Skip to main content

Cyclic Nucleotide Phosphodiesterases

  • Chapter
Principles of Molecular Regulation
  • 111 Accesses

Abstract

In multicellular organisms, cell functions are integrated through a large network of signals and homeostatic mechanisms that control the intracellular concentration of second messengers. This is a feature indispensable for the basal functions of the body, as well as for an efficient response to the continuous changes in the environment to which the organism is exposed. In addition to regulation of second messenger production, complex regulations of second messenger inactivation are also necessary to maintain cell homeostasis and to control cell sensitivity to extracellular cues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Andersen CB, Roth RA, Conti M. Protein kinase B/Akt induces resumption of meiosis in Xenopus oocytes. J Biol Chem 1998; 273: 18705–18708.

    Article  PubMed  CAS  Google Scholar 

  • Artemyev NO, Surendran R, Lee JC, Hamm HE. Subunit structure of rod cGMP-phosphodiesterase. J Biol Chem 1996; 271 (41): 25382–25388.

    Article  PubMed  CAS  Google Scholar 

  • Barber R, Clark RB, Kelly LA, Butcher RW. A model of desensitization in intact cells. Adv Cyclic Nucleotide Res 1987; 9: 507–516.

    Google Scholar 

  • Beavo JA. Cyclic nucleotide phosphodiesterases: functional impli- cations of multiple isoforms. Physiol Rev 1995; 75: 725–748.

    PubMed  CAS  Google Scholar 

  • Butcher RW, Sutherland EW. Adenosine 3’,5’-monophosphate in biological materials. J Biol Chem 1962; 237: 1244–1250.

    PubMed  CAS  Google Scholar 

  • Boekhoff I, Breer H. Termination of second messenger signaling in olfaction. Proc Natl Acad Sci USA 1992; 89: 471–474.

    Article  PubMed  CAS  Google Scholar 

  • Bunemann M, Lee KB, Pals-Rylaarsdam R, Roseberry AG, Hosey MM. Desensitization of G-protein-coupled receptors in the cardiovascular system. Annu Rev Physiol 1999; 61: 169–192.

    Article  PubMed  CAS  Google Scholar 

  • Butcher RW, Sutherland EW. Adenosine 3’,5’-monophosphate in biological materials. J Biol Chem 1962; 237: 1244–1250.

    PubMed  CAS  Google Scholar 

  • Charbonneau H, Beier N, Walsh KA, Beavo JA. Identification of a conserved domain among cyclic nucleotide phosphodies- terases from diverse species. Proc Natl Acad Sci USA 1986; 83: 9308–9312.

    Article  PubMed  CAS  Google Scholar 

  • Conti MJ, In SC. The molecular biology of cyclic nucleotide phosphodiesterases. Adv Nucleic Acid Res 1999; 63: 1–38.

    CAS  Google Scholar 

  • Conti M, Jin SL, Monaco L, Repaske DR, Swinnen JV. Hormonal regulation of cyclic nucleotide phosphodiesterases. Endocrinol Rev 1991; 12: 218–234.

    Article  CAS  Google Scholar 

  • Conti M, Nemoz G, Sette C, Vicini E. Recent progress in under- standing the hormonal regulation of phosphodiesterases. Endocrinol Rev 1995; 16: 370–389.

    CAS  Google Scholar 

  • Davis RL, Dauwalder B. The Drosophila dunce locus: learning and memory genes in the fly. Trends Genet 1991; 7: 224–229.

    PubMed  CAS  Google Scholar 

  • Degerman E, Belfrage P, Manganiello V. 1997; 272: 6823–6826.

    CAS  Google Scholar 

  • Rooij J, Zwartkruis FJ, Verheijen MH, Cool RH, Nijman SM, Wittinghofer A, Bos JL. Epac is a Rap1 guanine-nucleotide- exchange factor directly activated by cyclic AMP. Nature 1998; 396: 474–477.

    Article  PubMed  Google Scholar 

  • Erneux C, Van Sande J, Miot F, Cochaux P, Decoster C, Dumont JE. A mechanism in the control of intracellular cAMP level: the activation of a calmodulin-sensitive phosphodiesterase by a rise of intracellular free calcium. Mol Cell Endocrinol 1985; 43: 123–134.

    Article  PubMed  CAS  Google Scholar 

  • Farber DB, Danciger JS, Aguirre G. The beta subunit of cyclic GMP phosphodiesterase mRNA is deficient in canine rodcone dysplasia 1. Neuron 1992; 9: 349–356.

    Article  PubMed  CAS  Google Scholar 

  • Fisher DA, Smith JF, Pillar JS, St. Denis SH, Cheng JB. Isolation and characterization of PDE9A, a novel human cGMP-specific phosphodiesterase. J Biol Chem 1998a; 273: 15559–15564.

    Article  PubMed  CAS  Google Scholar 

  • Fisher DA, Smith JF, Pillar JS, St. Denis SH, Cheng JB. Isolation and characterization of PDE8A, a novel human cAMP-specific phosphodiesterase. Biochem Biophys Res Commun 1998; 246: 570–577.

    Article  PubMed  CAS  Google Scholar 

  • Florio SK, Prusti RK, Beavo JA. Solubilization of membrane- bound rod phosphodiesterase by the rod phosphodiesterase recombinant delta subunit. J Biol Chem 1996; 271: 2403624047.

    Google Scholar 

  • Francis SH, Colbran JL, McAllister-Lucas LM, Corbin JD. Zinc interactions and conserved motifs of the cGMP-binding cGMP-specific phosphodiesterase suggest that it is a zinc hydrolase. J Biol Chem 1994; 269: 22477–22480.

    PubMed  CAS  Google Scholar 

  • Francis SH, Corbin JD. Structure and function of cyclic nucleo- tide-dependent protein kinases. Annu Rev Physiol 1994; 56: 237–272.

    Article  PubMed  CAS  Google Scholar 

  • Gettys TW, Blackmore PF, Redmon JB, Beebe SJ, Corbin JD. Short-term feedback regulation of cAMP by accelerated degradation in rat tissues. J Biol Chem 1987; 262: 333–339.

    PubMed  CAS  Google Scholar 

  • Goldberg ND, Walseth TF, Eide SJ, Krick TP, Kuehn BL, Gander JE. Cyclic AMP metabolism in intact platelets determined by 180 incorporation into adenine nucleotide alpha-phosphoryls. Adv Cyclic Nucleotide Protein Phosphorylation Res 1984; 16: 363–379.

    PubMed  CAS  Google Scholar 

  • Harden TK, Evans T, Hepler JR, Hughes AR, Martin MW, Meeker RB, Smith MM, Tanner LI. Regulation of cyclic AMP metabolism by muscarinic cholinergic receptors. Adv Cyclic Nucleotide Protein Phosphorylation Res 1985; 19: 207–220.

    PubMed  CAS  Google Scholar 

  • Houslay MD Milligan G. Tailoring cAMP-signalling responses through isoform multiplicity. Trends Biochem Sci 1997; 22: 217–224.

    Article  PubMed  CAS  Google Scholar 

  • Huston E, Pooley L, Julien P, Scotland G, McPhee I, Sullivan M, Bolger G, Houslay MD. The human cyclic AMP-specific phosphodiesterase PDE-46 (HSPDE4A4B) expressed in transfected COS7 cells occurs as both particulate and cytosolic species that exhibit distinct kinetics of inhibition by the antide- pressant rolipram. J Biol Chem 1996; 271: 31334–31344.

    Article  PubMed  CAS  Google Scholar 

  • Jin CS, Busnick T, Lan L, Conti M. Subcellular Localization of the PDE variants. J Biol Chem 1998; 273: 19672–19678.

    Article  PubMed  CAS  Google Scholar 

  • Jin S-LC, Richard F, Kuo W-P, D’Ercole AJ, Conti M. Impaired growth and fertility of cAMP-specific phosphodiesterase PDE40-deficient mice. J Biol Chem 1999; 96: 11998–12003.

    CAS  Google Scholar 

  • Jin SL, Swinnen JV, Conti M. Characterization of the structure of a low Km, rolipram-sensitive cAMP phosphodiesterase. Mapping of the catalytic domain. J Biol Chem 1992; 267: 18929–18939.

    PubMed  CAS  Google Scholar 

  • Juilfs DM, Fulle HJ, Zhao AZ, Houslay MD, Garbers DL, Beavo JA. A subset of olfactory neurons that selectively express cGMP-stimulated phosphodiesterase (PDE2) and guanylyl cyclase-D define a unique olfactory signal transduction pathway. Proc Natl Acad Sci USA 1997; 94: 3388–3395.

    Article  PubMed  CAS  Google Scholar 

  • Jurevicius J, Fischmeister R. cAMP compartmentation is respon- sible for a local activation of cardiac Ca2+ channels by betaadrenergic agonists. Proc Natl Acad Sci USA 1996; 93: 295–299.

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki H, Springett GM, Mochizuki N, Toki S, Nakaya M, Matsuda M, Housman DE, Graybiel AM. A family of cAMP- binding proteins that directly activate Rap1. Science 1998; 282: 2275–2279.

    Article  PubMed  CAS  Google Scholar 

  • Li L, Yee C, Beavo JA. CD3- and CD28-dependent induction ofPDE7 required for T cell activation. Science 1999; 283: 848851.

    Google Scholar 

  • Licht MR. Use of oral sildenafil [Viagra] in the treatment of erectile dysfunction. Compr Ther 1999; 25: 90–94.

    Article  PubMed  CAS  Google Scholar 

  • Lim J, Pahlke G, Conti M. Activation of the phosphodiesterase PDE4D3 by phopshorylation: identification and function of an inhibitory domain. J Biol Chem 1999; 274: 19677–19685.

    Article  PubMed  CAS  Google Scholar 

  • Loten EG, Sneyd JG. An effect of insulin on adipose-tissue adenosine 3’:5’-cyclic monophosphate phosphodiesterase. Biochem J 1970; 120: 187–193.

    PubMed  CAS  Google Scholar 

  • MacFarland RT, Zelus BD, Beavo JA. High concentrations of a cGMP-stimulated phosphodiesterase mediate ANP-induced decreases in cAMP and steroidogenesis in adrenal glomerulosa cells. J Biol Chem 1991; 266: 136–142.

    PubMed  CAS  Google Scholar 

  • Maelicke A. The cGMP-gated channel of the rod photoreceptor— a new type of channel structure? Trends Biochem Sci 1990; 15: 39–40.

    Article  PubMed  CAS  Google Scholar 

  • Maurice DH, Haslam RJ. Molecular basis of the synergistic inhibition of platelet function by nitrovasodilators and activators of adenylate cyclase: inhibition of cyclic AMP breakdown by cyclic GMP. Mol Pharmacol 1990; 37: 671–681.

    PubMed  CAS  Google Scholar 

  • Michaeli T, Bloom TJ, Martins T, Loughney K, Ferguson K, Riggs M, Rodgers L, Beavo JA, Wigler M. Isolation and characterization of a previously undetected human cAMP phosphodiesterase by complementation of cAMP phosphodi-esterase-deficient Sacharomyces cerevisiae. J Biol Chem 1993; 268 (17): 12925–12932.

    PubMed  CAS  Google Scholar 

  • Monaco L, Vicini E, Conti M. Structure of two rat genes coding for closely related rolpram-sensitive cAMP-phosphodiesterases. J Biol Chem 1994; 269: 347–357.

    PubMed  CAS  Google Scholar 

  • Qiu Y, Davis RL. Genetic dissection of the learning/memory gene dunce of Drosophila melanogaster. Genes Dev 1993; 7: 1447–1458.

    Article  PubMed  CAS  Google Scholar 

  • Rubin CS. A kinase anchor proteins and the intracellular targeting of signals carried by cyclic AMP. Biochim Biophys Acta 1994; 1224: 467–479.

    PubMed  Google Scholar 

  • Sadler SE. Type III phosphodiesterase plays a necessary role in the growth-promoting actions of insulin, insulin-like growth factor-I, and Ha p21ras in Xenopus laevis oocytes. Mol Endo- crinol 1991; 5: 1939–1946.

    Article  CAS  Google Scholar 

  • Scott JD, McCartney S. Localization of A-kinase through anchor- ing proteins. Mol Endocrinol 1994; 8: 5–116.

    Article  PubMed  CAS  Google Scholar 

  • Sette C, Iona S, Conti M. The short-term activation of a rolipram-sensitive, cAMP-specific phosphodiesterase by thyroid-stimu- lating hormone in thyroid FRTL-5 cells is mediated by a cAMP-dependent phosphorylation. J Biol Chem 1994; 269: 9245–9252.

    PubMed  CAS  Google Scholar 

  • Shakur Y, Pryde JG, Houslay MD. Engineered deletion of the unique N-terminal domain of the cyclic AMP-specific phosphodiesterase RD1 prevents plasma membrane association and the attainment of enhanced thermostability without altering its sensitivity to inhibition by rolipram. Biochem J 1993; 292: 677–686.

    PubMed  CAS  Google Scholar 

  • Sharma RK, Wang JH. Differential regulation of bovine brain calmodulin-dependent cyclic nucleotide phosphodiesterase isoenzymes by cyclic AMP-dependent protein kinase and calmodulin-dependent phosphatase. Proc Natl Acad Sci USA 1985; 82: 2603–2607.

    Article  PubMed  CAS  Google Scholar 

  • Soderling SH, Bayuga SJ, Beavo JA. Identification and characterization of a novel family of cyclic nucleotide phosphodiesterases. J Biol Chem 1998; 273: 15553–15558.

    Article  PubMed  CAS  Google Scholar 

  • Soderling SH, Bayuga SJ, Beavo JA. Isolation and characterization of a dual-substrate phosphodiesterase gene family: PDE10A. Proc Natl Acad Sci 1999; 96 (12): 7071–7076.

    Article  CAS  Google Scholar 

  • Sonnenburg WK, Mullaney PJ, Beavo JA. J Biol Chem 1991; 266: 17655–17660.

    PubMed  CAS  Google Scholar 

  • Sonnenburg WK, Seger D, Kwak KS, Huang J, Charbonneau H, Beavo JA. Identification of inhibitory and calmodulin-binding domains of the PDE1A1 and PDE1A2 calmodulin-stimulated cyclic nucleotide phosphodiesterases. J Biol Chem 1995; 270: 30989–31000.

    Article  PubMed  CAS  Google Scholar 

  • Sorkin EM, Markham A. Cilostazol. Drugs Aging 1999; 14:6371; discussion 72–3.

    Google Scholar 

  • Su YF, Cubeddu L, Perkins JP. Regulation of adenosine 3’:5’-monophosphate content of human astrocytoma cells: desensiti- zation to catecholamines and prostaglandins. J Cyclic Nucleotide Res 1976; 2: 257–270.

    PubMed  CAS  Google Scholar 

  • Sutherland EW, Rall TW. Fractionation and characterization of a cyclic adenine ribonucleotide formed by tissue particles. J Biol Chem 1958; 232: 1077–1091.

    PubMed  CAS  Google Scholar 

  • Swinnen JV, Joseph DR, Conti M. The mRNA encoding a highaffinity cAMP phosphodiesterase is regulated by hormones and cAMP. Proc Natl Acad Sci USA 1989; 86: 8197–8201.

    Article  PubMed  CAS  Google Scholar 

  • Thompson WJ. Cyclic nucleotide phosphodiesterases: pharma- cology, biochemistry and function. Pharmacol Ther 1991; 51: 13–33.

    Article  PubMed  CAS  Google Scholar 

  • Thompson WJ, Appleman MM. Multiple cyclic nuceotide phos- phodiesterase activities in rat brain. Biochemistry 1971; 10: 311–316.

    Article  PubMed  CAS  Google Scholar 

  • Torphy TJ. Phosphodiesterase isozymes: molecular targets for novel antiasthma agents. Am J Respir Crit Care Med 1998; 157: 351–370.

    Article  PubMed  CAS  Google Scholar 

  • Whalin ME, Scammell JG, Strada SJ, Thompson WJ. Phospho- diesterase II, the cGMP-activatable cyclic nucleotide phosphodiesterase, regulates cyclic AMP metabolism in PC12 cells. Mol Pharmacol 1991; 39: 711–717.

    PubMed  CAS  Google Scholar 

  • Yarfitz S, Hurley JB. Transduction mechanisms of vertebrate and invertebrate photoreceptors. J Biol Chem 1994; 269: 1432914332.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Conti, M. (2000). Cyclic Nucleotide Phosphodiesterases. In: Conn, P.M., Means, A.R. (eds) Principles of Molecular Regulation. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-032-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-032-2_15

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-104-2

  • Online ISBN: 978-1-59259-032-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics