Skip to main content

Perspectives and Challenges for Future Research in Bat Hearing

  • Chapter
  • First Online:
Bat Bioacoustics

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 54))

  • 1820 Accesses

Abstract

This chapter is intended to identify some of the major challenges that only now emerge as technically feasible when studying hearing in bats. These technical advances include all aspects of biological research, from novel genetic tools to novel recording techniques of ultrasonic audio, high-speed video, and global positioning data. Most recently, on-board and telemetric recording techniques for both ultrasound and electrode signals allow for unprecedented insight into the neuroethology of bat hearing and echolocation from awake and behaving animals engaged in a clearly defined perceptual task. Only with these new techniques will we be able to address specializations in the bat vocalization and auditory systems, from its genetic foundations to its behavioral dynamics. We hope that the current chapter is received as an ‘appetizer’ for young biologists across disciplines to focus their scientific efforts onto the fascinating topic of how it is to be a bat that has made the nocturnal air space its home.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amador, A., & Margoliash, D. (2013). A mechanism for frequency modulation in songbirds shared with humans. Journal of Neuroscience, 33(27), 11136–11144. doi:10.1523/jneurosci.5906-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andoni, S., & Pollak, G. D. (2011). Selectivity for spectral motion as a neural computation for encoding natural communication signals in bat inferior colliculus. Journal of Neuroscience, 31(46), 16529–16540. doi:10.1523/jneurosci.1306-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atiani, S., David, S. V., Elgueda, D., Locastro, M., Radtke-Schuller, S., Shamma, S. A., & Fritz, J. B. (2014). Emergent selectivity for task-relevant stimuli in higher-order auditory cortex. Neuron, 82(2), 486–499. doi:10.1016/j.neuron.2014.02.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartenstein, S. K., Gerstenberg, N., Vanderelst, D., Peremans, H., & Firzlaff, U. (2014). Echo-acoustic flow dynamically modifies the cortical map of target range in bats. Nature Communications, 5, 4668. doi:10.1038/ncomms5668

    Article  CAS  PubMed  Google Scholar 

  • Boonman, A., Bumrungsri, S., & Yovel, Y. (2014). Nonecholocating fruit bats produce biosonar clicks with their wings. Current Biology, 24(24), 2962–2967. doi:10.1016/j.cub.2014.10.077

    Article  CAS  PubMed  Google Scholar 

  • Borina, F., Firzlaff, U., & Wiegrebe, L. (2011). Neural coding of echo-envelope disparities in echolocating bats. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 197(5), 561–569.

    Article  PubMed  Google Scholar 

  • Bradbury, J. W. (1977). Lek mating behavior in the hammer-headed bat. Zeitschrift für Tierpsychologie, 45, 30.

    Google Scholar 

  • Brand, A., Urban, R., & Grothe, B. (2000). Duration tuning in the mouse auditory midbrain. Journal of Neurophysiology, 84(4), 1790–1799.

    CAS  PubMed  Google Scholar 

  • Casseday, J. H., Ehrlich, D., & Covey, E. (1994). Neural tuning for sound duration: Role of inhibitory mechanisms in the inferior colliculus. Science, 264, 847–850.

    Article  CAS  PubMed  Google Scholar 

  • Clare, E. L., Fraser, E. E., Braid, H. E., Fenton, M. B., & Hebert, P. D. (2009). Species on the menu of a generalist predator, the eastern red bat (Lasiurus borealis): Using a molecular approach to detect arthropod prey. Molecular Ecology, 18(11), 2532–2542. doi:10.1111/j.1365-294X.2009.04184.x

    Article  PubMed  Google Scholar 

  • Clare, E. L., Lim, B. K., Fenton, M. B., & Hebert, P. D. (2011). Neotropical bats: Estimating species diversity with DNA barcodes. PLoS ONE, 6(7), e22648. doi:10.1371/journal.pone.0022648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clare, E. L., Symondson, W. O., Broders, H., Fabianek, F., Fraser, E. E., MacKenzie, A., Boughen, A., Hamilton, R., Willis, C.K., Martinez-Nunez, F., Menzies, A. K., Norquay, K. J., Brigham, M., Poissant, J., Rintoul, J., Barklay, R. M., & Reimer, J. P. (2014a). The diet of Myotis lucifugus across Canada: Assessing foraging quality and diet variability. Molecular Ecology, 23(15), 3618–3632. doi:10.1111/mec.12542

    Article  PubMed  Google Scholar 

  • Clare, E. L., Symondson, W. O., & Fenton, M. B. (2014b). An inordinate fondness for beetles? Variation in seasonal dietary preferences of night-roosting big brown bats (Eptesicus fuscus). Molecular Ecology, 23(15), 3633–3647.

    Article  PubMed  Google Scholar 

  • Covey, E., Hall, W. C., & Kobler, J. B. (1987). Subcortical connections of the superior colliculus in the mustache bat, Pteronotus parnellii. Journal of Comparative Neurology, 263(2), 179–197. doi:10.1002/cne.902630203

    Article  CAS  PubMed  Google Scholar 

  • Dechmann, D. K., Wikelski, M., van Noordwijk, H. J., Voigt, C. C., & Voigt-Heucke, S. L. (2013). Metabolic costs of bat echolocation in a non-foraging context support a role in communication. Frontiers in Physiology, 4, 66. doi:10.3389/fphys.2013.00066

    Article  PubMed  PubMed Central  Google Scholar 

  • Dong, D., Lei, M., Liu, Y., & Zhang, S. (2013). Comparative inner ear transcriptome analysis between the Rickett’s big-footed bats (Myotis ricketti) and the greater short-nosed fruit bats (Cynopterus sphinx). BMC Genomics, 14(1), 916.

    Article  PubMed  PubMed Central  Google Scholar 

  • Finkelstein, A., Derdikman, D., Rubin, A., Foerster, J. N., Las, L., & Ulanovsky, N. (2015). Three-dimensional head-direction coding in the bat brain. Nature, 517(7533), 159–164. doi: 10.1038/nature14031

    Article  CAS  PubMed  Google Scholar 

  • Francischetti, I. M., Assumpcao, T. C., Ma, D., Li, Y., Vicente, E. C., Uieda, W., & Ribeiro, J. M. (2013). The “Vampirome”: Transcriptome and proteome analysis of the principal and accessory submaxillary glands of the vampire bat Desmodus rotundus, a vector of human rabies. Journal of Proteomics, 82, 288–319. doi:10.1016/j.jprot.2013.01.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fritz, J. B., David, S. V., Radtke-Schuller, S., Yin, P., & Shamma, S. A. (2010). Adaptive, behaviorally gated, persistent encoding of task-relevant auditory information in ferret frontal cortex. Nature Neuroscience, 13(8), 1011–1019. doi:10.1038/nn.2598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuzessery, Z. M., & Pollak, G. D. (1984). Neural mechanisms of sound localization in an echolocating bat. Science, 225(4663), 725–728.

    Article  CAS  PubMed  Google Scholar 

  • Fuzessery, Z. M., Richardson, M. D., & Coburn, M. S. (2006). Neural mechanisms underlying selectivity for the rate and direction of frequency-modulated sweeps in the inferior colliculus of the pallid bat. Journal of Neurophysiology, 96(3), 1320–1336. doi: 10.1152/jn.00021.2006

    Article  PubMed  Google Scholar 

  • Gao, L., Balakrishnan, S., He, W., Yan, Z., & Muller, R. (2011). Ear deformations give bats a physical mechanism for fast adaptation of ultrasonic beam patterns. Physical Review Letters, 107(21), 214301.

    Article  PubMed  Google Scholar 

  • Geipel, I., Jung, K., & Kalko, E. K. (2013). Perception of silent and motionless prey on vegetation by echolocation in the gleaning bat Micronycteris microtis. Proceedings in Biological Sciences, 280(1754), 20122830. doi: 10.1098/rspb.2012.2830

    Article  Google Scholar 

  • Genome 10K. (2009). A proposal to obtain whole-genome sequence for 10,000 vertebrate species. Journal of Heredity, 100(6), 659–674. doi:10.1093/jhered/esp086

  • Ghose, K., & Moss, C. F. (2003). The sonar beam pattern of a flying bat as it tracks tethered insects. Journal of the Acoustical Society of America, 114(2), 1120–1131.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghose, K., & Moss, C. F. (2006). Steering by hearing: A bat’s acoustic gaze is linked to its flight motor output by a delayed, adaptive linear law. Journal of Neuroscience, 26(6), 1704–1710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goerlitz, H. R., ter Hofstede, H. M., Zeale, M. R., Jones, G., & Holderied, M. W. (2010). An aerial-hawking bat uses stealth echolocation to counter moth hearing. Current Biology, 20(17), 1568–1572. doi: 10.1016/j.cub.2010.07.046

    Article  CAS  PubMed  Google Scholar 

  • Gould, E. (1988). Wing-clapping sounds of Eonycteris spelaea (Pteropodidae) in Malaysia. Journal of Mammalogy, 69, 378–379.

    Article  Google Scholar 

  • Grinnell, A. D. (1963). The neurophysiology of audition in bats: Temporal parameters. Journal of Physiology, 167, 67–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grinnell, A. D., & Grinnell, V. S. (1965). Neural correlates of vertical localization by echo-locating bats. Journal of Physiology, 181(4), 830–851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grothe, B., Covey, E., & Casseday, J. H. (1996). Spatial tuning of neurons in the inferior colliculus of the big brown bat: Effects of sound level, stimulus type and multiple sound sources. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 179(1), 89–102.

    Article  CAS  Google Scholar 

  • Grothe, B., Pecka, M., & McAlpine, D. (2010). Mechanisms of sound localization in mammals. Physiological Reviews, 90(3), 983–1012. doi: 10.1152/physrev.00026.2009

    Article  CAS  PubMed  Google Scholar 

  • Gui, D., Jia, K., Xia, J., Yang, L., Chen, J., Wu, Y., & Meisheng, Y. (2013). De novo assembly of the Indo-Pacific humpback dolphin leucocyte transcriptome to identify putative genes involved in the aquatic adaptation and immune response. PLoS ONE, 8(8), e72417. doi: 10.1371/journal.pone.0072417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harley, H. E., Roitblat, H. L., & Nachtigall, P. E. (1996). Object representation in the bottlenose dolphin (Tursiops truncatus): Integration of visual and echoic information. Journal of Experimental Psychology: Animal Learning and Cognition, 22(2), 164–174.

    CAS  Google Scholar 

  • Harley, H. E., Putman, E. A., & Roitblat, H. L. (2003). Bottlenose dolphins perceive object features through echolocation. Nature, 424(6949), 667–669.

    Article  CAS  PubMed  Google Scholar 

  • Hechavarria, J. C., Macias, S., Vater, M., Voss, C., Mora, E. C., & Kossl, M. (2013). Blurry topography for precise target-distance computations in the auditory cortex of echolocating bats. Nature Communications, 4, 2587. doi:10.1038/ncomms3587

    Article  PubMed  Google Scholar 

  • Hoffmann, S., Schuller, G., & Firzlaff, U. (2010). Dynamic stimulation evokes spatially focused receptive fields in bat auditory cortex. European Journal of Neuroscience, 31(2), 371–385. doi:10.1111/j.1460-9568.2009.07051.x

    Article  PubMed  Google Scholar 

  • Hoffmann, S., Warmbold, A., Wiegrebe, L., & Firzlaff, U. (2013). Spatiotemporal contrast enhancement and feature extraction in the bat auditory midbrain and cortex. Journal of Neurophysiology, 110(6), 1257–1268. doi: 10.1152/jn.00226.2013

    Article  PubMed  Google Scholar 

  • Janik, V. M., & Slater, P. J. (2000). The different roles of social learning in vocal communication. Animal Behaviour, 60(1), 1–11. doi: 10.1006/anbe.2000.1410

    Article  PubMed  Google Scholar 

  • Jones, G., & Teeling, E. C. (2006). The evolution of echolocation in bats. Trends in Ecology and Evolution, 21(3), 149–156. doi:10.1016/j.tree.2006.01.001

    Article  PubMed  Google Scholar 

  • Jung, K., Molinari, J., & Kalko, E. K. (2014). Driving factors for the evolution of species-specific echolocation call design in new world free-tailed bats (Molossidae). PLoS ONE, 9(1), e85279. doi:10.1371/journal.pone.0085279

    Article  PubMed  PubMed Central  Google Scholar 

  • Kanwal, J. S. (2012). Right-left asymmetry in the cortical processing of sounds for social communication vs. navigation in mustached bats. European Journal of Neuroscience, 35(2), 257–270. doi:10.1111/j.1460-9568.2011.07951.x

    Article  PubMed  Google Scholar 

  • King, S. L., & Janik, V. M. (2013). Bottlenose dolphins can use learned vocal labels to address each other. Proceedings of the National Academy of Sciences of the USA, 110(32), 13216–13221. doi:10.1073/pnas.1304459110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klymenko, V., & Weisstein, N. (1986). Spatial frequency differences can determine figure-ground organization. Journal of Experimental Psychology: Human Perception and Performance, 12(3), 324–330.

    CAS  PubMed  Google Scholar 

  • Knörnschild, M. (2014). Vocal production learning in bats. Current Opinion in Neurobiology, 28, 80–85. doi:10.1016/j.conb.2014.06.014

    Article  PubMed  Google Scholar 

  • Kuo, R. I., & Wu, G. K. (2012). Generation of direction selectivity in the auditory system. Neuron, 73, 1016–1027.

    Article  CAS  PubMed  Google Scholar 

  • Lawrence, B. D., & Simmons, J. A. (1982a). Echolocation in bats: The external ear and perception of the vertical positions of targets. Science, 218(4571), 481–483.

    Article  CAS  PubMed  Google Scholar 

  • Lawrence, B. D., & Simmons, J. A. (1982b). Measurements of atmospheric attenuation at ultrasonic frequencies and the significance for echolocation by bats. Journal of the Acoustical Society of America, 71(3), 585–590.

    Article  CAS  PubMed  Google Scholar 

  • Lee, C. C., & Middlebrooks, J. C. (2011). Auditory cortex spatial sensitivity sharpens during task performance. Nature Neuroscience, 14(1), 108–114. doi:10.1038/nn.2713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, G., Wang, J., Rossiter, S. J., Jones, G., & Zhang, S. (2007). Accelerated FoxP2 evolution in echolocating bats. PLoS ONE, 2(9), e900. doi: 10.1371/journal.pone.0000900

    Article  PubMed  PubMed Central  Google Scholar 

  • Mittmann, D. H., & Wenstrup, J. J. (1995). Combination-sensitive neurons in the inferior colliculus. Hearing Research, 90(1–2), 185–191.

    Article  CAS  PubMed  Google Scholar 

  • Mooney, R. (2014). Auditory-vocal mirroring in songbirds. Philosophical Transactions of the Royal Society B, 369(1644), 20130179. doi:10.1098/rstb.2013.0179

    Article  Google Scholar 

  • Moss, C. F., Bohn, K., Gilkenson, H., & Surlykke, A. (2006). Active listening for spatial orientation in a complex auditory scene. PLoS Biology, 4(4), e79.

    Article  PubMed  PubMed Central  Google Scholar 

  • Naumann, R. T., & Kanwal, J. S. (2011). Basolateral amygdala responds robustly to social calls: Spiking characteristics of single unit activity. Journal of Neurophysiology, 105(5), 2389–2404. doi:10.1152/jn.00580.2010

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Neill, W. E., & Suga, N. (1979). Target range-sensitive neurons in the auditory cortex of the mustache bat. Science, 203(4375), 69–73.

    Article  PubMed  Google Scholar 

  • Phillips, C. J., Phillips, C. D., Goecks, J., Lessa, E. P., Sotero-Caio, C. G., Tandler, B., Gannon, M. R., & Baker, R. J. (2014). Dietary and flight energetic adaptations in a salivary gland transcriptome of an insectivorous bat. PLoS ONE, 9(1), e83512. doi:10.1371/journal.pone.0083512

    Article  PubMed  PubMed Central  Google Scholar 

  • Portfors, C. V., & Felix, R. A., II. (2005). Spectral integration in the inferior colliculus of the CBA/CaJ mouse. Neuroscience, 136(4), 1159–1170. doi: 10.1016/j.neuroscience.2005.08.031

    Article  CAS  PubMed  Google Scholar 

  • Ratcliffe, J. M. (2009). Neuroecology and diet selection in phyllostomid bats. Behavioural Processes, 80(3), 247–251. doi:10.1016/j.beproc.2008.12.010

    Article  PubMed  Google Scholar 

  • Ratcliffe, J. M., Raghuram, H., Marimuthu, G., Fullard, J. H., & Fenton, M. B. (2005). Hunting in unfamiliar space: Echolocation in the Indian false vampire bat, Megaderma lyra, when gleaning prey. Behavioral Ecology and Sociobiology, 58(2), 157–164. doi:10.2307/25063599

    Article  Google Scholar 

  • Rayleigh, LFRS (1879) Investigations in optics, with special reference to the spectroscope. Philosophical Magazine Series 8(49): 261–274. doi:10.1080/14786447908639684

    Google Scholar 

  • Roverud, R., & Grinnell, A. (1985a). Echolocation sound features processed to provide distance information in the CF/FM bat, Noctilio albiventris: Evidence for a gated time window utilizing both CF and FM components. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 156(4), 457–469. doi:10.1007/BF00613970

    Article  Google Scholar 

  • Roverud, R., & Grinnell, A. (1985b). Discrimination performance and echolocation signal integration requirements for target detection and distance determination in the CF/FM bat, Noctilio albiventris. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 156(4), 447–456. doi:10.1007/BF00613969

    Article  Google Scholar 

  • Scalia, F., Rasweiler, J. J. T., & Danias, J. (2014). Retinal projections in the short-tailed fruit Bat, Carollia perspicillata, as studied using the axonal transport of cholera toxin B subunit: Comparison with mouse. Journal of Comparative Neurology, doi:10.1002/cne.23723

    Google Scholar 

  • Seim, I., Fang, X., Xiong, Z., Lobanov, A. V., Huang, Z., Ma, S., Feng, Y., Turanov, A. A., Zhu, Y., Lenz, T. L., Gerashchenko, M. V., Fan, D., Yim, S. H., Yao, X., Jordan, D., Xiong, Y., Ma, Y., Lyapunov, A. N., Chen, G., Kulakova, O. I., Sun, Y., Lee, S.-G., Bronson, R. T., Moskalev, A. A., Sunyaev, S. R., Zhang, G., Krogh, A., Wang, J., & Gladyshev, V. N. (2013). Genome analysis reveals insights into physiology and longevity of the Brandt’s bat Myotis brandtii. Nature Communications, 4, 2212. doi: 10.1038/ncomms3212

    Article  PubMed  PubMed Central  Google Scholar 

  • Simmons, J. A., Kick, S. A., Lawrence, B. D., Hale, C., Bard, C., & Escudie, B. (1983). Acuity of horizontal angle discrimination by the echolocating bat, Eptesicus fuscus. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 153, 321–330.

    Article  Google Scholar 

  • Simmons, N. B. (2005). Order Chiroptera. In D. E. Wilson & D. M. Reeder (Eds.), Mammal species of the World: A taxonomic and geographic reference. 3rd ed. Baltimore, MD: Johns Hopkins University Press.

    Google Scholar 

  • Suga, N. (1965). Analysis of frequency modulated sounds by auditory neurons of echolocating bats. Journal of Physiology, 179, 26–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suga, N. (1970). Echo-ranging neurons in the inferior colliculus of bats. Science, 170(3956), 449–452.

    Article  CAS  PubMed  Google Scholar 

  • Teeling, E. C. (2009). Hear, hear: The convergent evolution of echolocation in bats? Trends in Ecology and Evolution, 24(7), 351–354. doi:10.1016/j.tree.2009.02.012

    Google Scholar 

  • Thiele, A., Henning, P., Kubischik, M., & Hoffmann, K. P. (2002). Neural mechanisms of saccadic suppression. Science, 295(5564), 2460–2462. doi:10.1126/science.1068788

    Article  CAS  PubMed  Google Scholar 

  • Tsagkogeorga, G., Parker, J., Stupka, E., Cotton, J. A., & Rossiter, S. J. (2013). Phylogenomic analyses elucidate the evolutionary relationships of bats. Current Biology, 23(22), 2262–2267. doi:10.1016/j.cub.2013.09.014

    Article  CAS  PubMed  Google Scholar 

  • Tsoar, A., Nathan, R., Bartan, Y., Vyssotski, A., Dell’Omo, G., & Ulanovsky, N. (2011). Large-scale navigational map in a mammal. Proceedings of the National Academy of Sciences of the USA, 108(37), E718–E724. doi:10.1073/pnas.1107365108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valentine, D. E., & Moss, C. F. (1997). Spatially selective auditory responses in the superior colliculus of the echolocating bat. Journal of Neuroscience, 17(5), 1720–1733.

    CAS  PubMed  Google Scholar 

  • Valentine, D. E., Sinha, S. R., & Moss, C. F. (2002). Orienting responses and vocalizations produced by microstimulation in the superior colliculus of the echolocating bat, Eptesicus fuscus. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 188(2), 89–108. doi:10.1007/s00359-001-0275-5

    Article  PubMed  Google Scholar 

  • Vanderelst, D., De Mey, F., Peremans, H., Geipel, I., Kalko, E., & Firzlaff, U. (2010). What noseleaves do for FM bats depends on their degree of sensorial specialization. PLoS ONE, 5(8), e11893. doi:10.1371/journal.pone.0011893

    Article  PubMed  PubMed Central  Google Scholar 

  • Wenstrup, J. J., Nataraj, K., & Sanchez, J. T. (2012). Mechanisms of spectral and temporal integration in the mustached bat inferior colliculus. Frontiers in Neural Circuits, 6, 75. doi:10.3389/fncir.2012.00075

    Article  PubMed  PubMed Central  Google Scholar 

  • Wickler, W., & Seibt, U. (1976). Field studies on the African fruit bat Epomophorus wahlbergi (Sundevall), with special reference to male calling. Zeitung für Tierpsychologie, 40(4), 345–376.

    Article  CAS  Google Scholar 

  • Winkowski, D. E., & Knudsen, E. I. (2007). Top-down control of multimodal sensitivity in the barn owl optic tectum. Journal of Neuroscience, 27(48), 13279–13291. doi:10.1523/jneurosci.3937-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong, Q., Znamenskiy, P., & Zador, A. M. (2015). Selective corticostriatal plasticity during acquisition of an auditory discrimination task. Nature, 521(7552), 348–351. doi:10.1038/nature14225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yartsev, M. M., & Ulanovsky, N. (2013). Representation of three-dimensional space in the hippocampus of flying bats. Science, 340(6130), 367–372. doi:10.1126/science.1235338

    Article  CAS  PubMed  Google Scholar 

  • Yim, H.-S., Cho, Y. S., Guang, X., Kang, S. G., Jeong, J.-Y., Cha, S.-S., Oh, H.-M., Lee, J.-H., Yang, E. C., Kwon, K. K., Kim, Y. J., Kim, T. W., Kim, W., Jeon, J. H., Kim, S.-J., Choi, D. H., Jho, S., Kim, H.-M., Ko, J., Kim, H., Shin, Y.-A., Jung, H.-J., Zheng, Y., Wang, Z., Chen, Y., Chen, M., Jiang, A., Li, E., Zhang, S., Hou, H., Kim, T. H., Yu, L., Liu, S., Ahn, K., Cooper, J., Park, S.-G., Hong, C. P., Jin, W., Kim, H.-S., Park, C., Lee, K., Chun, S., Morin, P. A., O’Brien, S. J., Lee, H., Kimura, J., Moon, D. Y., Manica, A., Edwards, J., Kim, B. C., Kim, S., Wang, J., Bhak, J., Lee, H. S., & Lee, J.-H. (2014). Minke whale genome and aquatic adaptation in cetaceans. Nature Genetics, 46(1), 88–92. doi:10.1038/ng.2835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yovel, Y., Falk, B., Moss, C. F., & Ulanovsky, N. (2010). Optimal localization by pointing off axis. Science, 327(5966), 701–704. doi:10.1126/science.1183310

    Article  CAS  PubMed  Google Scholar 

  • Zhang, L. I., Tan, A. Y., Schreiner, C. E., & Merzenich, M. M. (2003). Topography and synaptic shaping of direction selectivity in primary auditory cortex. Nature, 424(6945), 201–205. doi:10.1038/nature01796

    Article  CAS  PubMed  Google Scholar 

  • Zhang, G., Cowled, C., Shi, Z., Huang, Z., Bishop-Lilly, K. A., Zhang, G., Cowled, C., Shi, Z., Huang, Z., Bishop-Lilly, K. A., Fang, X., Wynne, J. W., Xiong, Z., Baker, M. L., Zhao, W., Tachedjian, M., Zhu, Y., Zhou, P., Jiang, X., Ng, J., Yang, L., Wu, L., Xiao, J., Feng, Y., Chen, Y., Sun, X., Zhang, Y., Marsh, G. A., Crameri, G., Broder, C. C., Frey, K. G., Wang, L.-F., & Wang, J. (2013). Comparative analysis of bat genomes provides insight into the evolution of flight and immunity. Science, 339(6118), 456–460. doi:10.1126/science.1230835

    Article  CAS  PubMed  Google Scholar 

  • Zhou, X., Sun, F., Xu, S., Fan, G. Zhu, K., Liu, X., Guo, X., Zhou, J., Fang, X., Li, M., Wei, F., Poulain, J., Zhou, K., Wang, J., Chen, Y., Shi, C., Yang, Y., Huang, Z., Chen, J., Hou, H., Chen, W., Chen, Y., Wang, X., Lv, T., Yang, D., Huang, B., Wang, Z., Tian, R., Xiong, Z., Xu, J., Liang, X., Chen, B., Liu, W., Wang, J., Pan, S., & Yang, G. (2013). Baiji genomes reveal low genetic variability and new insights into secondary aquatic adaptations. Nature Communications, 4, 1–6, 2708 doi:10.1038/ncomms3708

    PubMed  PubMed Central  Google Scholar 

  • Zsebok, S., Kroll, F., Heinrich, M., Genzel, D., Siemers, B. M., & Wiegrebe, L. (2013). Trawling bats exploit an echo-acoustic ground effect. Frontiers in Physiology, 4, 65. doi:10.3389/fphys.2013.00065

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Uwe Firzlaff for helpful comments on an earlier version. And we extend special thanks to the >1,200 species of bats, whose extraordinary capabilities are the inspiration for this book.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lutz Wiegrebe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wiegrebe, L., Grinnell, A.D., Fenton, M.B. (2016). Perspectives and Challenges for Future Research in Bat Hearing. In: Fenton, M., Grinnell, A., Popper, A., Fay, R. (eds) Bat Bioacoustics. Springer Handbook of Auditory Research, vol 54. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3527-7_11

Download citation

Publish with us

Policies and ethics