Skip to main content

Particle Size Measurements in Aerosols

  • Chapter
  • First Online:
Analytical Techniques in the Pharmaceutical Sciences

Part of the book series: Advances in Delivery Science and Technology ((ADST))

Abstract

Pharmaceutical aerosols comprise a wide range of drug products which all are dispersed as droplets (wet aerosol) or particles (dry aerosol) in a gas for application. Hence, the device being used for dispersion plays a very important role as it impacts the dispersion efficiency and significantly influences the resulting aerosol particle size. For an aerosol’s therapeutic effect it is important how the particles behave in the gas they are dispersed in, i.e. how they distribute and deposit. Therefore, aerodynamic particle size is important in addition to a geometrical particle size—unlike many other formulations where only geometrical particle size is looked at. The chapter defines the differences in particle sizes and gives an overview of measurement techniques to determine aerodynamic particle size as well as other sizing techniques in use for aerosol particle sizing. Pharmacopoeial requirements are summarized and physiological implications as well as ideas to closer mimic the in vivo situation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Byron PR, Hindle M, Lange CF, Longest PW, McRobbie D, Oldham MJ, Olsson B, Thiel CG, Wachtel H, Finlay WH (2010) In vivo–in vitro correlations: predicting pulmonary drug deposition from pharmaceutical aerosols. J Aerosol Med Pulm Drug Delivery 23:S59–S69

    Article  CAS  Google Scholar 

  • Byron PR, Wei X, Delvadia RR, Longest PW (2013) Standardizing in vitro test methods to support aerosol drug evaluation in the clinic. Respir Drug Deliv 1:85–92

    Google Scholar 

  • Carvalho TC, Peters JI, Williams RO III (2011) Influence of particle size on regional lung deposition—what evidence is there? Int J Pharm 406:1–10

    Article  CAS  PubMed  Google Scholar 

  • de Backer J (2012) Novel imaging in assessing small airway disease and therapy. In: Proceedings of DDL 23. Edinburgh, Scotland

    Google Scholar 

  • de Boer AH, Gjaltema D, Hagedoorn P, Frijlink HW (2002) Characterization of inhalation aerosols: a critical evaluation of cascade impactor analysis and laser diffraction technique. Int J Pharm 249:219–231

    Article  PubMed  Google Scholar 

  • Dekati (2010) Dekati ELPI: electrical low pressure impactor. Tampere

    Google Scholar 

  • Glover W, Chan H-K (2004) Electrostatic charge characterization of pharmaceutical aerosols using electrical low-pressure impaction (ELPI). Aerosol Sci 35:755–764

    Article  CAS  Google Scholar 

  • Heim M, Mullins BJ, Umhauer H, Kasper G (2008) Performance evaluation of three optical particle counters with an efficient "multimodal" calibration method. J Aerosol Sci 39:1019–1031

    Article  CAS  Google Scholar 

  • Hickey AJ, Martonen TB, Yang Y (1996) Theoretical relationship of lung deposition to the fine particle fraction of inhalation aerosols. Pharm Acta Helv 71(3):185–190

    Article  CAS  PubMed  Google Scholar 

  • Hinds WC (1999) Aerosol technology—properties, behavior and measurement of airborne particles. John Wiley & Sons

    Google Scholar 

  • Hoe S, Young PM, Chan H-K, Traini D (2009) Introduction of the electrical next generation impactor (eNGI) and investigation of its capabilities for the study of pressurized metered dose inhalers. Pharm Res 26(2):431–437

    Article  CAS  PubMed  Google Scholar 

  • Kippax P, Fracassi J (2003) Particle size characterisation in nasal sprays and aerosols. LabPlus International

    Google Scholar 

  • Kotian R, Peart J, Bryner J, Byron PR (2009) Calibration of the modified electrical low-pressure impactor (ELPI) for use with pressurized pharmaceutical aerosols. J Aerosol Med Pulm Drug Deliv 22(1):55–66

    Article  PubMed  Google Scholar 

  • Marjamäki M, Keskinen J, Chen D-R, Pui DYH (2000) Performance evaluation of the electrical low-pressure impactor (ELPI). J Aerosol Sci 31(2):249–261

    Article  Google Scholar 

  • Marple VA, Olson BA, Santhanakrishnan K, Mitchell JP, Murray SC, Hudson-Curtis BL (2003a) Next generation pharmaceutical impactor (a new impactor for pharmaceutical inhaler testing). Part II: archival calibration. J Aerosol Med 16(3):301–324

    Article  PubMed  Google Scholar 

  • Marple VA, Roberts DL, Romay FJ, Miller NC, Truman KG, Van Oort M, Olsson B, Holroyd MJ, Mitchell JP, Hochrainer D (2003b) Next generation pharmaceutical impactor (a new impactor for pharmaceutical inhaler testing). Part I: design. J Aerosol Med 16(3):283–299

    Article  PubMed  Google Scholar 

  • Marple VA, Olson BA, Santhanakrishnan K, Roberts DL, Mitchell JP, Hudson-Curtis BL (2004) Next generation pharmaceutical impactor: a New impactor for pharmaceutical inhaler testing. Part III. Extension of archival calibration to 15 L/min. J Aerosol Med 17(4):335–343

    Article  PubMed  Google Scholar 

  • Mitchell JP, Nagel MW (1999) Time-of-flight aerodynamic particle size analyzers: their use and limitations for the evaluation of medical aerosols. J Aerosol Med 12(4):217–240

    Article  CAS  PubMed  Google Scholar 

  • Olsson B, Borgström L, Lundbäck H, Svensson M (2013) Validation of a general in vitro approach for prediction of total lung deposition in healthy adults for pharmaceutical inhalation products. J Aerosol Med Pulm Drug Delivery 26(6):355–369

    Article  CAS  Google Scholar 

  • Stapleton KW, Guentsch E, Hoskinson MK, Finlay WH (2000) On the suitability of k–ε turbulence modeling for aerosol deposition in the mouth and throat: a comparison with experiment. J Aerosol Sci 31(6):739–749

    Article  CAS  Google Scholar 

  • Steckel H, Bolzen N (2004) Alternative sugars as potential carriers for dry powder inhalations. Int J Pharm 270(1–2):297–306

    Article  CAS  PubMed  Google Scholar 

  • Stein SW, Myrdal PB, Gabrio BJ, Obereit D, Beck TJ (2003) Evaluation of a new aerodynamic particle sizer spectrometer for size distribution measurements of solution metered dose inhalers. J Aerosol Med 16(2):107–119

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Regina Scherließ .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Controlled Release Society

About this chapter

Cite this chapter

Scherließ, R. (2016). Particle Size Measurements in Aerosols. In: Müllertz, A., Perrie, Y., Rades, T. (eds) Analytical Techniques in the Pharmaceutical Sciences. Advances in Delivery Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-4029-5_22

Download citation

Publish with us

Policies and ethics