Skip to main content

Part of the book series: Food Engineering Series ((FSES))

  • 1516 Accesses

Abstract

Ethanol-mediated crystal transformation is a promising method for obtaining stable anhydrous crystals with a porous structure. The DSC (Differential scanning calorimetry)-coupled ethanol method was used to obtain anhydrous trehalose crystals with a specific size and shape by controlling the water content of the ethanol. DSC analysis of the crystal transformation reaction of trehalose or maltose under isothermal and non-isothermal conditions allowed an overall evaluation of the activation energy of crystal transformation, and presumably revealed two different transformation reactions in the glassy state before the click point temperatures and the rubbery state after the click point temperatures. Anhydrous sugar crystals with an increased specific surface area were produced via ethanol-mediated crystal transformation under appropriate conditions. These porous crystals with high surface area could be applied to encapsulate flavor or functional foods. Thin needle-shaped sugar crystals can also be used to form a creamy, non-oil gel in over supersaturated solution conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilar CA, Hollender R, Ziegler GR (1994) Sensory characteristics of milk chocolate with lactose from spray-dried milk powder. J Food Sci 59(6):1239–1243

    Article  CAS  Google Scholar 

  • Akao K, Okubo Y, Asakawa N, Inoue Y, Sakurai M (2001) Infrared spectroscopic study on the properties of the anhydrous form II of trehalose. Implications for the functional mechanism of trehalose as a biostabilizer. Carb Res 334:233–241

    Article  CAS  Google Scholar 

  • Alie J, Menegotto J, Cardon P, Duplaa H, Caron A, Lacabanne C, Bauer M (2004) Dielectric study of the molecular mobility and the isothermal crystallization kinetics of amorphous pharmaceutical drug substance. J Pharm Sci 93(1):218–233

    Article  CAS  Google Scholar 

  • Arvanitoyanis I, Blanshard J (1994) Rates of crystallization of dried lactose-sucrose mixtures. J Food Sci 59(1):197–205

    Article  Google Scholar 

  • Avrami M (1939) Kinetics of phase change I. J Chem Phys 7:1103–1112

    Article  CAS  Google Scholar 

  • Avrami M (1940) Kinetics of phase change II. J Chem Phys 8:212–224

    Article  CAS  Google Scholar 

  • Beckett ST, Francesconi MG, Geary PM, Mackenzie G, Maulny APE (2006) DSC study of sucrose melting. Carb Res 341:2591–2599

    Article  CAS  Google Scholar 

  • Boode K, Bisperink C, Walstra P (1991) Destabilization of O/W emulsions containing fat crystals by temperature cycling. Colloids Surf 61:55–74

    Article  CAS  Google Scholar 

  • Bouchard A, Hofland GW, Witkamp GJ (2007) Properties of sugar, polyol, and polysaccharide water-ethanol solutions. J Chem Eng Data 52:1838–1842

    Article  CAS  Google Scholar 

  • Buckton G, Chidavaenzi OC, Koosha F (2002) The effect of spray-drying feed temperature and subsequent crystallization conditions on the physical form of lactose. AAPS Pharm Sci Tech 3(4): Technical note 1

    Google Scholar 

  • Cal S, Rodríguez-Puente B, Souto C, Concheiro A, Gómez-Amoza JL, Martínez-Pacheco R (1996) Comparison of a spray-dried α-lactose monohydrate with a fully hydrated roller-dried β-lactose. Int J Pharm 136:13–21

    Article  CAS  Google Scholar 

  • Carstensen T, Van Scoik K (1990) Amorphous-to-crystalline transformation of sucrose. Pharm Res 7:1278–1281

    Article  CAS  Google Scholar 

  • Chidavaenzi OC, Buckton G, Koosha F, Pathak R (1997) The use of thermal techniques to assess the impact of feed concentration on the amorphous content and polymorphic forms present in spray dried lactose. Int J Pharm 159:67–74

    Article  CAS  Google Scholar 

  • Christensen KL, Pedersen GP, Kristensen HG (2002) Physical stability of redispersible dry emulsions containing amorphous sucrose. Eur J Pharm Biopharm 53:147–153

    Article  CAS  Google Scholar 

  • Crisp JL, Dann SE, Edgar M, Blatchford CG (2010) The effect of particle size on the dehydration/rehydration behaviour of lactose. Int J Pharm 391:38–47

    Article  CAS  Google Scholar 

  • Crowe JH (1971) Anhydrobiosis: an unsolved problem. Am Nat 105:563–573

    Article  Google Scholar 

  • Crowe LM, Reid DS, Crowe JH (1996) Is trehalose special for preserving dry biomaterials? Biophys J 71:2087–2093

    Article  CAS  Google Scholar 

  • Devlin TM (ed) (2002) Amino acid metabolism, chapter no 18 of textbook of biochemistry with clinical correlations, 5th edn, pp 784–790. Wiley-Liss, New York

    Google Scholar 

  • Figura LO, Epple MJ (1995) Anhydrous α-lactose. A study with DSC and TXRD. J Thermal Anal 44:45–53

    Article  CAS  Google Scholar 

  • Furuki T, Abe R, Kawaji H, Atake K, Sakurai M (2006) Thermodynamic functions of α, α-trehalose dihydrate and of α, β-trehalose monohydrate at temperatures from 13 K to 300 K. J Chem Thermodyn 38:1612–1619

    Article  CAS  Google Scholar 

  • Garnier S, Petit S, Coquerel G (2002) Dehydration mechanism and crystallinsation behaviour of lactose. J Therm Anal Cal 68:489–502

    Article  CAS  Google Scholar 

  • Gloria H, Sievert D (2001) Changes in the physical state of sucrose during dark chocolate processing. J Agric Food Chem 49:2433–2436

    Article  CAS  Google Scholar 

  • Grön H, Borissova A, Roberts KJ (2003a) In-process ATR-FTIR spectroscopy for closed-loop supersaturation control of a batch crystallizer producing monosodium glutamate crystals of defined size. Ind Eng Chem Res 42:198–206

    Article  Google Scholar 

  • Grön H, Mougin P, Thomas A, White G, Wilkinson D (2003b) Dynamic in-process examination of particle size and crystallographic form under defined conditions of reactant supersaturation as associated with the batch crystallization of monosodium glutamate from aqueous solution. Ind Eng Chem Res 42:4888–4898

    Article  Google Scholar 

  • Gabarra P, Hartel W (1998) Corn syrup solids and their saccharide fractions affect crystallization of amorphous sucrose. J Food Sci 63:523–528

    Article  CAS  Google Scholar 

  • Hammond RB, Lai X, Roberts KJ, Thomas A, White G (2004) Application of in-process X-ray powder diffraction for the identification of polymorphic forms during batch crystallisation reactions. Cryst Growth Design 4:943–948

    Article  CAS  Google Scholar 

  • Hancock JD, Sharp JH (1972) Method of comparing solid-state kinetic data and its application to the decomposition of kaolinite, brucite, and BaCO3. J Am Cera Soc 55:74–77

    Article  CAS  Google Scholar 

  • Hartel Ri W, Shastry AV (1991) Sugar crystallization in food products. Crit Rev Food sci Nutr 30(1):49–112

    Article  Google Scholar 

  • Higashiyama T (2002) Novel functions and applications of trehalose. Pure Appl Chem 74(7):1263–1269

    Article  CAS  Google Scholar 

  • Hodge JE, Rendleman JA, Nelson EC (1972) Useful properties of maltose. Cereal Sci Today 17:180–188

    Google Scholar 

  • Hulbert SF (1969) Models for solid state reactions in powdered compacts. J Br Ceram Soc 6:11–20

    CAS  Google Scholar 

  • Hurtta M, Pitkanen I, Knuutinen J (2004) Melting behaviour of d-sucrose, d-glucose and d-fructose. Carb Res 339:2267–2273

    Article  CAS  Google Scholar 

  • Jander WZ (1927) Reactions in the solid state at high temperatures I. Rate of reaction for an endothermic change. Anorg U Allgem Chem 163:1–30

    Article  CAS  Google Scholar 

  • Jones MD, Beezer AE, Buckton G (2008) Determination of outer layer and bulk dehydration kinetics of trehalose dihydrate using atomic force microscopy, gravimetric vapour sorption and near infrared spectroscopy. J Pharm Sci 97:4404–4415

    Article  CAS  Google Scholar 

  • Jones MD, Hooton JC, Dawson ML, Ferrie AR, Price R (2006) Dehydration of trehalose dihydrate at low relative humidity and ambient temperature. Int J Pharm 313:87–98

    Article  CAS  Google Scholar 

  • Kedward CJ, Macnaughtan W, Blanshard JMV, Mitchell JR (1998) Crystallization kinetics of lactose and sucrose based on isothermal differential scanning calorimetry. J Food Sci 63(2):192–197

    Article  CAS  Google Scholar 

  • Kedward CJ, Macnaughtan W, Mitchell JR (2000) Crystallization kinetics of amorphous lactose as a function of moisture content using isothermal differential scanning calorimetry. J Food Sci 65(2):324–328

    Article  CAS  Google Scholar 

  • Kilburn D, Sokol PE (2009) Structural evolution of the dihydrate to anhydrate crystalline transition of trehalose as measured by wide-angle X-ray scattering. J Phys Chem B 113:2201–2206

    Article  CAS  Google Scholar 

  • Kimmerling ZJ (1984) An attempt to investigate changes of impurity concentration with the depth of crystal matrix of VHP sugar. Proc Congr S Afr Sugar Technol Assoc 58:51–53

    CAS  Google Scholar 

  • Kirk JH, Dann SE, Blatchford CG (2007) Lactose: a definitive guide to polymorph determination. Int J Pharm 334:103–114

    Article  CAS  Google Scholar 

  • Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29:1702–1706

    Article  CAS  Google Scholar 

  • Lappalainen M, Pitkänen I, Harjunen P (2006) Quantification of low levels of amorphous content in sucrose by hyperDSC. Int J Pharm 307:150–155

    Article  CAS  Google Scholar 

  • Maruyama S, Ooshima H (2001) Mechanism of the solvent-mediated transformation of taltirelin polymorphs promoted by methanol. Chem Eng J 81:1–7

    Article  CAS  Google Scholar 

  • Mathlouthi M, Cholli AL, Koenig JL (1986) Spectroscopic study of the structure of sucrose in the amorphous state and in aqueous solution. Carb Res 147:1–9

    Article  CAS  Google Scholar 

  • Mazzobre MF, Soto G, Aguilera JM, Buera MP (2001) Crystallization kinetics of lactose in sytems co-lyofilized with trehalose. Analysis by differential scanning calorimetry. Food Res Int 34:903–911

    Article  CAS  Google Scholar 

  • Nagase H, Endo T, Ueda H, Nagai T (2003) Influence of dry conditions on dehydration of α, α-trehalose dihydrate. STP Pharma Sci. 13:269–275

    CAS  Google Scholar 

  • Nakai Y, Yamamoto K, Terada K, Sasaki I (1986) Crystallization of amorphous α-, β-, γ-cyclodextrin by water sorption. Yakugaku Zasshi 106:420–424

    CAS  Google Scholar 

  • Nordhoff S, Ulrich J (1999) Solvent-induced phase transformations of hydrates. J Therm Anal Cal 57:181–192

    Article  CAS  Google Scholar 

  • O’Brien J (1996) Stability of trehalose, sucrose and glucose to nonenzymatic browning in model systems. J Food Sci 61:679–682

    Article  Google Scholar 

  • Odaka E (1989) Anhydrous maltose. New Food Indus (in japanese) 17–22

    Google Scholar 

  • Ohashi T (2010) Porous crystalline saccharide, its preparation and uses. U.S. patent 0222569 A1

    Google Scholar 

  • Ohashi T, Yoshii H, Furuta T (2007) Innovative crystal transformation of dihydrate trehalose to anhydrous trehalose using ethanol. Carb Res 342:819–825

    Article  CAS  Google Scholar 

  • Ohashi T, Shibuya T, Oku K, Yoshii H, Furuta T (2008) Encapsulation of flax seed oil in anhydrous crystalline maltose and trehalose with porous structure (in Japanese). Nippon Shokuhin Kagaku Kogaku Kaishi. 55(1):13–17

    Article  CAS  Google Scholar 

  • Ohashi T, Verhoeven N, Okuda D, Furuta T, Yoshii H (2009) Formation of porous α-CD ethanol dihydrate by crystal transformation method. Eur Food Res Technol 230:195–199

    Article  CAS  Google Scholar 

  • Okuno M, Kishihara S, Otsuka M, Fujii S, Kawasaki K (2003) Variability of melting behavior of commercial granulated sugar measured by differential scanning calorimetry. Int Sugar J 105:29–35

    CAS  Google Scholar 

  • Orford PD, Paker R, Ring SG (1990) Aspects of the glass transition behaviour of mixtures of carbohydrates of low molecular weight. Carb Res 196:11–18

    Article  CAS  Google Scholar 

  • Parrish MW, Brown ML (1982) Solid state transformations of α-Lactose monohydrate in alcoholic media. J Dairy Sci 65:1688–1691

    Article  CAS  Google Scholar 

  • Peica N, Lehene C, Leopold N, Schlucker S, Kiefer W (2007) Monosodium glutamate in its anhydrous and monohydrate form: differentiation by Raman spectroscopies and density functional calculations. Spectrochim Acta Part A 66:604–615

    Article  CAS  Google Scholar 

  • Pinto SS, Diogo HP, Moura-Ramos JJ (2006) Crystalline anhydrous α,α-trehalose (polymorph β) and crystalline dihydrate α,α-trehalose: a calorimetric study. J Chem Thermodyn 38:1130–1138

    Google Scholar 

  • Pitchayajittipong C, Price R, Shur J, Kaerger JS, Edge S (2010) Characterisation and functionality of inhalation anhydrous lactose. Int J Pharm 390:134–141

    Article  CAS  Google Scholar 

  • Quigley GJ, Sarko A, Marchessault RH (1970) Crystal and molecular structure of maltose monohydrate. J Am Chem Soc 92(20):5834–5839

    Article  CAS  Google Scholar 

  • Reisener HJ, Goldschmid HR, Ledingham GA, Perlin AS (1962) Formation of trehalose and polyols by wheat stem rust (Puccinia graminis tritici) uredospores. Can J Biochem Physiol 40:1248–1251

    Article  CAS  Google Scholar 

  • Rousseau D (2000) Fat crystals and emulsion stability—a review. Food Res Int 33(1):3–14

    Article  CAS  Google Scholar 

  • Roos Y, Karel M (1992) Crystallization of amorphous lactose. J Food Sci 57:775–777

    Article  CAS  Google Scholar 

  • Roos Y (1993) Melting and glass transitions of low molecular weight carbohydrates. Carb Res 238:39–48

    Article  CAS  Google Scholar 

  • Saleki-Gerhardt A, Zografi G (1994) Non-isothermal and isothermal crystallization of sucrose from the amorphous state. Pharm Res 11(8):1166–1173

    Article  CAS  Google Scholar 

  • Simperler A, Kornherr A, Chopra R, Bonnet PA, Jones W, Motherwell WDS, Zifferer G (2006) Glass transition temperature of glucose, sucrose, and trehalose: An experimental and in silico study. J Phys Chem B 110:19678–19684

    Article  CAS  Google Scholar 

  • Sola-Penna M, Meyer-Fernandes JR (1998) Stabilization against thermal inactivation promoted by sugars on enzyme structure and function: why is trehalose more effective than other sugars? Arch Biochem Biophys 360(1):10–14

    Article  CAS  Google Scholar 

  • Stryer L (ed) (1988). Biochemistry, 3rd edn, pp 18, 496, 579, 1026, Freeman, W.H, New York

    Google Scholar 

  • Supratim G, Rousseau D (2011) Fat crystals and water-in-oil emulsion stability. Curr Opin Coll 16(5):421–431

    Article  Google Scholar 

  • Surana R, Pyne A, Suryanarayanan R (2004) Effect of preparation method on physical properties of amorphous trehalose. Pharm Res 21(7):1167–1176

    Article  CAS  Google Scholar 

  • Sussich F, Bortoluzzi S, Cesàro A (2002) Trehalose dehydration under confined conditions. Therm Acta 391:137–150

    Article  CAS  Google Scholar 

  • Sussich F, Cesàro A (2008) Trehalose amorphization and recrystallization. Carb Res 343:2667–2674

    Article  CAS  Google Scholar 

  • Sussich F, Skopec CE, Brady JW, Cesàro A (2001) Reversible dehydration of trehalose and anhydrobiosis: from solution state to an exotic crystal? Carbohydr Res 334:165–176

    Article  CAS  Google Scholar 

  • Sussich F, Skopec CE, Brady JW, Cesàro A (2010) Water mobility in the dehydration of crystalline trehalose. Food Chem 122:388–393

    Article  CAS  Google Scholar 

  • Sussich F, Urbani R, Princivalle F, Cesàro A (1998) Polymorphic amorphous and crystalline forms of trehalose. J Am Chem Soc 120:7893–7899

    Article  CAS  Google Scholar 

  • Takusagawa F, Jacobson RA (1978) The crystal and molecular structure of α-maltose. Acta Cryst B 34:213–218

    Article  Google Scholar 

  • Teramoto N, Sachinvala ND, Shibata M (2008) Trehalose and trehalose-based polymers for environmentally benign, biocompatible and bioactive materials. Molecules 13:1773–1816

    Article  CAS  Google Scholar 

  • Threlfall T (1995) Analysis of organic polymorphs. A review. Analyst 120:2435–2460

    Article  CAS  Google Scholar 

  • Urbani R, Sussich F, Prejac S, Cesaro A (1997) Enthalpy relaxation and glass transition behaviour of sucrose by static and dynamic DSC. Therm Acta 304(305):359–367

    Article  Google Scholar 

  • Vanhal I, Blond G (1999) Impact of melting conditions of sucrose on its glass transition temperature. J Agri Food Chem 47:4285–4290

    Article  CAS  Google Scholar 

  • Van Scoik KG, Carstensen JT (1990) Nucleation phenomena in amorphous sucrose systems. Int J Pharm 58:185–196

    Article  Google Scholar 

  • Vromans H, Bolhuis GK, Lerk CF, Kus-sendrager KD (1987) Studies on tableting properties of lactose VIII. The effect of variations in primary particle size, percentage of amorphous lactose and addition of a disintegrant on the disintegration of spray-dried lactose tablets. Int J Pharm 39:201–206

    Article  CAS  Google Scholar 

  • Weibull W (1951) A statistical distribution function of wide applicability. J Appl Mech 18:293–297

    Google Scholar 

  • Willart JF, Danede F, De Gusseme A, Descamps M, Neves C (2003) Origin of the dual structural transformation of trehalose dihydrate upon dehydration. J Phys Chem B 107:11158–11162

    Article  CAS  Google Scholar 

  • Zhu H, Yuen C, Grant DJW (1996) Influence of water activity in organic solvent + water mixtures on the nature of the crystallizing drug phase. I Theophylline Int J Pharm 135:151–160

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidefumi Yoshii .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this chapter

Cite this chapter

Verhoeven, N., Neoh, T.L., Furuta, T., Yoshii, H. (2017). Crystallization. In: Roos, Y., Livney, Y. (eds) Engineering Foods for Bioactives Stability and Delivery. Food Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6595-3_8

Download citation

Publish with us

Policies and ethics