Skip to main content

Abstract

The potential alterations in the disease-associated characteristics of Gram positive organisms during spaceflight missions are of great importance for future human exploration efforts. Gram positive organisms, especially Staphylococcus species, are the most prevalent species isolated from the air and surfaces of spacecraft vehicles. The frequent isolation of the opportunistic pathogen, Staphylococcus aureus, from the environment of the International Space Station (ISS) is not unexpected, as 30–50 % of healthy adults on Earth are colonized with this organism. Passage of these organisms between crewmembers is common as demonstrated by a genetic comparison of S. aureus strains isolated from crewmembers aboard the Mir space station. Microbial monitoring also indicated the presence of Streptococcus species aboard the Russian space station Mir and from air samples collected during Space Shuttle missions. While S. pneumoniae has not been isolated from spacecraft or from a crewmember after flight, this opportunistic bacterium has been isolated after nasopharyngeal sampling from a shuttle crewmember immediately before flight. As opportunistic pathogens, such as S. aureus and S. pneumoniae, are likely to be carried as part of the normal flora of a crew and may exploit a declining immune system, understanding the mechanisms behind the disease causing potential of Gram positive organisms has tremendous implications for the spaceflight crew, as well as advancing our knowledge of disease-causing mechanisms on Earth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Juergensmeyer, M. A., Juergensmeyer, E. A., & Guikema, J. A. (1999). Long-term exposure to spaceflight conditions affects bacterial response to antibiotics. Microgravity Science and Technology, 12, 41–47.

    CAS  PubMed  Google Scholar 

  2. Tixador, R., Richoilley, G., Gasset, G., Templier, J., Bes, J. C., et al. (1985). Study of minimal inhibitory concentration of antibiotics on bacteria cultivated in vitro in space (Cytos 2 experiment). Aviation, Space and Environmental Medicine, 56, 748–751.

    CAS  Google Scholar 

  3. Mennigmann, H. D., & Lange, M. (1986). Growth and differentiation of Bacillus subtilis under microgravity. Naturwissenschaften, 73, 415–417.

    Article  CAS  PubMed  Google Scholar 

  4. Kacena, M. A., Leonard, P. E., Todd, P., & Luttges, M. W. (1997). Low gravity and inertial effects on the growth of E. coli and B. subtilis in semi-solid media. Aviation, Space and Environmental Medicine, 68, 1104–1108.

    CAS  Google Scholar 

  5. Castro, S. L., Nelman-Gonzalez, M., Nickerson, C. A., & Ott, C. M. (2011). Induction of attachment-independent biofilm formation and repression of Hfq expression by low-fluid-shear culture of Staphylococcus aureus. Applied and Environmental Microbiology, 77, 6368–6378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fang, A., Pierson, D. L., Koenig, D. W., Mishra, S. K., & Demain, A. L. (1997). Effect of simulated microgravity and shear stress on microcin B17 production by Escherichia coli and on its excretion into the medium. Applied and Environmental Microbiology, 63, 4090–4092.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Fang, A., Pierson, D. L., Mishra, S. K., Koenig, D. W., & Demain, A. L. (1997). Gramicidin S production by Bacillus brevis in simulated microgravity. Current Microbiology, 34, 199–204.

    Article  CAS  PubMed  Google Scholar 

  8. Fang, A., Pierson, D. L., Mishra, S. K., Koenig, D. W., & Demain, A. L. (1997). Secondary metabolism in simulated microgravity: β-Lactam production by Streptomyces clavuligerus. Journal of Industrial Microbiology, 18, 22–25.

    Article  CAS  Google Scholar 

  9. Wilson, J. W., Ott, C. M., Honer Zu Bentrup, K., Ramamurthy, R., Quick, L., et al. (2007). Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq. Proceedings of the National Academy of Sciences of the United States of America, 104, 16299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wilson, J. W., Ott, C. M., Quick, L., Davis, R., Honer Zu Bentrup, K., et al. (2008). Media ion composition controls regulatory and virulence response of Salmonella in spaceflight. PLoS One, 3, e3923.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Crabbe, A., Schurr, M. J., Monsieurs, P., Morici, L., Schurr, J., et al. (2011). Transcriptional and proteomic response of Pseudomonas aeruginosa PAO1 to spaceflight conditions involves Hfq regulation and reveals a role for oxygen. Applied and Environmental Microbiology, 77, 1221–1230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nickerson, C. A., Ott, C. M., Mister, S. J., Morrow, B. J., Burns-Keliher, L., et al. (2000). Microgravity as a novel environmental signal affecting Salmonella enterica serovar Typhimurium virulence. Infection and Immunity, 68, 3147–3152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Crabbe, A., De Boever, P., Van Houdt, R., Moors, H., Mergeay, M., et al. (2008). Use of the rotating wall vessel technology to study the effect of shear stress on growth behaviour of Pseudomonas aeruginosa PA01. Environmental Microbiology, 10, 2098–2110.

    Article  CAS  PubMed  Google Scholar 

  14. Crabbe, A., Pycke, B., Van Houdt, R., Monsieurs, P., Nickerson, C., et al. (2010). Response of Pseudomonas aeruginosa PAO1 to low shear modelled microgravity involves AlgU regulation. Environmental Microbiology, 12, 1545–1564.

    CAS  PubMed  Google Scholar 

  15. Allen, C. A., Niesel, D. W., & Torres, A. G. (2008). The effects of low-shear stress on adherent-invasive Escherichia coli. Environmental Microbiology, 10, 1512.

    Article  CAS  PubMed  Google Scholar 

  16. Pierson, D. L. (2001). Microbial contamination of spacecraft. Gravitational and Space Biology Bulletin, 14, 1–6.

    CAS  PubMed  Google Scholar 

  17. Castro, V. A., Thrasher, A. N., Healy, M., Ott, C. M., & Pierson, D. L. (2004). Microbial characterization during the early habitation of the International Space Station. Microbial Ecology, 47, 119–126.

    Article  CAS  PubMed  Google Scholar 

  18. Bassinger, V. A., Fontenot, S. L., Castro, V. A., Ott, C. M., & Pierson, D. L. (2004). A survey of Staphylococcus aureus and its methicillin resistance aboard the International Space Station. Washington.

    Google Scholar 

  19. Lowy, F. D. (1998). Staphylococcus aureus infections. The New England Journal of Medicine, 339, 520–532.

    Article  CAS  PubMed  Google Scholar 

  20. Pierson, D. L., Chidambaram, M., Heath, J. D., Mallary, L., Mishra, S. K., et al. (1996). Epidemiology of Staphylococcus aureus during space flight. FEMS Immunology and Medical Microbiology, 16, 273–281.

    Article  CAS  PubMed  Google Scholar 

  21. Pierson, D. L., McGinnis, M. R., & Viktorov, A. N. (1994). Microbiological contamination. In A. E. Nicogossian, S. R. Mohler, O. G. Gazenko, & A. I. Grigoryev (Eds.), Space biology and medicine (pp. 77–93). Washington: American Institute of Aeronautics and Astronautics, Inc.

    Google Scholar 

  22. Cioletti, L. A., Mills, A. L., & Mishra, S. K. (1991). Microbial growth and physiology in space: A review. SAE Technical Paper Series. San Francisco.

    Google Scholar 

  23. Puleo, J. R., Oxborrow, G. S., Fields, N. D., & Hall, H. E. (1970). Quantitative and qualitative microbiological profiles of the Apollo 10 and 11 spacecraft. Applied Microbiology, 20, 384–389.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Rosado, H., Doyle, M., Hinds, J., & Taylor, P. W. (2010). Low-shear modelled microgravity alters expression of virulence determinants of Staphylococcus aureus. Acta Astronautica, 66, 408–416.

    Article  CAS  Google Scholar 

  25. Rosado, H., O’Neill, A. J., Blake, K. L., Walther, M., Long, P. F., et al. (2012). Rotating wall vessel exposure alters protein secretion and global gene expression in Staphylococcus aureus. International Journal of Astrobiology, 11, 71–81.

    Article  CAS  Google Scholar 

  26. Rosado, H., Stapleton, P. D., & Taylor, P. W. (2006). Effect of simulated microgravity on the virulence properties of the opportunistic bacterial pathogen Staphylococcus aureus.

    Google Scholar 

  27. Vukanti, R., Model, M. A., & Leff, L. G. (2012). Effect of modeled reduced gravity conditions on bacterial morphology and physiology. BMC Microbiology, 12, 4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shirtliff, M. E., Mader, J. T., & Camper, A. K. (2002). Molecular interactions in biofilms. Chemistry and Biology, 9, 859–871.

    Article  CAS  PubMed  Google Scholar 

  29. Nickerson, C. A., Ott, C. M., Wilson, J. W., Ramamurthy, R., & Pierson, D. L. (2004). Microbial responses to microgravity and other low-shear environments. Microbiology and Molecular Biology Reviews, 68, 345–361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu, G. Y., Essex, A., Buchanan, J. T., Datta, V., Hoffman, H. M., et al. (2005). Staphylococcus aureus golden pigment impairs neutrophil killing and promotes virulence through its antioxidant activity. Journal of Experimental Medicine, 202, 209–215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nizet, V. (2007). Understanding how leading bacterial pathogens subvert innate immunity to reveal novel therapeutic targets. Journal of Allergy and Clinical Immunology, 120, 13–22.

    Article  CAS  PubMed  Google Scholar 

  32. Liu, Y., Wu, N., Dong, J., Gao, Y., Zhang, X., et al. (2010). Hfq is a global regulator that controls the pathogenicity of Staphylococcus aureus. PLoS One, 5.

    Google Scholar 

  33. Bohn, C., Rigoulay, C., & Bouloc, P. (2007). No detectable effect of RNA-binding protein Hfq absence in Staphylococcus aureus. BMC Microbiology, 7, 10.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Murray, P. R., Kobayashi, G. S., Pfaller, M. A., & Rosenthal, K. S. (1994). Streptococcus and related gram-positive bacteria. In R. Farrel (Ed.), Medical microbiology (2nd ed., pp. 180–198). St. Louis: Mosby-Year Book, Inc.

    Google Scholar 

  35. Watson, P., Voss, L., Barber, C., Aickin, R., Bremner, D., et al. (1996). The microbiology of chronic otitis media with effusion in a group of Auckland children. The New Zealand Medical Journal, 109, 182–184.

    CAS  PubMed  Google Scholar 

  36. Jacobs, M. R. (2004). Streptococcus pneumoniae: Epidemiology and patterns of resistance. American Journal of Medicine, 117(Suppl 3A), 3S–15S.

    CAS  PubMed  Google Scholar 

  37. van der Poll, T., & Opal, S. M. (2009). Pathogenesis, treatment, and prevention of pneumococcal pneumonia. Lancet, 374, 1543–1556.

    Article  PubMed  Google Scholar 

  38. Dery, M. A., & Hasbun, R. (2007). Changing epidemiology of bacterial meningitis. Current Infectious Disease Reports, 9, 301–307.

    Article  PubMed  Google Scholar 

  39. Kadioglu, A., Weiser, J. N., Paton, J. C., & Andrew, P. W. (2008). The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease. Nature Reviews Microbiology, 6, 288–301.

    Article  CAS  PubMed  Google Scholar 

  40. O’Brien, K. L., Wolfson, L. J., Watt, J. P., Henkle, E., Deloria-Knoll, M., et al. (2009). Burden of disease caused by Streptococcus pneumoniae in children younger than 5 years: Global estimates. Lancet, 374, 893–902.

    Article  PubMed  Google Scholar 

  41. CDC. (2012). Pneumococcal disease. epidemiology and prevention of vaccine-preventable diseases. The pink book: Course textbook. 12th ed. http://www.cdc.gov/vaccines/pubs/pinkbook/pneumo.html

  42. de Velasco, E. A., Merkus, D., Anderton, S., Verheul, A. F., Lizzio, E. F., et al. (1995). Synthetic peptides representing T-cell epitopes act as carriers in pneumococcal polysaccharide conjugate vaccines. Infection and Immunity, 63, 961–968.

    PubMed  PubMed Central  Google Scholar 

  43. Allen, C. A. (2007). Doctoral dissertation. Galveston: University of Texas Medical Branch.

    Google Scholar 

  44. Allen, C. A., Galindo, C. L., Pandya, U., Watson, D. A., Chopra, A. K., et al. (2006). Transcription profiles of Streptococcus pneumoniae grown under different conditions of normal gravitation. Acta Astronautica, 60, 433–444.

    Article  Google Scholar 

  45. Kacena, M. A., Merrell, G. A., Manfredi, B., Smith, E. E., Klaus, D. M., et al. (1999). Bacterial growth in space flight: Logistic growth curve parameters for Escherichia coli and Bacillus subtilis. Applied Microbiology and Biotechnology, 51, 229–234.

    Article  CAS  PubMed  Google Scholar 

  46. De Boever, P., Mergeay, M., Ilyin, V., Forget-Hanus, D., Van der Auwera, G., & Mahillon, J. (2007). Conjugation-mediated plasmid exchange between bacteria grown under space flight conditions. Microgravity Science and Technology, 19, 138–144.

    Article  Google Scholar 

  47. Demain, A. L., & Fang, A. (2001). Secondary metabolism in simulated microgravity. Chemical Record, 1, 333–346.

    Article  CAS  PubMed  Google Scholar 

  48. Gao, H., Liu, Z., & Zhang, L. (2011). Secondary metabolism in simulated microgravity and space flight. Protein & Cell, 2, 858–861.

    Article  CAS  Google Scholar 

  49. Fang, A., Pierson, D. L., Mishra, S. K., Koenig, D. W., & Demain, A. L. (1997). Secondary metabolism in simulated microgravity: Beta-lactam production by Streptomyces clavuligerus. Journal of Industrial Microbiology and Biotechnology, 18, 22–25.

    Article  CAS  PubMed  Google Scholar 

  50. Fang, A., Pierson, D. L., Mishra, S. K., & Demain, A. L. (2000). Growth of Streptomyces hygroscopicus in rotating-wall bioreactor under simulated microgravity inhibits rapamycin production. Applied Microbiology and Biotechnology, 54, 33–36.

    Article  CAS  PubMed  Google Scholar 

  51. Benoit, M. R., Li, W., Stodieck, L. S., Lam, K. S., Winther, C. L., et al. (2006). Microbial antibiotic production aboard the International Space Station. Applied Microbiology and Biotechnology, 70, 403–411.

    Article  CAS  PubMed  Google Scholar 

  52. Zhou, J., Sun, C., Wang, N., Gao, R., Bai, S., et al. (2006). Preliminary report on the biological effects of space flight on the producing strain of a new immunosuppressant, Kanglemycin C. Journal of Industrial Microbiology and Biotechnology, 33, 707–712.

    Article  CAS  PubMed  Google Scholar 

  53. Pierson, D., Botkin, D. J., Bruce, R. J., Castro, V. A., Smith, M. J., et al. (2012). Microbial monitoring of the International Space Station. In J. Moldenhauer (Ed.), Environmental monitoring: A comprehensive handbook (pp. 1–27). River Grove: DHI Publishing. pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Mark Ott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Castro, S.L., Niesel, D.W., Barrila, J., Mark Ott, C. (2016). Spaceflight and Spaceflight Analogue Induced Responses in Gram Positive Bacteria. In: Nickerson, C., Pellis, N., Ott, C. (eds) Effect of Spaceflight and Spaceflight Analogue Culture on Human and Microbial Cells. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3277-1_14

Download citation

Publish with us

Policies and ethics