Skip to main content

Molecular-Based Diagnostic, Prognostic and Predictive Tests in Breast Cancer

  • Chapter
  • First Online:
Precision Molecular Pathology of Breast Cancer

Part of the book series: Molecular Pathology Library ((MPLB,volume 10))

Abstract

Current well-established clinicopathological variables in breast cancer provide important prognostic information but a limited predictive value. Hormone receptors and human epidermal growth factor receptors 2 (HER2) status provide the most important predictive information for targeted therapy; namely endocrine and anti-HER2 therapy, in addition to some degree of prediction of response to cytotoxic chemotherapy and a prognostic value. However, breast cancer shows a great deal of biological and clinical heterogeneity and its response to therapy varies to a degree supporting the critical need for additional molecular predictive and prognostic biomarkers. Recent advances in bioinformatics and high-throughput molecular assays such as microarray technology, massive parallel sequencing and proteomics have resulted in a significant improvement in our understanding of breast cancer biology and lead to the development of molecular-based prognostic tools and potential predictive and diagnostic tests. This chapter highlights molecular breast cancer prognostic and predictive factors, molecular diagnostic assay and provides a summary about prognostic indices and classifiers developed for management of breast cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gasparini G, Pozza F, Harris AL. Evaluating the potential usefulness of new prognostic and predictive indicators in node-negative breast cancer patients. J Natl Cancer Inst. 1993;85(15):1206–19.

    Article  CAS  PubMed  Google Scholar 

  2. Hayes DF, Trock B, Harris AL. Assessing the clinical impact of prognostic factors: when is “statistically significant” clinically useful? Breast Cancer Res Treat. 1998;52(1–3):305–19. PubMed PMID: 10066089. Epub 1999/03/05. eng.

    Google Scholar 

  3. Pathology reporting of breast disease. A Joint Document Incorporating the Third Edition of the NHS Breast Screening Programme’s Guidelines for Pathology Reporting in Breast Cancer Screening and the Second Edition of The Royal College of Pathologists’ Minimum Dataset for Breast Cancer Histopathology. NHSBSP Pub. No 58. 2005.

    Google Scholar 

  4. Galea MH, Blamey RW, Elston CE, Ellis IO. The Nottingham Prognostic Index in primary breast cancer. Breast Cancer Res Treat. 1992;22(3):207–19.

    Article  CAS  PubMed  Google Scholar 

  5. Elston CW, Ellis IO, Pinder SE. Pathological prognostic factors in breast cancer. Crit Rev Oncol Hematol. 1999;31(3):209–23.

    Article  CAS  PubMed  Google Scholar 

  6. Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet. 2005 May 14–20;365(9472):1687–717. PubMed PMID: 15894097.

    Google Scholar 

  7. Tamoxifen for early breast cancer: an overview of the randomised trials. Early Breast Cancer Trialists’ Collaborative Group. Lancet. 1998 May 16;351(9114):1451–67. PubMed PMID: 9605801.

    Google Scholar 

  8. Mauri D, Pavlidis N, Polyzos NP, Ioannidis JP. Survival with aromatase inhibitors and inactivators versus standard hormonal therapy in advanced breast cancer: meta-analysis. J Natl Cancer Inst. 2006 Sep 20;98(18):1285–91. PubMed PMID: 16985247. Epub 2006/09/21. eng.

    Google Scholar 

  9. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000 Aug;406(6797):747–52. PubMed PMID: ISI:000088767700049.

    Google Scholar 

  10. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA. 2001 Sep 11;98(19):10869–74. PubMed PMID: 11553815. Pubmed Central PMCID: Pmc58566. Epub 2001/09/13. eng.

    Google Scholar 

  11. Badve S, Nakshatri H. Oestrogen-receptor-positive breast cancer: towards bridging histopathological and molecular classifications. J Clin Pathol. 2009;62(1):6–12.

    Article  CAS  PubMed  Google Scholar 

  12. Park D, Karesen R, Noren T, Sauer T. Ki-67 expression in primary breast carcinomas and their axillary lymph node metastases: clinical implications. Virchows Arch. 2007 Jul;451(1):11–8. PubMed PMID: 17554555. Epub 2007/06/08. eng.

    Google Scholar 

  13. King WJ, Greene GL. Monoclonal antibodies localize oestrogen receptor in the nuclei of target cells. Nature. 1984 Feb 23–29;307(5953):745–7. PubMed PMID: 6700704. Epub 1984/02/23. eng.

    Google Scholar 

  14. Welshons WV, Lieberman ME, Gorski J. Nuclear localization of unoccupied oestrogen receptors. Nature. 1984 Feb 23–29;307(5953):747–9. PubMed PMID: 6700705. Epub 1984/02/23. eng.

    Google Scholar 

  15. Snoj NDP, Bedard P, Sotiriou C. Molecular biology of breast cancer. In: Coleman WB, Tsongalis GJ, editors. Essential concepts in molecular pathology. San Diego: Elsevier Press; 2012.

    Google Scholar 

  16. Green S, Walter P, Kumar V, Krust A, Bornert JM, Argos P, et al. Human oestrogen receptor cDNA: sequence, expression and homology to v-erb-A. Nature. 1986 Mar 13–19;320(6058):134–9. PubMed PMID: 3754034. Epub 1986/03/13. eng.

    Google Scholar 

  17. Mosselman S, Polman J, Dijkema R. ER beta: identification and characterization of a novel human estrogen receptor. FEBS Lett. 1996;392:49–53. (Netherlands).

    Google Scholar 

  18. Li X, Huang J, Yi P, Bambara RA, Hilf R, Muyan M. Single-chain estrogen receptors (ERs) reveal that the ERalpha/beta heterodimer emulates functions of the ERalpha dimer in genomic estrogen signaling pathways. Mol Cell Biol. 2004 Sep;24(17):7681–94. PubMed PMID: 15314175. Pubmed Central PMCID: Pmc506997. Epub 2004/08/18. eng.

    Google Scholar 

  19. Crowe JP, Hubay CA, Pearson OH, Marshall JS, Rosenblatt J, Mansour EG, et al. Estrogen receptor status as a prognostic indicator for stage I breast cancer patients. Breast Cancer Res Treat. 1982;2(2):171–6. PubMed PMID: 7171837. Epub 1982/01/01. eng.

    Google Scholar 

  20. Fisher B, Redmond C, Fisher ER, Caplan R. Relative worth of estrogen or progesterone receptor and pathologic characteristics of differentiation as indicators of prognosis in node negative breast cancer patients: findings from National Surgical Adjuvant Breast and Bowel Project Protocol B-06. J Clin Oncol. 1988 Jul;6(7):1076–87. PubMed PMID: 2856862. Epub 1988/07/01. eng.

    Google Scholar 

  21. Pichon MF, Broet P, Magdelenat H, Delarue JC, Spyratos F, Basuyau JP, et al. Prognostic value of steroid receptors after long-term follow-up of 2257 operable breast cancers. Br J Cancer. 1996;73(12):1545–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Railo M, Lundin J, Haglund C, von Smitten K, von Boguslawsky K, Nordling S. Ki-67, p53, Er-receptors, ploidy and S-phase as prognostic factors in T1 node negative breast cancer. Acta Oncol. 1997;36(4):369–74. PubMed PMID: 9247096. Epub 1997/01/01. eng.

    Google Scholar 

  23. Cuzick J, Sestak I, Bonanni B, Costantino JP, Cummings S, DeCensi A, et al. Selective oestrogen receptor modulators in prevention of breast cancer: an updated meta-analysis of individual participant data. Lancet. 2013 May 25;381(9880):1827–34. PubMed PMID: 23639488. Pubmed Central PMCID: PMC3671272. Epub 2013/05/04. eng.

    Google Scholar 

  24. von Minckwitz G, Untch M, Nuesch E, Loibl S, Kaufmann M, Kummel S, et al. Impact of treatment characteristics on response of different breast cancer phenotypes: pooled analysis of the German neo-adjuvant chemotherapy trials. Breast Cancer Res Treat. 2011;125(1):145–56.

    Article  Google Scholar 

  25. Ring AE, Smith IE, Ashley S, Fulford LG, Lakhani SR. Oestrogen receptor status, pathological complete response and prognosis in patients receiving neoadjuvant chemotherapy for early breast cancer. Br J Cancer. 2004 Dec 13;91(12):2012–7. PubMed PMID: 15558072. Pubmed Central PMCID: Pmc2409783. Epub 2004/11/24. eng.

    Google Scholar 

  26. Colleoni M, Viale G, Zahrieh D, Pruneri G, Gentilini O, Veronesi P, et al. Chemotherapy is more effective in patients with breast cancer not expressing steroid hormone receptors: a study of preoperative treatment. Clin Cancer Res. 2004 Oct 1;10(19):6622–8. PubMed PMID: 15475452. Epub 2004/10/12. eng.

    Google Scholar 

  27. Dobrescu A, Chang M, Kirtani V, Turi GK, Hennawy R, Hindenburg AA. Study of estrogen receptor and progesterone receptor expression in breast ductal carcinoma in situ by immunohistochemical staining in ER/PgR-negative invasive breast cancer. ISRN Oncol. 2011;2011:673790. PubMed PMID: 22091428. Pubmed Central PMCID: 3200125.

    Google Scholar 

  28. Cui X, Schiff R, Arpino G, Osborne CK, Lee AV. Biology of progesterone receptor loss in breast cancer and its implications for endocrine therapy. J Clin Oncol. 2005 Oct 20;23(30):7721–35. PubMed PMID: 16234531. Epub 2005/10/20. eng.

    Google Scholar 

  29. Rakha EA, El-Sayed ME, Green AR, Paish EC, Powe DG, Gee J, et al. Biologic and clinical characteristics of breast cancer with single hormone receptor positive phenotype. J Clin Oncol. 2007;25(30):4772–8.

    Article  PubMed  Google Scholar 

  30. Hefti MM, Hu R, Knoblauch NW, Collins LC, Haibe-Kains B, Tamimi RM, et al. Estrogen receptor negative/progesterone receptor positive breast cancer is not a reproducible subtype. Breast Cancer Res. 2013 Aug 23;15(4):R68. PubMed PMID: 23971947. Epub 2013/08/27. eng.

    Google Scholar 

  31. Dowsett M, Houghton J, Iden C, Salter J, Farndon J, A’Hern R, et al. Benefit from adjuvant tamoxifen therapy in primary breast cancer patients according oestrogen receptor, progesterone receptor, EGF receptor and HER2 status. Ann Oncol. 2006;17(5):818–26.

    Article  CAS  PubMed  Google Scholar 

  32. Prenzel N, Fischer OM, Streit S, Hart S, Ullrich A. The epidermal growth factor receptor family as a central element for cellular signal transduction and diversification. Endocr Relat Cancer. 2001 Mar;8(1):11–31. PubMed PMID: 11350724. Epub 2001/05/15. eng.

    Google Scholar 

  33. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235(4785):177–82.

    Article  CAS  PubMed  Google Scholar 

  34. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science. 1989;244(4905):707–12.

    Article  CAS  PubMed  Google Scholar 

  35. Cortes J, Fumoleau P, Bianchi GV, Petrella TM, Gelmon K, Pivot X, et al. Pertuzumab monotherapy after trastuzumab-based treatment and subsequent reintroduction of trastuzumab: activity and tolerability in patients with advanced human epidermal growth factor receptor 2-positive breast cancer. J Clin Oncol. 2012;30(14):1594–600.

    Article  CAS  PubMed  Google Scholar 

  36. Baselga J, Bradbury I, Eidtmann H, Di Cosimo S, de Azambuja E, Aura C, et al. Lapatinib with trastuzumab for HER2-positive early breast cancer (NeoALTTO): a randomised, open-label, multicentre, phase 3 trial. Lancet. 2012;379(9816):633–40.

    Article  CAS  PubMed  Google Scholar 

  37. Blackwell KL, Burstein HJ, Storniolo AM, Rugo HS, Sledge G, Aktan G, et al. Overall survival benefit with lapatinib in combination with trastuzumab for patients with human epidermal growth factor receptor 2-positive metastatic breast cancer: final results from the EGF104900 Study. J Clin Oncol. 2012;30(21):2585–92.

    Article  CAS  PubMed  Google Scholar 

  38. Tolaney SM, Barry WT, Dang CT, Yardley DA, Moy B, Marcom PK, et al. Adjuvant paclitaxel and trastuzumab for node-negative, HER2-positive breast cancer. N Engl J Med. 2015 Jan 8;372(2):134–41. PubMed PMID: 25564897. Pubmed Central PMCID: 4313867.

    Google Scholar 

  39. Dowsett M, Sestak I, Lopez-Knowles E, Sidhu K, Dunbier AK, Cowens JW, et al. Comparison of PAM50 risk of recurrence score with oncotype DX and IHC4 for predicting risk of distant recurrence after endocrine therapy. J Clin Oncol. 2013;31(22):2783–90.

    Article  PubMed  Google Scholar 

  40. Clahsen PC, van de Velde CJ, Duval C, Pallud C, Mandard AM, Delobelle-Deroide A, et al. The utility of mitotic index, oestrogen receptor and Ki-67 measurements in the creation of novel prognostic indices for node-negative breast cancer. Eur J Surg Oncol. 1999 Aug;25(4):356–63. PubMed PMID: 10419704. Epub 1999/07/27. eng.

    Google Scholar 

  41. Lehr HA, Hansen DA, Kussick S, Li M, Hwang H, Krummenauer F, et al. Assessment of proliferative activity in breast cancer: MIB-1 immunohistochemistry versus mitotic figure count. Hum Pathol. 1999 Nov;30(11):1314–20. PubMed PMID: 10571511. Epub 1999/11/26. eng.

    Google Scholar 

  42. Thor AD, Liu S, Moore DH, 2nd, Edgerton SM. Comparison of mitotic index, in vitro bromodeoxyuridine labeling, and MIB-1 assays to quantitate proliferation in breast cancer. J Clin Oncol. 1999 Feb;17(2):470–7. PubMed PMID: 10080587. Epub 1999/03/18. eng.

    Google Scholar 

  43. Trihia H, Murray S, Price K, Gelber RD, Golouh R, Goldhirsch A, et al. Ki-67 expression in breast carcinoma: its association with grading systems, clinical parameters, and other prognostic factors–a surrogate marker? Cancer. 2003;97(5):1321–31.

    Article  CAS  PubMed  Google Scholar 

  44. Domagala W, Markiewski M, Harezga B, Dukowicz A, Osborn M. Prognostic significance of tumor cell proliferation rate as determined by the MIB-1 antibody in breast carcinoma: its relationship with vimentin and p53 protein. Clin Cancer Res. 1996 Jan;2(1):147–54. PubMed PMID: 9816101. Epub 1996/01/01. eng.

    Google Scholar 

  45. de Azambuja E, Cardoso F, de Castro G, Jr., Colozza M, Mano MS, Durbecq V, et al. Ki-67 as prognostic marker in early breast cancer: a meta-analysis of published studies involving 12,155 patients. Br J Cancer. 2007 May 21;96(10):1504–13. PubMed PMID: 17453008. Pubmed Central PMCID: Pmc2359936. Epub 2007/04/25. eng.

    Google Scholar 

  46. Viale G, Giobbie-Hurder A, Regan MM, Coates AS, Mastropasqua MG, Dell’Orto P, et al. Prognostic and predictive value of centrally reviewed Ki-67 labeling index in postmenopausal women with endocrine-responsive breast cancer: results from Breast International Group Trial 1-98 comparing adjuvant tamoxifen with letrozole. J Clin Oncol. 2008;26(34):5569–75.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Aleskandarany MA, Green AR, Rakha EA, Mohammed RA, Elsheikh SE, Powe DG, et al. Growth fraction as a predictor of response to chemotherapy in node negative breast cancer. Int J Cancer. 2009 Aug 26. PubMed PMID: 19711345.

    Google Scholar 

  48. Brown JR, DiGiovanna MP, Killelea B, Lannin DR, Rimm DL. Quantitative assessment Ki-67 score for prediction of response to neoadjuvant chemotherapy in breast cancer. Lab Invest. 2014 Jan;94(1):98–106. PubMed PMID: 24189270. Epub 2013/11/06. eng.

    Google Scholar 

  49. Ingolf J-B, Russalina M, Simona M, Julia R, Gilda S, Bohle RM, et al. Can Ki-67 play a role in prediction of breast cancer patients’ response to Neoadjuvant chemotherapy? BioMed Res Int. 2014 03/25 01/13/received 02/11/accepted;2014:628217. PubMed PMID: PMC3982412.

    Google Scholar 

  50. Takei H, Kurosumi M, Yoshida T, Hayashi Y, Higuchi T, Uchida S, et al. Neoadjuvant endocrine therapy of breast cancer: which patients would benefit and what are the advantages? Breast Cancer (Tokyo, Japan). 2011 Apr;18(2):85–91. PubMed PMID: 21104350. Epub 2010/11/26. eng.

    Google Scholar 

  51. von Minckwitz G, Schmitt WD, Loibl S, Muller BM, Blohmer JU, Sinn BV, et al. Ki67 measured after neoadjuvant chemotherapy for primary breast cancer. Clin Cancer Res. 2013 Aug 15;19(16):4521–31. PubMed PMID: 23812670. Epub 2013/07/03. eng.

    Google Scholar 

  52. Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thurlimann B, Senn HJ, et al. Strategies for subtypes-dealing with the diversity of breast cancer: highlights of the St. Gallen international expert consensus on the primary therapy of early breast cancer 2011. Ann Oncol. 2011;22:1736–47. (England).

    Google Scholar 

  53. Sotiriou C, Wirapati P, Loi S, Harris A, Fox S, Smeds J, et al. Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst. 2006;98(4):262–72.

    Article  CAS  PubMed  Google Scholar 

  54. Rouzier R, Perou CM, Symmans WF, Ibrahim N, Cristofanilli M, Anderson K, et al. Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin Cancer Res. 2005;11(16):5678–85.

    Article  CAS  PubMed  Google Scholar 

  55. Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 2004;351(27):2817–26.

    Article  CAS  PubMed  Google Scholar 

  56. Paik S, Tang G, Shak S, Kim C, Baker J, Kim W, et al. Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J Clin Oncol. 2006;24(23):3726–34.

    Article  CAS  PubMed  Google Scholar 

  57. van ‘t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002;415:530–6. (England).

    Google Scholar 

  58. van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AA, Voskuil DW, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002;347:1999–2009. (United States: 2002 Massachusetts Medical Society).

    Google Scholar 

  59. van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AA, Voskuil DW, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002 Dec 19;347(25):1999–2009. PubMed PMID: 12490681.

    Google Scholar 

  60. Li X, Quigg RJ, Zhou J, Gu W, Nagesh Rao P, Reed EF. Clinical utility of microarrays: current status, existing challenges and future outlook. Curr Genomics. 2008 07/25/received 08/11/revised 08/14/accepted;9(7):466–74. PubMed PMID: PMC2691672.

    Google Scholar 

  61. Mittempergher L, de Ronde JJ, Nieuwland M, Kerkhoven RM, Simon I, Rutgers EJ, et al. Gene expression profiles from formalin fixed paraffin embedded breast cancer tissue are largely comparable to fresh frozen matched tissue. PLoS One. 2011;6(2):e17163. PubMed PMID: 21347257. Pubmed Central PMCID: PMC3037966. Epub 2011/02/25. eng.

    Google Scholar 

  62. Sapino A, Roepman P, Linn SC, Snel MH, Delahaye LJ, van den Akker J, et al. MammaPrint molecular diagnostics on formalin-fixed, paraffin-embedded tissue. J Mol Diagn. 2014 Mar;16(2):190–7. PubMed PMID: 24378251. Epub 2014/01/01. eng.

    Google Scholar 

  63. http://www.agendia.com/agendia-receives-new-fda-clearance-for-mammaprint-ffpe-breast-cancer-test/ 2015 [cited 2015 09/04].

  64. Bogaerts J, Cardoso F, Fau-Buyse M, Buyse M, Fau-Braga S, Braga S, Fau-Loi S, Loi S, Fau-Harrison JA, Harrison Ja, Fau-Bines J, et al. Gene signature evaluation as a prognostic tool: challenges in the design of the MINDACT trial. 2006 20061004 DCOM- 20061024(1743-4262 (Electronic)). eng.

    Google Scholar 

  65. Rutgers E, Piccart-Gebhart MJ, Bogaerts J, Delaloge S, Veer LV, Rubio IT, et al. The EORTC 10041/BIG 03-04 MINDACT trial is feasible: results of the pilot phase. Eur J Cancer. 2011 Dec;47(18):2742–9. PubMed PMID: 22051734. Epub 2011/11/05. eng.

    Google Scholar 

  66. Filho OM, Ignatiadis M, Sotiriou C. Genomic Grade Index: An important tool for assessing breast cancer tumor grade and prognosis. Crit Rev Oncol/Hematol. 2011 1//;77(1):20–9.

    Google Scholar 

  67. Ma XJ, Salunga R, Dahiya S, Wang W, Carney E, Durbecq V, et al. A five-gene molecular grade index and HOXB13:IL17BR are complementary prognostic factors in early stage breast cancer. Clin Cancer Res. 2008;14(9):2601–8.

    Article  CAS  PubMed  Google Scholar 

  68. Ma XJ, Wang Z, Ryan PD, Isakoff SJ, Barmettler A, Fuller A, et al. A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell. 2004;5:607–16. (United States).

    Google Scholar 

  69. Jerevall PL, Ma XJ, Li H, Salunga R, Kesty NC, Erlander MG, et al. Prognostic utility of HOXB13:IL17BR and molecular grade index in early-stage breast cancer patients from the Stockholm trial. Br J Cancer. 2011;104:1762–9. (England).

    Google Scholar 

  70. Ma XJ, Hilsenbeck SG, Wang W, Ding L, Sgroi DC, Bender RA, et al. The HOXB13:IL17BR expression index is a prognostic factor in early-stage breast cancer. J Clin Oncol. 2006;24:4611–9. (United States).

    Google Scholar 

  71. Goetz MP, Suman VJ, Ingle JN, Nibbe AM, Visscher DW, Reynolds CA, et al. A two-gene expression ratio of homeobox 13 and interleukin-17B receptor for prediction of recurrence and survival in women receiving adjuvant tamoxifen. Clin Cancer Res. 2006;12:2080–7. (United States).

    Google Scholar 

  72. Jerevall PL, Brommesson S, Strand C, Gruvberger-Saal S, Malmstrom P, Nordenskjold B, et al. Exploring the two-gene ratio in breast cancer-independent roles for HOXB13 and IL17BR in prediction of clinical outcome. Breast Cancer Res Treat. 2008 Jan;107(2):225–34. PubMed PMID: 17453342. Epub 2007/04/25. eng.

    Google Scholar 

  73. Nielsen TO, Parker JS, Leung S, Voduc D, Ebbert M, Vickery T, et al. A comparison of PAM50 intrinsic subtyping with immunohistochemistry and clinical prognostic factors in tamoxifen-treated estrogen receptor-positive breast cancer. Clin Cancer Res. 2010 Nov 1;16(21):5222–32. PubMed PMID: 20837693. Pubmed Central PMCID: 2970720.

    Google Scholar 

  74. Parker JS, Mullins M, Cheang MC, Leung S, Voduc D, Vickery T, et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol. 2009;27(8):1160–7.

    Article  PubMed Central  PubMed  Google Scholar 

  75. Nielsen TO, Parker JS, Leung S, Voduc D, Ebbert M, Vickery T, et al. A comparison of PAM50 intrinsic subtyping with immunohistochemistry and clinical prognostic factors in tamoxifen-treated estrogen receptor-positive breast cancer. Clin Cancer Res. 2010 Aacr.; 2010;16:5222–32. (United States).

    Google Scholar 

  76. Geiss GK, Bumgarner RE, Birditt B, Dahl T, Dowidar N, Dunaway DL, et al. Direct multiplexed measurement of gene expression with color-coded probe pairs. Nature Biotechnol. 2008 Mar;26(3):317–25. PubMed PMID: 18278033. Epub 2008/02/19. eng.

    Google Scholar 

  77. Reis PP, Waldron L, Goswami RS, Xu W, Xuan Y, Perez-Ordonez B, et al. mRNA transcript quantification in archival samples using multiplexed, color-coded probes. BMC Biotechnol. 2011;11:46. PubMed PMID: 21549012. Pubmed Central PMCID: PMC3103428. Epub 2011/05/10. eng.

    Google Scholar 

  78. Nielsen T, Wallden B, Schaper C, Ferree S, Liu S, Gao D, et al. Analytical validation of the PAM50-based Prosigna breast cancer prognostic gene signature assay and nCounter analysis system using formalin-fixed paraffin-embedded breast tumor specimens. BMC Cancer. 2014;14(1):177. PubMed PMID: doi:10.1186/1471-2407-14-177.

  79. Curtis C, et al. The genomic andtranscriptomic architecture of 2000 breast tumours reveals novel subgroups. Nature. 2012;346–52. (England).

    Google Scholar 

  80. Bieche I, Lidereau R. Genome-based and transcriptome-based molecular classification of breast cancer. Curr Opin Oncol. 2011 Jan;23(1):93–9. PubMed PMID: 21076301. Epub 2010/11/16. eng.

    Google Scholar 

  81. Aceto N, Bardia A, Miyamoto DT, Donaldson MC, Wittner BS, Spencer JA, et al. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell. 2014 Aug 28;158(5):1110–22. PubMed PMID: 25171411. Pubmed Central PMCID: PMC4149753. Epub 2014/08/30. eng.

    Google Scholar 

  82. Alix-Panabieres C. EPISPOT assay: detection of viable DTCs/CTCs in solid tumor patients. Recent results in cancer research Fortschritte der Krebsforschung Progres dans les recherches sur le cancer. 2012;195:69–76. PubMed PMID: 22527495. Epub 2012/04/25. eng.

    Google Scholar 

  83. Saliba AE, Saias L, Psychari E, Minc N, Simon D, Bidard FC, et al. Microfluidic sorting and multimodal typing of cancer cells in self-assembled magnetic arrays. Proc Natl Acad Sci USA. 2010 Aug 17;107(33):14524–9. PubMed PMID: 20679245. Pubmed Central PMCID: PMC2930475. Epub 2010/08/04. eng.

    Google Scholar 

  84. Pecot CV, Bischoff FZ, Mayer JA, Wong KL, Pham T, Bottsford-Miller J, et al. A novel platform for detection of CK+ and CK− CTCs. Cancer discovery. 2011 Dec;1(7):580–6. PubMed PMID: 22180853. Pubmed Central PMCID: PMC3237635. Epub 2011/12/20. eng.

    Google Scholar 

  85. Issadore D, Chung J, Shao H, Liong M, Ghazani AA, Castro CM, et al. Ultrasensitive clinical enumeration of rare cells ex vivo using a micro-hall detector. Science translational medicine. 2012 Jul 4;4(141):141ra92. PubMed PMID: 22764208. Pubmed Central PMCID: PMC3603277. Epub 2012/07/06. eng.

    Google Scholar 

  86. Andreopoulou E, Yang LY, Rangel KM, Reuben JM, Hsu L, Krishnamurthy S, et al. Comparison of assay methods for detection of circulating tumor cells in metastatic breast cancer: AdnaGen AdnaTest BreastCancer Select/Detect versus Veridex CellSearch system. Int J Cancer. 2012 Apr 1;130(7):1590–7. PubMed PMID: 21469140. Epub 2011/04/07. eng.

    Google Scholar 

  87. Pantel K, Alix-Panabières C. Detection methods of circulating tumor cells. J Thoracic Dis. 2012 07/20/received 08/23/accepted;4(5):446–7. PubMed PMID: PMC3461061.

    Google Scholar 

  88. Zhang L, Riethdorf S, Wu G, Wang T, Yang K, Peng G, et al. Meta-analysis of the prognostic value of circulating tumor cells in breast cancer. Clin Cancer Res. 2012 Oct 15;18(20):5701–10. PubMed PMID: 22908097. Epub 2012/08/22. eng.

    Google Scholar 

  89. Giuliano M, Giordano A, Jackson S, De Giorgi U, Mego M, Cohen EN, et al. Circulating tumor cells as early predictors of metastatic spread in breast cancer patients with limited metastatic dissemination. Breast Cancer Res. 2014;16(5):440. PubMed PMID: 25223629. Pubmed Central PMCID: PMC4303121. Epub 2014/09/17. eng.

    Google Scholar 

  90. Stathopoulou A, Vlachonikolis I, Mavroudis D, Perraki M, Kouroussis C, Apostolaki S, et al. Molecular detection of cytokeratin-19-positive cells in the peripheral blood of patients with operable breast cancer: evaluation of their prognostic significance. J Clin Oncol. 2002;20(16):3404–12.

    Article  CAS  PubMed  Google Scholar 

  91. Zach O, Kasparu H, Wagner H, Krieger O, Lutz D. Prognostic value of tumour cell detection in peripheral blood of breast cancer patients. Acta Med Austriaca Suppl. 2002;59:32–4.

    CAS  PubMed  Google Scholar 

  92. Rack B, Schindlbeck C, Jückstock J, Andergassen U, Hepp P, Zwingers T, et al. Circulating tumor cells predict survival in early average-to-high risk breast cancer patients. J Nat Cancer Inst. 2014 May 1;106(5).

    Google Scholar 

  93. Bardia A, Haber DA. Solidifying liquid biopsies: can circulating tumor cell monitoring guide treatment selection in breast cancer? J Clin Oncol. 2014 November 1;32(31):3470–1.

    Google Scholar 

  94. Budd GT, Cristofanilli M, Ellis MJ, Stopeck A, Borden E, Miller MC, et al. Circulating tumor cells versus imaging—predicting overall survival in metastatic breast cancer. Clin Cancer Res. 2006 November 1;12(21):6403–9.

    Google Scholar 

  95. Funke I, Schraut W. Meta-analyses of studies on bone marrow micrometastases: an independent prognostic impact remains to be substantiated. J Clin Oncol. 1998;16(2):557–66.

    CAS  PubMed  Google Scholar 

  96. Look MP, van Putten WL, Duffy MJ, Harbeck N, Christensen IJ, Thomssen C, et al. Pooled analysis of prognostic impact of urokinase-type plasminogen activator and its inhibitor PAI-1 in 8377 breast cancer patients. J Natl Cancer Inst. 2002;94(2):116–28.

    Article  CAS  PubMed  Google Scholar 

  97. Ring BZ, Seitz RS, Beck R, Shasteen WJ, Tarr SM, Cheang MC, et al. Novel prognostic immunohistochemical biomarker panel for estrogen receptor-positive breast cancer. J Clin Oncol. 2006;24(19):3039–47.

    Article  CAS  PubMed  Google Scholar 

  98. Ross DT, Kim CY, Tang G, Bohn OL, Beck RA, Ring BZ, et al. Chemosensitivity and stratification by a five monoclonal antibody immunohistochemistry test in the NSABP B14 and B20 trials. Clin Cancer Res. 2008;14:6602–9. (United States).

    Google Scholar 

  99. Bartlett JM, Thomas J, Ross DT, Seitz RS, Ring BZ, Beck RA, et al. Mammostrat as a tool to stratify breast cancer patients at risk of recurrence during endocrine therapy. Breast Cancer Res. 2010;12:R47. (England).

    Google Scholar 

  100. Cuzick J, Dowsett M, Pineda S, Wale C, Salter J, Quinn E, et al. Prognostic value of a combined estrogen receptor, progesterone receptor, Ki-67, and human epidermal growth factor receptor 2 immunohistochemical score and comparison with the Genomic Health recurrence score in early breast cancer. J Clin Oncol. 2011;29(32):4273–8.

    Article  PubMed  Google Scholar 

  101. Blamey RW, Pinder SE, Ball GR, Ellis IO, Elston CW, Mitchell MJ, et al. Reading the prognosis of the individual with breast cancer. Eur J Cancer. 2007;43(10):1545–7.

    Article  CAS  PubMed  Google Scholar 

  102. Haybittle JL, Blamey RW, Elston CW, Johnson J, Doyle PJ, Campbell FC, et al. A prognostic index in primary breast cancer. Br J Cancer. 1982;45(3):361–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  103. Elston CW, Ellis IO. Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology. 1991;19(5):403–10.

    Article  CAS  PubMed  Google Scholar 

  104. Balslev I, Axelsson CK, Zedeler K, Rasmussen BB, Carstensen B, Mouridsen HT. The Nottingham Prognostic Index applied to 9,149 patients from the studies of the Danish Breast Cancer Cooperative Group (DBCG). Breast Cancer Res Treat. 1994;32(3):281–90.

    Article  CAS  PubMed  Google Scholar 

  105. D’Eredita G, Giardina C, Martellotta M, Natale T, Ferrarese F. Prognostic factors in breast cancer: the predictive value of the Nottingham Prognostic Index in patients with a long-term follow-up that were treated in a single institution. Eur J Cancer. 2001;37(5):591–6.

    Article  PubMed  Google Scholar 

  106. Brown J, Jones M, Benson EA. Comment on the Nottingham Prognostic Index. Breast Cancer Res Treat. 1993;25(3):283. PubMed PMID: 8267734. Epub 1993/01/01. eng.

    Google Scholar 

  107. Rakha EA, Soria D, Green AR, Lemetre C, Powe DG, Nolan CC, et al. Nottingham Prognostic Index Plus (NPI+): a modern clinical decision making tool in breast cancer. 2014 20140402 DCOM- 20140530(1532-1827 (Electronic)). eng.

    Google Scholar 

  108. Green AR, Powe DG, Rakha EA, Soria D, Lemetre C, Nolan CC, et al. Identification of key clinical phenotypes of breast cancer using a reduced panel of protein biomarkers. Br J Cancer. 2013 Oct 1;109(7):1886–94. PubMed PMID: 24008658. Pubmed Central PMCID: 3790179.

    Google Scholar 

  109. Rakha EA, Soria D, Green AR, Lemetre C, Powe DG, Nolan CC, et al. Nottingham Prognostic Index Plus (NPI+): a modern clinical decision making tool in breast cancer. Br J Cancer. 2014 Mar 11. PubMed PMID: 24619074. Epub 2014/03/13. Eng.

    Google Scholar 

  110. Ravdin PM, Siminoff LA, Davis GJ, Mercer MB, Hewlett J, Gerson N, et al. Computer program to assist in making decisions about adjuvant therapy for women with early breast cancer. J Clin Oncol. 2001;19(4):980–91.

    CAS  PubMed  Google Scholar 

  111. Olivotto IA, Bajdik CD, Ravdin PM, Speers CH, Coldman AJ, Norris BD, et al. Population-based validation of the prognostic model ADJUVANT! for early breast cancer. J Clin Oncol. 2005;23(12):2716–25.

    Article  PubMed  Google Scholar 

  112. Mook S, Schmidt MK, Rutgers EJ, van de Velde AO, Visser O, Rutgers SM, et al. Calibration and discriminatory accuracy of prognosis calculation for breast cancer with the online Adjuvant! program: a hospital-based retrospective cohort study. Lancet Oncol. 2009;10(11):1070–6.

    Article  PubMed  Google Scholar 

  113. Hajage D, de Rycke Y, Bollet M, Savignoni A, Caly M, Pierga JY, et al. External validation of Adjuvant! Online breast cancer prognosis tool. Prioritising recommendations for improvement. PLoS One. 2011;6:e27446. (United States).

    Google Scholar 

  114. Bhoo-Pathy N, Yip CH, Hartman M, Saxena N, Taib NA, Ho GF, et al. Adjuvant! Online is overoptimistic in predicting survival of Asian breast cancer patients. Eur J Cancer. 2012;48:982–9. (England: 2012 Elsevier Ltd).

    Google Scholar 

  115. Campbell HE, Taylor MA, Harris AL, Gray AM. An investigation into the performance of the Adjuvant! Online prognostic programme in early breast cancer for a cohort of patients in the United Kingdom. Br J Cancer. 2009;101:1074–84. (England).

    Google Scholar 

  116. Engelhardt EG, Garvelink MM, de Haes JH, van der Hoeven JJ, Smets EM, Pieterse AH, et al. Predicting and communicating the risk of recurrence and death in women with early-stage breast cancer: a systematic review of risk prediction models. J Clin Oncol. 2014;32:238–50. (United States).

    Google Scholar 

  117. Wishart GC, Azzato EM, Greenberg DC, Rashbass J, Kearins O, Lawrence G, et al. PREDICT: a new UK prognostic model that predicts survival following surgery for invasive breast cancer. Breast Cancer Res. 2010;12:R1. (England).

    Google Scholar 

  118. Wishart GC, Bajdik CD, Dicks E, Provenzano E, Schmidt MK, Sherman M, et al. PREDICT Plus: development and validation of a prognostic model for early breast cancer that includes HER2. Br J Cancer. 2012;107:800–7. (England).

    Google Scholar 

  119. Wishart GC, Rakha E, Green A, Ellis I, Ali HR, Provenzano E, et al. Inclusion of KI67 significantly improves performance of the PREDICT prognostication and prediction model for early breast cancer. BMC Cancer. 2014;14:908. (England).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emad A. Rakha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Muftah, A.A., Aleskandarany, M.A., Ellis, I.O., Rakha, E.A. (2015). Molecular-Based Diagnostic, Prognostic and Predictive Tests in Breast Cancer. In: Khan, A., Ellis, I., Hanby, A., Cosar, E., Rakha, E., Kandil, D. (eds) Precision Molecular Pathology of Breast Cancer. Molecular Pathology Library, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2886-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2886-6_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2885-9

  • Online ISBN: 978-1-4939-2886-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics