Skip to main content

Part of the book series: Nutrition ◊ and ◊ Health ((NH))

Abstract

Safety evaluation of the essential nutrients is undergoing rapid development and it may become standardized (1–7). This progress occurs with a background knowledge that among the nutrients the trace elements pose particularly difficult challenges to find reasonable safety limits that will protect from toxicity but also allow the benefits of supplements. The difficulty with trace elements relates to both relatively narrow margins of safety and extensive interactions among them and with other substances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hathcock JN. Safety limits for nutrient intakes: Concepts and data requirements. Nutr Rev 1993; 51: 278–285.

    Article  PubMed  CAS  Google Scholar 

  2. Hathcock JN. Safety limits for nutrients. J Nutr 1996; 126: 2386S - 2389S.

    PubMed  CAS  Google Scholar 

  3. Hathcock JN. Vitamin and Mineral Safety. Council for Responsible Nutrition. Washington, DC, 1997.

    Google Scholar 

  4. Hathcock JN. Vitamins and minerals: efficacy and safety. Am J Clin Nutr 1997; 66: 427–437.

    PubMed  CAS  Google Scholar 

  5. MertzW, Abernathy CO, Olin SS, ed. RiskAssessmentof EssentialElements.1LSIPress, Washington, DC,1994.

    Google Scholar 

  6. WHO Expert Committee on Trace Elements in Human Nutrition, Trace Elements in Human Nutrition and Health. World Health Organization, Geneva, Switzerland,l996.

    Google Scholar 

  7. Institute of Medicine, Standing Committee on the Scientific Evaluation of Dietary Reference Intakes, Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride. National Academy Press, Washington, DC, 1997.

    Google Scholar 

  8. Barnes DG, Dourson M. Reference dose (RID): description and use in health risk assessments. Reg Toxicol Pharmacol 1988; 8: 471–486.

    Article  CAS  Google Scholar 

  9. Cantilli R, Abernathy CO, Donohue JM. Derivation of the reference dose for zinc. In: Mertz W, Abernathy CO, Olin SS, ed. Risk Assessment of Essential Elements. ILSI Press, Washington, DC, 1994,pp: 113–126.

    Google Scholar 

  10. IRIS: Integrated Risk Information System Database IRIS-NCAR (non-carcinogenic). U.S. Environmental Protection Agency. Available from the U.S. National Library of Medicine through TOXLINE; 1997.

    Google Scholar 

  11. Nielsen FH. Other trace elements. In: Ziegler EE, Filer LT, ed. Present Knowledge of Nutrition, 7th Edition. ILSI Press, Washington, DC, 1996,pp. 353–377.

    Google Scholar 

  12. Price CJ, Strong PL, Marr MC, Myers CB, Murray FJ. Developmental toxicity NOAEL and postnatal recovery in rats fed boric acid during gestation. Fundamental and Applied Toxicology 1996; 32: 179–193.

    Article  PubMed  CAS  Google Scholar 

  13. Weir RI, Fisher RS. Toxicological studies on borax and boric acid. Toxicology and Applied Pharmacology 1972; 23: 351–364.

    Article  PubMed  CAS  Google Scholar 

  14. Nielsen FW. Chromium. In: Shils ME, Olson JA, Shike M, ed. Modern Nutrition in Health and Disease, 8th ed. Lea and Febiger, Philadelphia, PA, 1994,pp. 264–268.

    Google Scholar 

  15. Dourson ML. Methods for establishing oral reference doses. In: Mertz W, Abernathy CO, Olin SS, ed. Risk Assessment of Essential Elements. ILSI Press, Washington, DC, 1994,pp. 51–61.

    Google Scholar 

  16. Gad SC. Acute and chronic systemic chromium toxicity. Sci Total Environ 1989; 86: 149–157.

    Article  PubMed  CAS  Google Scholar 

  17. Stearns DM, Wise JP, Sr, Patierno SR, Wetterhahn KE. Chromium (III) picolinate produces chromosome damage in Chinese hamster ovary cells. FASEB J 1995; 9: 1643–1648.

    PubMed  CAS  Google Scholar 

  18. Food and Nutrition Board, Subcommittee on the Tenth Edition of the RDAs, Commission on Life Sciences, National Research Council, ed. Recommended Daily Allowances, 10th ed., National Academy Press, Washington DC, 1989.

    Google Scholar 

  19. Anderson R, Cheng N, Bryden N, Polansky M, Cheng N, Chi J, Feng J. Elevated intakes of supplemental chromium improve glucose and insulin variables in individuals with type 2 diabetes. Diabetes 1996; 46: 1786–1791.

    Article  Google Scholar 

  20. Scheinberg IH, Sternlieb I. Copper toxicity and Wilson’s disease. In: Prasad AS, ed. Trace Elements in Human Health and Disease, vol 1. Academic Press, New York, 1976,pp. 415–438.

    Google Scholar 

  21. Linder MC. Copper. In: Ziegler EE, Filer LJ, edS. Present Knowledge of Nutrition, 7th ed. ILSI Press, Washington, DC, 1996,pp. 307–319.

    Google Scholar 

  22. Turnlund JR, Copper. In: Shils ME, Olson JA, Shike M, eds. Modern Nutrition in Health and Disease, 8th ed. Lea & Fibiger, Philadelphia, 1994,pp. 231–241.

    Google Scholar 

  23. FAO/WHO (Food and Agriculture Organization/World Health Organization). Evaluation of Food Additives. WHO Technical Report Series No. 462, World Health Organization, Geneva, 1971.

    Google Scholar 

  24. Public Health Service, Ad Hoc Subcommittee on Fluoride. Review of Fluoride Benefits and Risks. Department of Health and Human Services, Bethesda, MD,1991.

    Google Scholar 

  25. Hathcock JN. Letter on fluoride safety to Food and Nutrition Board. National Academy of Sciences, Washington, DC,1997.

    Google Scholar 

  26. Clugston GA, Hetzel BS. Iodine. In: Shils ME, Olson JA, Shike M, eds. Modern Nutrition in Health and Disease, 8th ed. Lea and Febiger, Philadelphia, 1994,pp. 252–263.

    Google Scholar 

  27. Stanbury JB. Iodine deficiency and iodine deficiency disorders. In: Ziegler EE, Filer LJ, eds. Present Knowledge of Nutrition, 7th ed. ILSI Press, Washington, DC, 1996,pp. 378–383.

    Google Scholar 

  28. Fairbanks VF. Iron in medicine and nutrition. In: Shils ME, Olson JA, Shike M, eds. Modern Nutrition, Health and Disease, 8th ed. Lea and Febiger, Philadelphia, 1994, pp 185–213.

    Google Scholar 

  29. Yip R, Dallman PR. Iron. In: Ziegler EE,Filer U, ed. Present Knowledge of Nutrition, 7th Edition. ILSI Press, Washington, DC, 1996,pp. 277–292.

    Google Scholar 

  30. Sullivan JL. Iron and sex difference in heart disease risk. Lancet 1981; 1: 1293–1294.

    Article  PubMed  CAS  Google Scholar 

  31. Salonen JT, Nyyssonen K, Korpela H, Tuomilehto J, Seppanen R, Salonen R. High stored iron levels are associated with excess risk of myocardial infarction in eastern Finnish men. Circulation 1992; 86: 803–811.

    Article  PubMed  CAS  Google Scholar 

  32. Sempos CT, Looker AC, Gillum RF. Iron and heart disease: the epidemiologic data. Nutr Rev 1996; 54: 73–84.

    Article  PubMed  CAS  Google Scholar 

  33. Liao Y, Cooper RS, McGee DL. Iron status and coronary heart disease, negative findings from the NHANES I epidemiological follow-up study. Am J Epidem 1994; 139: 704–712.

    CAS  Google Scholar 

  34. Aronow WS. Serum ferritin is not a risk factor for coronary artery disease in men and women aged ? 62 years. Am J Cardio 1993; 72: 347–378.

    Article  CAS  Google Scholar 

  35. Moore M, Folson AR, Barnes RW, Eckfeldt JH. No association between serum ferritin and asymptomatic carotid atherosclerosis; The Atherosclerosis Risk in Communities (ARIC) Study. Am J Epid 1995; 141: 719–723.

    Google Scholar 

  36. Baer DM, Tekawa IS, Hurley LB. Iron stores are not associated with acute myocardial infarction. Circulation 1994; 89: 2915–2918.

    Article  PubMed  CAS  Google Scholar 

  37. Morrison HI, Semenciw RM, Mao Y, Wigle DT. Serum iron and risk of fatal acute myocardial infarction. Epidemiology 1994; 5: 243–246.

    Article  PubMed  CAS  Google Scholar 

  38. Stewart ML, McDonald JT, Levy AS, Schucker RE, Henderson DP. Vitamin/mineral supplement use: A telephone survey of adults in the United States. J Am Dietetic Assoc 1985; 85: 1585–1590.

    CAS  Google Scholar 

  39. Food and Drug Administration. Iron-Containing Supplements and Drugs: Label Warning Statements and Unit-Dose Packaging Requirements. Fed Register 1995; 60: 8989–8993.

    Google Scholar 

  40. Keen CL, Zidenberg-Cherr S, Lonnerdal B. Nutritional and toxicological aspects of manganese intake: an overview. In: Mertz W, Abernathy CO, Olin SS, ed. Risk Assessment of Essential Elements. ILSI Press, Washington, DC, 1994,pp. 221–236.

    Google Scholar 

  41. Keen CL, Zidenberg-Cherr S. Manganese. In: Ziegler EE,Filer U, ed. Present Knowledge of Nutrition, 7th ed. ILSI Press, Washington, DC, 1996,pp. 334–343.

    Google Scholar 

  42. Ingersoll RT, Montgomery EB, Aphoshian HV. Central nervous system toxicity of manganese. 1. Inhibition of spontaneous motor activity in rats after intrathecal administration of manganese chloride. Fund Appl Toxicol 1995; 26: 106–113.

    Article  Google Scholar 

  43. Kondakis XG, Makris N, Leotsinidis M, et al. Possible health effects of high manganese concentration in drinking water. Arch of Environ Health 1989; 44: 175–178.

    Article  CAS  Google Scholar 

  44. Velazquez SF, Du IT. Derivation of the reference dose for manganese. In: Mertz W, Abernathy CO, Olin SS, ed. Risk Assessment of Essential Elements. ILSI Press, Washington, DC, 1994,pp. 253–268.

    Google Scholar 

  45. World Health Organization. Trace elements in human nutrition: Manganese. In: Technical Report Service 532 WHO Report of a WHO Expert Committee. Geneva, Switzerland, 1973,pp. 34–36.

    Google Scholar 

  46. Freeland-Graves JH, Bales CW, Behmardi F. Manganese requirements of humans. In: Kies C, ed. Nutritional Bioavailability of Manganese. American Chemical Society, Washington, DC, 1987,pp. 90–104.

    Chapter  Google Scholar 

  47. Underwood EJ. Trace elements in human and animal nutrition, 4th ed. Academic Press, New York, 1977, pp. 109–131.

    Google Scholar 

  48. Nielsen FH. Ultratrace minerals. In: Shils ME, Olson JA, Shike M, eds. Modern Nutrition in Health and Disease, 8th ed. Lea and Febiger, Philadelphia, 1994,pp. 269–286.

    Google Scholar 

  49. Nielsen FH. Other trace elements. In: Ziegler EE, Filer LJ, eds. Present Knowledge of Nutrition, 7th ed. ILSI Press, Washington, DC, 1996, pp. 353–377.

    Google Scholar 

  50. Kovalskiy VV, Yarovaya GA, Shmavonyan DM. Changes of purine metabolism in man and animals under conditions of molybdenum biogeochemical provinces. Zh Obschch Biol 1961; 22: 179–191.

    Google Scholar 

  51. National Research Council, ed. Selenium in Nutrition, revised. National Academy Press, Washington, DC,1983.

    Google Scholar 

  52. Jensen R, Clossen W, Rothenberg R. Selenium intoxication–New York. Morbid Mortal Wkly Rep. 1984; 33: 157–158.

    Google Scholar 

  53. Helzlsouer K, Jacobs R, Morris S. Acute selenium intoxication in the United States. Federation Proceedings. 1985; 44: 1670.

    Google Scholar 

  54. Yang G, Wang S, Zhou R, Sun S. Endemic selenium intoxication of humans in China. Am J Clin Nutr 1983; 37: 872–881.

    PubMed  CAS  Google Scholar 

  55. Yang G, Yin S, Zhou R, Gu L, Yan B, Liu Y, Liu Y. Studies of safe maximal daily dietary selenium intake in a seleniferous area in China, 2: relation between selenium intake and the manifestation of clinical signs and certain biochemical alterations in blood and urine. J Trace Elem Electrolytes Health Dis 1989; 3: 123–130.

    PubMed  CAS  Google Scholar 

  56. Longnecker MP, Taylor PR, Levander OA, Howe M, Veillon C, McAdam PA, Patterson KY, Holden JM, Stampfer MJ, Morris JS, Willet WC. Selenium in diet, blood and toenails in relation to human health in a seleniferous area. Am J Clin Nutr 1991; 53: 1288–1294.

    PubMed  CAS  Google Scholar 

  57. Clark LC, Combs GF, Turnbull BW, Slate EH et al. Effect of selenium supplementation for cancer prevention in patients with carcinoma of the skin. JAMA 1996; 276: 1957–1968.

    Article  PubMed  CAS  Google Scholar 

  58. Combs GF, Jr. Selenium and cancer prevention. In: HS Garewal ed. Antioxidants. Disease Prevention. CRC Press, Boca Raton, FL, 1997,pp:97–113.

    Google Scholar 

  59. Yang G, Zhou R, Yin S, Gu L, Yan B, Liu Y, Liu Y, Li X. Studies of safe maximal daily dietary selenium intake in a seleniferous area in China, 1: selenium intake and tissue levels of the inhabitants. J Trace Elem Electrolytes Health Dis 1989; 3: 77–87.

    PubMed  CAS  Google Scholar 

  60. Poirier K.A. Summary of the derivation of the reference dose for selenium. In: Mertz W, Abernathy CO, Olin SS, ed. Risk Assessment of Essential Elements. ILSI Press, Washington, DC, 1994,pp. 157–166.

    Google Scholar 

  61. Combs GF, Jr. Essentiality and toxicity of selenium: a critique of the recommended dietary allowance and the reference dose. In: Mertz W, Abernathy CO, Olin SS, ed. Risk Assessment of Essential Elements. ILSI Press, Washington, DC, 1994,pp. 167–183.

    Google Scholar 

  62. Yang G, Zhou R. Further observations on the human maximum safe dietary selenium intake in a seleniferous area of China. J Trace Elem Electrolytes Health Dis 1994; 8: 159–165.

    PubMed  CAS  Google Scholar 

  63. Butterworth CE, Jr, Tamura T. Folic acid safety and toxicity: a brief review. Am J Clin Nutr 1989; 50: 353–358.

    PubMed  CAS  Google Scholar 

  64. Mukherjee MD, Sandstead HH, Ratnaparkhl MV, Johnson LK, Milne DB, Stelling HP. Maternal zinc, iron folic acid and protein nutriture and outcome of human pregnancy. Am J Clin Nutr 1984; 40: 496–507.

    PubMed  CAS  Google Scholar 

  65. Milne DB, Canfield WK, Mahalko JR, Sandstead HH. Effect of oral folic acid supplements on zinc, copper and iron absorption and excretion. Am J Clin Nutr 1984; 39: 535–359.

    PubMed  CAS  Google Scholar 

  66. Simmer K, James C, Thompson RPH. Are iron-folate supplements harmful? Am J Clin Nutr 1987; 45: 122–125.

    PubMed  CAS  Google Scholar 

  67. Tamura T, Goldenberg RL, Freeberg LE, Cliver SP, Cutter GR, Hoffman HJ. Maternal serum folate and zinc concentrations and their relationships to pregnancy outcome. Am J Clin Nutr 1992; 56: 365–370.

    PubMed  CAS  Google Scholar 

  68. Kauwell GP, Bailey LB, Gregory JF, III Bowling DW, Cousins RJ. Zinc status is not adversely affected by folic acid supplementation and zinc intake does not impair folate utilization in human subjects. J Nutr 1995; 125: 66–72.

    PubMed  CAS  Google Scholar 

  69. Greger JL. Zinc: overview from deficiency to toxicity. In: Mertz W, Abernathy CO, Olin SS, ed. Risk Assessment of Essential Elements. ILSI Press, Washington, DC, 1994, pp. 91–111.

    Google Scholar 

  70. Summerfield AL, Steinberg FU, Gonzalez JG. Morphologic findings in bone marrow precursor cells in zinc-induced copper deficiency anemia. Am J Clin Pathol 1992; 97: 665–658.

    PubMed  CAS  Google Scholar 

  71. Gyorffy EJ,Chan H. Copper deficiency and microcytic anemia resulting from prolonged ingestion of over-the-counter zinc. Am J Gasterenterol 1992; 87: 1054–1055.

    Google Scholar 

  72. Frambach DA, Bendel RE. Zinc supplementation and anemia (letter). JAMA 1991; 265: 869.

    Article  PubMed  CAS  Google Scholar 

  73. Chandra RK. Excessive intake of zinc impairs immune responses. JAMA 1984; 252: 1443–1446.

    Article  PubMed  CAS  Google Scholar 

  74. Freeland-Graves JH, Friedman BJ, Han W, Shorey RL, Young R. Effect of zinc supplementation on plasma high-density lipoprotein and zinc. Am J Clin Nutr 1982; 35: 988–992.

    PubMed  CAS  Google Scholar 

  75. Fischer PWF Giroux A, L’Abbe AR. Effect of zinc supplementation on copper status in adult man. Am J Clin Nutr 1984; 40: 743–746.

    Google Scholar 

  76. Yadrick MK, Kenney MA, Winterfeldt EA. Iron copper and zinc status: response to supplementation with zinc or zinc and iron in adult females. Am J Clin Nutr 1989; 49: 145–150.

    PubMed  CAS  Google Scholar 

  77. Hooper PL, Visconti L, Garry Pi, Johnson GE. Zinc lowers high-density lipoprotein-cholesterol levels. JAMA 1980; 244: 1960–1961.

    Article  PubMed  CAS  Google Scholar 

  78. Black MR, Medeiros DM, Brunett E, Welke R. Zinc supplementation and serum lipids in adult white males. Am J Clin Nutr 1988; 47: 970–975.

    PubMed  CAS  Google Scholar 

  79. Sandstead HH. Requirements and toxicicity of essential trace elements illustrated by zinc and copper. Am J Clin Nutr 1995; 61: 621S–624S.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hathcock, J.N. (2000). Trace Element and Supplement Safety. In: Bogden, J.D., Klevay, L.M. (eds) Clinical Nutrition of the Essential Trace Elements and Minerals. Nutrition ◊ and ◊ Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-040-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-040-7_7

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-090-8

  • Online ISBN: 978-1-59259-040-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics