW. Isobologram analysis of x-ray-BCNU interactions in vitro. Radiat Res 1979; 79: 483–491.

    Article  PubMed  CAS  Google Scholar 

  56. Schabel FM, Trader MW, Laster WR, Wheeler GP, Witt MH. Patterns of resistance and therapeutic synergism among alkylating agents. Antibiot Chemother (Basel) 1978; 23: 200–215.

    CAS  Google Scholar 

  57. Schabel FM, Griswold DP, Corbett TH, Laster Wr, Mayo JG, Lloyd HH. Testing therapeutic hypotheses in mice treated with anticancer drugs that have demonstrated or potential clinical utility for treatment of advanced solid tumors of man. Methods Cancer Res 1979; 17: 3–51.

    CAS  Google Scholar 

  58. Schabel FM Jr. Concepts for systemic treatment of micrometastases. Cancer 1975; 35: 15–24.

    Article  PubMed  CAS  Google Scholar 

  59. Schabel FM, Jr., Griswold DP, Jr., Corbett TH, Laster WR, Jr. Increasing the therapeutic response rates to anticancer drugs by applying the basic principles of pharmacology. Cancer 1984; 54: 1160–1167.

    Article  PubMed  CAS  Google Scholar 

  60. Schabel FM Jr., Simpson-Herren L. Some variables in experimental tumor systems which complicate interpretation of data from in vivo kinetic and pharmacologic studies with anticancer drugs. Antibiot Chemother 1978; 23: 113–127.

    PubMed  Google Scholar 

  61. Schabel FM Jr., Griswold DP Jr., Corbett TH, Laster WR. Increasing therapeutic response rates to anticancer drugs by applying the basic principles of pharmacology. Pharmacol Ther 1983; 20: 283–305.

    Article  PubMed  CAS  Google Scholar 

  62. Corbett TH, Griswold DP Jr., Roberts BJ, Peckham JC, Schabel FM, Jr. Evaluation of single agents and combinations of chemotherapeutic agents in mouse colon carcinomas. Cancer 1977; 40: 2660–2680.

    Article  PubMed  CAS  Google Scholar 

  63. Corbett TH, Griswold DP, Jr., Wolpert MK, Venditti JM, Schabel, FM, Jr. Design and evaluation of combination chemotherapy trials in experimental animal tumor systems. Cancer Treat Rep 1979; 63: 799–801.

    PubMed  CAS  Google Scholar 

  64. Griswold DP Jr., Corbett TH, Schabel FM, Jr. Cell kinetics and the chemotherapy of murine solid tumors. Antibiot Chemother 1980; 28: 28–34.

    CAS  Google Scholar 

  65. Griswold DP, Corbett TH, Schabel FM, Jr. Clonogenicity and growth of experimental tumors in relation to developing resistance and therapeutic failure. Cancer Treat Rep 1981; 65 (Suppl. 2): 51–54.

    PubMed  CAS  Google Scholar 

  66. Sugiura K, Stock C. Studies in a tumor spectrum. III. The effect of phosphoramides on the growth of a variety of mouse and rat tumors. Cancer Res 1955; 15: 38–51.

    PubMed  CAS  Google Scholar 

  67. Sugiura K, Stock C. Studies in a tumor spectrum. I. Comparison of the action of methylbis(2chloroethyl)amine and 3-bis(2-chloroethyl) agminomethyl-4-methoxymethyl-5-hydroxy-6-methylpyridine on the growth of a variety of mouse and rat tumors. Cancer 1952; 5: 282–315.

    Google Scholar 

  68. Sugiura K, Stock C. Studies in a tumor spectrum. II. The effect of 2,4,6-triethyleneimino-s-triazine on the growth of a variety of mouse and rat tumors. Cancer 1952; 5: 979–991.

    Google Scholar 

  69. DeWys W. A quantitative model for the study of the growth and treatment of a tumor and its metastases with correlation between proliferative state and sensitivity to cyclophosphamide. Cancer Res 1972; 32: 367–373.

    PubMed  CAS  Google Scholar 

  70. DeWys W. Studies correlating the growth rate of a tumor and its metastases and providing evidence for tumor-related systemic growth-retarding factors. Cancer Res 1972; 32: 374–379.

    PubMed  CAS  Google Scholar 

  71. Steel GG, Adams K. Stem-cell survival and tumor control in the Lewis lung carcinoma. Cancer Res 1975; 35: 1530–1535.

    PubMed  CAS  Google Scholar 

  72. Steel GG, Nill RP, Peckhyam MJ. Combined radiotherapy-chemotherapy of Lewis lung carcinoma. Int J Radiat Oncol Biol Phys 1978; 4: 49–52.

    Article  PubMed  CAS  Google Scholar 

  73. Gemcitabine HCl (LY188011 HC1) clinical investigational brochure. Eli Lilly and Company, Indianapolis, IN, October 1993.

    Google Scholar 

  74. Huang P, Chubb S, Hertel L, Plunkett W. Mechanism of action of 2’,2’-difluorodeoxycytidine triphosphate on DNA synthesis (Abstr 2530 ). Proc Am Assoc Cancer Res 1990; 31: 426.

    Google Scholar 

  75. Hertel L, Boder G, Kroin J. Evaluation of the antitumor activity of gemcitabine 2’,2’-difluoro-2’deoxycytidine. Cancer Res 1990; 50: 4417–4422.

    PubMed  CAS  Google Scholar 

  76. Bouffard D, Fomparlwer L, Momparler R. Comparison of the antineoplastic activity of 2’,2’-difluorodeoxycytidine and cytosine arabinoside against human myeloid and lymphoid leukemia cells. Anticancer Drugs 1991; 2: 49–55.

    Article  PubMed  CAS  Google Scholar 

  77. Heinemann V, Hertel L, Grindey G, Plunkett W. Comparison of the cellular pharmacokinetics and toxicity of 2’,2’-difluorodeoxycytidine and 1-beta-D-arabinofuranosyl cytosine. Cancer Res 1988; 48: 4024–4031.

    PubMed  CAS  Google Scholar 

  78. Eckhardt I, VonHoff D. New drugs in clinical development in the United States. Hematol Oncol Clin N Amer 1994; 8: 300–332.

    Google Scholar 

  79. Anderson H, Lund B, Bach F. Single-agent activity of weekly gemcitabine in advanced non-small cell lung cancer: a Phase 2 study. J Clin Oncol 1994; 1821–1826.

    Google Scholar 

  80. Gatzemeier U, Shapard F, LeChevalier T, et al. Activity of gemcitabine in patients with non-small cell lung cancer: a multicentre, extended Phase II study. Eur J Cancer 1996; 32A: 243–248.

    Article  Google Scholar 

  81. Bertelli P, Mantica C, Farina G, Cobelli S, LaVerde N, Gramegna G, et al. Treatment of non-small cell lung cancer with vinorelbine. Proc Am Soc Clin Oncol 1994; 13: 362.

    Google Scholar 

  82. Bore P, Rahmani R, VanCamfort J. Pharmacokinetics of a new anticancer drug, navelbine, in patients. Cancer Chemother Pharmacol 1989; 23: 247–251.

    Article  PubMed  CAS  Google Scholar 

  83. Cros S, Wright M, Morimoto M. Experimental antitumor activity of navelbine. Semin Oncol 1989; 16 (Suppl.): 15–20.

    PubMed  CAS  Google Scholar 

  84. Cvitkovic E. The current and future place of vinorelbine in cancer therapy. Drugs 1992; 44 (Suppl. 4): 36–45.

    Article  PubMed  Google Scholar 

  85. Marquet P, Lachatre G, Debord J. Pharmacokinetics of vinorelbine in man. Eur J Clin Pharmacol 1992; 42: 545–547.

    Article  PubMed  CAS  Google Scholar 

  86. Navelbine (vinorelbine tartrate) clinical investigational brochure. Burroughs Wellcome Co., October 1995.

    Google Scholar 

  87. Fumoleau P, Delgado F, Delozier T, et al. Phase II trial of weekly intravenous vinorelbine in first line advanced breast cancer chemotherapy. J Clin Oncol 1993; 11: 1245–1252.

    PubMed  CAS  Google Scholar 

  88. Jehl F, Quoix E, Leveque D. Pharmacokinetics and preliminary metabolite fate of vinorelbine in human as determined by high performance liquid chromatography. Cancer Res 1991; 51: 2073–2076.

    PubMed  CAS  Google Scholar 

  89. Lepierre A, Lemarie E, Dabouis G, Gamier G. A Phase 2 study of navelbine in the treatment of non-small cell lung cancer. Am J Clin Oncol 1991; 14: 115–119.

    Article  Google Scholar 

  90. Shih C, Thornton DE. Preclinical pharmacology studies and the clinical development of a novel multi-targeted antifolate, MTA (LY231514). In: Jackman AL, ed. Anticancer Drug Development Guide: Antifolate Drugs in Cancer Therapy. Humana Press, Totowa, NJ, 1998, pp. 183–201.

    Google Scholar 

  91. Rinaldi DA, Burris HA, Dorr FA, et al. Initial Phase I evaluation of the novel thymidylate synthase inhibitor, LY231514, using the modified continual reassessment method for dose escalation. J Clin Oncol 1995; 13: 2842–2850.

    PubMed  CAS  Google Scholar 

  92. McDonald AC, Vasey PA, Adams L, et al. A phase I and pharmacokinetic study of LY231514, the multitargeted antifolate. Clin Cancer Res 1998; 4: 605–610.

    PubMed  CAS  Google Scholar 

  93. Takimoto CH. Antifolates in clinical development. Semin Oncol 1997; 24 (Suppl. 18): 40–51.

    Google Scholar 

  94. Brandt DS, Chu E. Future challenges in the clinical development of thymidylate synthase inhibitor compounds. Oncol Res 1997; 9: 403–410.

    PubMed  CAS  Google Scholar 

  95. Teicher BA, Alvarez E, Liu P, Lu K, Menon K, Dempsey J, et al. MTA (LY231514) in combination treatment regimens using human tumor xenografts and the EMT6 murine mammary carcinoma. Semin Oncol 1999; 26 (Suppl.6): 55–62.

    PubMed  CAS  Google Scholar 

  96. Giovanella BC. Topoisomerase I inhibitors. In: Teicher BA, ed. Cancer Therapeutics: Experimental and Clinical Agents. Humana Press, Totowa, NJ, 1997, pp. 137–152.

    Google Scholar 

  97. Chabot GC. Clinical pharmacokinetics of irinotecan. Clin Pharmacokinet 1997; 33: 245–259.

    Article  PubMed  CAS  Google Scholar 

  98. Aschele C, Baldo C, Sobrero AF, et al. Schedule-dependent synergism between ZD1694 (ralititrexed) and CPT-11 (irinotecan) in human colon cancer in vitro. Clin Cancer Res 1998; 4: 1323–1330.

    PubMed  CAS  Google Scholar 

  99. O’Reilly S, Rowinsky EC. The clinical status of irinotecan (CPT-11), a novel water soluble camptothecin analogue: Crit Rev Oncol Hematol 1996; 24: 47–70.

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Teicher, B.A. (2002). In Vivo Tumor Response End Points. In: Teicher, B.A. (eds) Tumor Models in Cancer Research. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-100-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-100-8_31

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-6883-1

  • Online ISBN: 978-1-59259-100-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics